organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Butyl­pyridine-4-thio­carboxamide

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title mol­ecule, C10H14N2S, the n-butyl chain assumes a trans zigzag conformation. The dihedral angle between the pyridine ring and the thio­amide plane is 23.38 (8)°. The mol­ecules in the crystal structure are linked by an inter­molecular N—H⋯N hydrogen bond.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Klimsova et al. (1999[Klimsova, V., Svoboda, M., Waiser, K., Pour, M. & Kaustova, J. (1999). Collect. Czech. Chem. Commn. 64, 417-434.]); Ramachandran (2005[Ramachandran, K. L. (2005). Asian J. Chem. 17, 1559-1563.]); Vannelli et al. (2002[Vannelli, T., Dykman, A. & Montellano, P. R. O. (2002). J. Biol. Chem. 277, 12824-12829.]); Desiraju (1989[Desiraju, G. R. (1989). Materials Science Monographs, No. 54, Crystal Engineering - The Design of Organic Solids, edited by G. R. Desiraju, pp. 85-113. New York: Elsevier Science Publishers.]); Dodge et al. (2006[Dodge, A. G., Richman, J. E., Johnson, G. & Wackett, L. P. (2006). Appl. Environm. Microbiol. 72, 7468-7476.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N2S

  • Mr = 194.29

  • Monoclinic, P 21 /c

  • a = 8.0895 (3) Å

  • b = 13.5947 (4) Å

  • c = 10.4936 (3) Å

  • β = 111.895 (2)°

  • V = 1070.78 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 (2) K

  • 0.26 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT (Version 6.0a), APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.949

  • 11437 measured reflections

  • 2182 independent reflections

  • 1744 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.120

  • S = 1.06

  • 2182 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯N1i 0.859 (19) 2.182 (19) 3.033 (2) 171 (2)
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT (Version 6.0a), APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT (Version 6.0a), APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Drugs containing carbothioamide (–CSNH2) functional groups are clinically effective for the treatment of M. tuberculosis, M. leprae and M. avium complex infections (Dodge et al., 2006; Klimsova et al., 1999). In general, the carbothioamide drugs are considered as second line drugs. The carbothioamide groups have significant effects in biological systems. Their use, especially as pyridine carbothioamides in the field of multi drug resistant systems, has increased a lot (Vannelli et al., 2002). Depending on the position of the carbothioamide group at the pyridine ring and also depending on the nature of N-alkyl substitution at the thioamide, the pyridine carbothioamides have been found to play a vital role in their biological activities and drug action. We report here the crystal structure of a typical pyridinecarbothioamide, viz., 4-(N-1-butylcarbothioamido) pyridine.

The pyridine ring is planar. The n-butyl amide group assumes an extended conformation [C4—C7—N8—C9 = -178.06 (15)°, C7—N8—C9—C10 = -168.50 (16)°, N8—C9—C10—C11 = -178.86 (16)°, C9—C10—C11—C12 = -171.50 (18)°]. The C=S bond length [1.6608 (16) Å] is comparable with the literature values (Allen et al., 1987). The pyridine and thioamide planes orient at an angle of 23.38 (8)° to each other.

The sum of the bond angles around N8 is 359.94 (4)° thus conforming sp2 hybridized state of N atom. The molecules in the unit cell are stabilized by N—H···N (Desiraju, 1989) type of intermolecular interactions in addition to van der Waal's forces.

Related literature top

For related literature, see: Allen et al. (1987); Klimsova et al. (1999); Ramachandran (2005); Vannelli et al. (2002); Desiraju (1989); Dodge et al. (2006).

Experimental top

About 5 g of 4- pyridinecarbonitrile was dissolved in 15 ml of ethanol. To this about 10 ml of 1-aminobutane was added and purified and H2S gas was passed for 3 h. The yellow solid separate was filtered, washed with ethanol and dried in vacuum desicator (yield 80%) (Ramachandran, 2005).

Refinement top

The H atom associated with N atom was located in a difference Fourier map and refined isotropically. Other H atoms were geometrically positioned (C—H = 0.93 - 0.97 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Drugs containing carbothioamide (–CSNH2) functional groups are clinically effective for the treatment of M. tuberculosis, M. leprae and M. avium complex infections (Dodge et al., 2006; Klimsova et al., 1999). In general, the carbothioamide drugs are considered as second line drugs. The carbothioamide groups have significant effects in biological systems. Their use, especially as pyridine carbothioamides in the field of multi drug resistant systems, has increased a lot (Vannelli et al., 2002). Depending on the position of the carbothioamide group at the pyridine ring and also depending on the nature of N-alkyl substitution at the thioamide, the pyridine carbothioamides have been found to play a vital role in their biological activities and drug action. We report here the crystal structure of a typical pyridinecarbothioamide, viz., 4-(N-1-butylcarbothioamido) pyridine.

