organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-N-(4-chloro­phen­yl)acrylamide

aCollege of Chemistry and Materials Science, Anhui Normal University, Anhui Key Laboratory of Functional Molecular Solids, Wuhu, Anhui 241000, People's Republic of China
*Correspondence e-mail: llyyjz@nju.edu.cn

(Received 17 November 2007; accepted 29 November 2007; online 6 December 2007)

In the mol­ecular structure of the title compound, C16H14ClNO, the acrylamide unit is essentially planar and makes dihedral angles of 80.06 (12) and 68.91 (13)°, respectively, with the benzene and phenyl rings. The dihedral angle between the two rings is 49.79 (11)°. In the crystal structure, mol­ecules are connected via weak C—H⋯O and C—H⋯π inter­actions, forming a mol­ecular tape running along the b axis.

Related literature

For related literature, see: Fairlamb (2004[Fairlamb, I. J. S. (2004). Angew. Chem. Int. Ed. 43, 1048-1052.]); Hu et al. (2003[Hu, Y.-M., Zhou, J., Lian, H.-Z., Zhu, C.-J. & Pan, Y. (2003). Synthesis, pp. 1177-1180.]); Park & Hoffmann (1990[Park, T. G. & Hoffmann, A. S. (1990). Biotechnol. Bioeng. 35, 152-154.]); Otero & Cantero (1995[Otero, T. F. & Cantero, I. (1995). J. Electroanal. Chem. 395, 75-78.]); Riggi et al. (1992[Riggi, I. D., Gastaldi, S., Surzur, J. M. & Bertrand, M. P. M. (1992). J. Org. Chem. 50, 6118-6125.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClNO

  • Mr = 271.73

  • Monoclinic, P 21 /n

  • a = 9.215 (4) Å

  • b = 9.210 (4) Å

  • c = 17.090 (8) Å

  • β = 102.842 (6)°

  • V = 1414.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.93, Tmax = 0.94

  • 11395 measured reflections

  • 3172 independent reflections

  • 1666 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.158

  • S = 1.06

  • 3172 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the mid-point of atoms C15 and C16.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.53 3.405 (4) 157
C6—H6⋯Cg1ii 0.93 3.02 3.75 (2) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1. Cg1 is the mid-point of atoms C15 and C16.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many active molecules in nature contain highly functionalized heterocyclic rings (Fairlamb, 2004). In recent research, we report a novel palladium catalyzed Heck intermolecular reactions of aryl halides with the nitron-containing olefins (Hu et al., 2003). We found that polyene amide was prepared by two steps (Riggi et al., 1992). The substrate of N-benzyl-N-(4-chlorophenyl)acrylamide is used to obtain this pyrrole skeleton (Park & Hoffmann, 1990; Otero & Cantero, 1995).

In this paper, we report the crystal structure of the title compound, C16H14ClNO (Fig. 1). The crystal data show that all bond lengths and angles in the title compound have normal values. The bond length of C15=C16 is 1.288 (4) Å, belonging to typical Csp2—Csp2 double bonds. The molecule contains two six-membered rings, A (C1—C6) and B (C8—C13). Rings A and B are not coplanar, the dihedral angle between ring A and ring B being 49.79 (11)°. In the structure there are a weak intermolecular C—H···O interaction [C2—H2···O1i, symmetry code: (i) -x, -y, 1 - z] and a C—H···π interaction [C6—H6···Cg1ii, Cg1 is the centroid of atoms C15 and C16; symmetry code: (ii) -x,1 - y,1 - z]. These weak intermolecular interactions extended the title compound molecules into a one-dimensional chain structure (Fig. 2) along the b axis.

Related literature top

For related literature, see: Fairlamb (2004); Hu et al. (2003); Park & Hoffmann (1990); Otero & Cantero (1995); Riggi et al. (1992).

Experimental top

The solution of 4-chlorobenzenamine (12.75 g, 0.1 mol) and triethylamine (14 ml, 0.1 mol) in CCl4 (20 ml) was placed in a three-necked flask equipped with reflux condenser, dropping funnel and mechanical stirrer. The 1-chloromethylbenzene (13.91 g, 0.11 mol) in CCl4 (20 ml) was added at a rate such as to produce gentle reflux at room temperature. The crude product was recrystallized from C2H5OH; yield (21.54 g, 90%). N-benzyl-4-chlorobenzenamine (10.89 g, 0.05 mol) was stirred at ice-water in the presence of 2-propenoyl chloride (4.9 ml, 0.06 mol) and triethylamine (8.4 ml, 0.06 mol) in CCl4 (20 ml). The mixture was washed with water and the organic layer was dried by MgSO4. The crude product was purified by flash column chromatography on silica gel (light petroleum/EtOAc, 8:1) to obtain the product (8.23 g, 61%). Colorless crystals of the N-benzyl-3-(4-chlorophenyl)-3-phenyl-propanamide suitable for X-ray diffraction were obtained from an ethyl acetate solution over one week.

Refinement top

H atoms were placed in calculated positions with C—H distances 0.93–0.97 Å and treated as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Many active molecules in nature contain highly functionalized heterocyclic rings (Fairlamb, 2004). In recent research, we report a novel palladium catalyzed Heck intermolecular reactions of aryl halides with the nitron-containing olefins (Hu et al., 2003). We found that polyene amide was prepared by two steps (Riggi et al., 1992). The substrate of N-benzyl-N-(4-chlorophenyl)acrylamide is used to obtain this pyrrole skeleton (Park & Hoffmann, 1990; Otero & Cantero, 1995).

In this paper, we report the crystal structure of the title compound, C16H14ClNO (Fig. 1). The crystal data show that all bond lengths and angles in the title compound have normal values. The bond length of C15=C16 is 1.288 (4) Å, belonging to typical Csp2—Csp2 double bonds. The molecule contains two six-membered rings, A (C1—C6) and B (C8—C13). Rings A and B are not coplanar, the dihedral angle between ring A and ring B being 49.79 (11)°. In the structure there are a weak intermolecular C—H···O interaction [C2—H2···O1i, symmetry code: (i) -x, -y, 1 - z] and a C—H···π interaction [C6—H6···Cg1ii, Cg1 is the centroid of atoms C15 and C16; symmetry code: (ii) -x,1 - y,1 - z]. These weak intermolecular interactions extended the title compound molecules into a one-dimensional chain structure (Fig. 2) along the b axis.

For related literature, see: Fairlamb (2004); Hu et al. (2003); Park & Hoffmann (1990); Otero & Cantero (1995); Riggi et al. (1992).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids with numbering scheme.
[Figure 2] Fig. 2. View of the chain packing of (I) approximately down the a axis. H atoms have been omitted except H2 and H6 for clarity [symmetry codes: (i) -x, -y, 1 - z; (ii) -x, 1 - y, 1 - z].
N-Benzyl-N-(4-chlorophenyl)acrylamide top
Crystal data top
C16H14ClNOF(000) = 568
Mr = 271.73Dx = 1.276 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3741 reflections
a = 9.215 (4) Åθ = 2.1–25.4°
b = 9.210 (4) ŵ = 0.26 mm1
c = 17.090 (8) ÅT = 291 K
β = 102.842 (6)°Block, colourless
V = 1414.2 (12) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3172 independent reflections
Radiation source: sealed tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.93, Tmax = 0.94k = 1111
11395 measured reflectionsl = 2022
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.05P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3172 reflectionsΔρmax = 0.30 e Å3
173 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C16H14ClNOV = 1414.2 (12) Å3
Mr = 271.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.215 (4) ŵ = 0.26 mm1
b = 9.210 (4) ÅT = 291 K
c = 17.090 (8) Å0.30 × 0.26 × 0.24 mm
β = 102.842 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3172 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1666 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.94Rint = 0.057
11395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
3172 reflectionsΔρmin = 0.28 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

9.0764 (0.0047) x - 0.6878 (0.0111) y - 1.1393 (0.0196) z = 0.3034 (0.0082)

* -0.0078 (0.0020) C1 * 0.0033 (0.0020) C2 * 0.0052 (0.0021) C3 * -0.0091 (0.0020) C4 * 0.0045 (0.0020) C5 * 0.0039 (0.0020) C6

Rms deviation of fitted atoms = 0.0060

4.7161 (0.0105) x - 5.4299 (0.0094) y + 8.4686 (0.0192) z = 4.7812 (0.0131)

Angle to previous plane (with approximate e.s.d.) = 49.79 (0.11)

* 0.0026 (0.0019) C8 * 0.0023 (0.0020) C9 * -0.0059 (0.0022) C10 * 0.0046 (0.0023) C11 * 0.0004 (0.0023) C12 * -0.0040 (0.0021) C13

Rms deviation of fitted atoms = 0.0037

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1090 (3)0.2996 (3)0.42821 (14)0.0487 (7)
C20.0953 (3)0.2145 (3)0.36048 (15)0.0586 (8)
H20.08880.11410.36410.070*
C30.0913 (3)0.2801 (3)0.28706 (15)0.0623 (8)
H30.08240.22400.24100.075*
C40.1004 (3)0.4277 (3)0.28296 (15)0.0561 (7)
C50.1168 (3)0.5138 (3)0.35022 (16)0.0586 (7)
H50.12500.61410.34660.070*
C60.1209 (3)0.4476 (3)0.42326 (16)0.0565 (7)
H60.13180.50390.46940.068*
C70.2646 (3)0.2115 (3)0.55720 (15)0.0607 (8)
H7A0.33380.18580.52420.073*
H7B0.26120.13110.59340.073*
C80.3224 (3)0.3442 (3)0.60604 (15)0.0524 (7)
C90.4397 (3)0.4235 (3)0.59152 (16)0.0606 (8)
H90.48400.39610.54990.073*
C100.4933 (4)0.5435 (4)0.63763 (19)0.0716 (9)
H100.57200.59660.62640.086*
C110.4310 (4)0.5840 (4)0.69955 (19)0.0747 (9)