The pyridine ring is planar. The n-butyl amide group assumes an extended conformation [C4—C7—N8—C9 = -178.06 (15)°, C7—N8—C9—C10 = -168.50 (16)°, N8—C9—C10—C11 = -178.86 (16)°, C9—C10—C11—C12 = -171.50 (18)°]. The C=S bond length [1.6608 (16) Å] is comparable with the literature values (Allen et al., 1987). The pyridine and thioamide planes orient at an angle of 23.38 (8)° to each other.

The sum of the bond angles around N8 is 359.94 (4)° thus conforming sp2 hybridized state of N atom. The molecules in the unit cell are stabilized by N—H···N (Desiraju, 1989) type of intermolecular interactions in addition to van der Waal's forces.

For related literature, see: Allen et al. (1987); Klimsova et al. (1999); Ramachandran (2005); Vannelli et al. (2002); Desiraju (1989); Dodge et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram, viewed approximately along the a axis. Dashed lines indicated N—H···N hydrogen bonds.
N-Butylpyridine-4-thiocarboxamide top
Crystal data top
C10H14N2SF(000) = 416
Mr = 194.29Dx = 1.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2182 reflections
a = 8.0895 (3) Åθ = 2.6–26.3°
b = 13.5947 (4) ŵ = 0.26 mm1
c = 10.4936 (3) ÅT = 293 K
β = 111.895 (2)°Block, brown
V = 1070.78 (6) Å30.26 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII kappa
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube1744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scanθmax = 26.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.935, Tmax = 0.949k = 1516
11437 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.2939P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H14N2SV = 1070.78 (6) Å3
Mr = 194.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0895 (3) ŵ = 0.26 mm1
b = 13.5947 (4) ÅT = 293 K
c = 10.4936 (3) Å0.26 × 0.20 × 0.20 mm
β = 111.895 (2)°
Data collection top
Bruker APEXII kappa
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1744 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.949Rint = 0.027
11437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
2182 reflectionsΔρmin = 0.38 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H80.753 (2)0.0813 (14)0.501 (2)0.055 (5)*
C20.6652 (3)0.27758 (12)0.74847 (18)0.0533 (4)
H20.59530.33020.70160.064*
C30.6682 (2)0.19391 (12)0.67438 (17)0.0461 (4)
H30.60410.19170.58020.055*
C40.7670 (2)0.11385 (11)0.74138 (15)0.0406 (4)
C50.8613 (3)0.12389 (14)0.88113 (18)0.0561 (5)
H50.93040.07210.93120.067*
C60.8525 (3)0.21036 (14)0.94534 (19)0.0606 (5)
H60.91850.21541.03900.073*
C70.7739 (2)0.01937 (11)0.67065 (17)0.0446 (4)
C90.7746 (3)0.06103 (12)0.46367 (18)0.0519 (4)
H9A0.89540.08640.50050.062*
H9B0.69650.11160.47480.062*
C100.7241 (3)0.04039 (12)0.31368 (18)0.0514 (4)
H10A0.60220.01680.27540.062*
H10B0.80080.01070.30170.062*
C110.7414 (3)0.13253 (14)0.23755 (19)0.0590 (5)
H11A0.67970.18620.26180.071*
H11B0.86630.15030.26730.071*
C120.6671 (4)0.1204 (2)0.0840 (2)0.0914 (8)
H12A0.68220.18060.04170.137*
H12B0.54270.10460.05330.137*
H12C0.72920.06830.05900.137*
N10.7559 (2)0.28736 (10)0.88235 (15)0.0544 (4)
N80.7638 (2)0.02581 (10)0.54257 (14)0.0450 (3)
S10.79203 (10)0.08676 (3)0.75316 (5)0.0775 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0742 (12)0.0386 (9)0.0445 (10)0.0106 (8)0.0193 (9)0.0039 (7)
C30.0591 (10)0.0420 (8)0.0351 (8)0.0019 (7)0.0152 (7)0.0010 (6)
C40.0507 (9)0.0356 (8)0.0393 (9)0.0011 (7)0.0212 (7)0.0016 (6)
C50.0744 (13)0.0482 (10)0.0396 (9)0.0177 (9)0.0143 (9)0.0047 (7)
C60.0829 (14)0.0548 (11)0.0359 (9)0.0104 (9)0.0126 (9)0.0045 (8)
C70.0563 (10)0.0371 (8)0.0420 (9)0.0009 (7)0.0201 (8)0.0013 (6)
C90.0716 (12)0.0354 (8)0.0507 (10)0.0021 (8)0.0253 (9)0.0062 (7)
C100.0649 (11)0.0424 (9)0.0485 (10)0.0035 (8)0.0228 (8)0.0079 (7)
C110.0721 (13)0.0510 (11)0.0593 (12)0.0064 (9)0.0307 (10)0.0166 (8)
C120.1018 (19)0.107 (2)0.0593 (14)0.0033 (15)0.0234 (13)0.0293 (13)
N10.0776 (11)0.0426 (8)0.0432 (8)0.0073 (7)0.0227 (8)0.0025 (6)
N80.0662 (9)0.0316 (7)0.0405 (7)0.0033 (6)0.0235 (7)0.0021 (6)
S10.1429 (6)0.0376 (3)0.0602 (4)0.0080 (3)0.0474 (4)0.0114 (2)
Geometric parameters (Å, º) top
C2—N11.327 (2)C9—C101.498 (2)
C2—C31.383 (2)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.378 (2)C10—C111.520 (2)
C3—H30.9300C10—H10A0.9700
C4—C51.384 (2)C10—H10B0.9700
C4—C71.495 (2)C11—C121.504 (3)
C5—C61.370 (3)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C6—N11.326 (2)C12—H12A0.9600
C6—H60.9300C12—H12B0.9600
C7—N81.318 (2)C12—H12C0.9600
C7—S11.6608 (16)N8—H80.86 (2)
C9—N81.463 (2)
N1—C2—C3123.97 (16)H9A—C9—H9B107.8
N1—C2—H2118.0C9—C10—C11110.82 (15)
C3—C2—H2118.0C9—C10—H10A109.5
C4—C3—C2119.42 (15)C11—C10—H10A109.5
C4—C3—H3120.3C9—C10—H10B109.5
C2—C3—H3120.3C11—C10—H10B109.5
C3—C4—C5116.63 (15)H10A—C10—H10B108.1
C3—C4—C7123.18 (14)C12—C11—C10113.24 (19)
C5—C4—C7120.18 (15)C12—C11—H11A108.9
C6—C5—C4119.76 (16)C10—C11—H11A108.9
C6—C5—H5120.1C12—C11—H11B108.9
C4—C5—H5120.1C10—C11—H11B108.9
N1—C6—C5124.15 (17)H11A—C11—H11B107.7
N1—C6—H6117.9C11—C12—H12A109.5
C5—C6—H6117.9C11—C12—H12B109.5
N8—C7—C4116.70 (13)H12A—C12—H12B109.5
N8—C7—S1123.30 (12)C11—C12—H12C109.5
C4—C7—S1120.00 (12)H12A—C12—H12C109.5
N8—C9—C10113.15 (14)H12B—C12—H12C109.5
N8—C9—H9A108.9C6—N1—C2116.05 (15)
C10—C9—H9A108.9C7—N8—C9121.94 (14)
N8—C9—H9B108.9C7—N8—H8122.2 (13)
C10—C9—H9B108.9C9—N8—H8115.8 (13)
N1—C2—C3—C41.5 (3)C5—C4—C7—S133.5 (2)
C2—C3—C4—C51.2 (2)N8—C9—C10—C11178.86 (16)
C2—C3—C4—C7178.13 (16)C9—C10—C11—C12171.50 (18)
C3—C4—C5—C60.1 (3)C5—C6—N1—C20.6 (3)
C7—C4—C5—C6179.24 (18)C3—C2—N1—C60.6 (3)
C4—C5—C6—N10.9 (3)C4—C7—N8—C9178.06 (15)
C3—C4—C7—N833.7 (2)S1—C7—N8—C92.4 (3)
C5—C4—C7—N8146.99 (17)C10—C9—N8—C7168.50 (16)
C3—C4—C7—S1145.88 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N1i0.859 (19)2.182 (19)3.033 (2)171 (2)
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H14N2S
Mr194.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0895 (3), 13.5947 (4), 10.4936 (3)
β (°) 111.895 (2)
V3)1070.78 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.26 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII kappa
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.935, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
11437, 2182, 1744
Rint0.027
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.06
No. of reflections2182
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N1i0.859 (19)2.182 (19)3.033 (2)171 (2)
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

AD, MH and CR are grateful to Rev. Fr A. Albert Muthumali S. J., Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). SAINT (Version 6.0a), APEX2 (Version 1.22) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Materials Science Monographs, No. 54, Crystal Engineering - The Design of Organic Solids, edited by G. R. Desiraju, pp. 85–113. New York: Elsevier Science Publishers.  Google Scholar
First citationDodge, A. G., Richman, J. E., Johnson, G. & Wackett, L. P. (2006). Appl. Environm. Microbiol. 72, 7468–7476.  Web of Science CrossRef CAS Google Scholar
First citationKlimsova, V., Svoboda, M., Waiser, K., Pour, M. & Kaustova, J. (1999). Collect. Czech. Chem. Commn. 64, 417–434.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRamachandran, K. L. (2005). Asian J. Chem. 17, 1559–1563.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVannelli, T., Dykman, A. & Montellano, P. R. O. (2002). J. Biol. Chem. 277, 12824–12829.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds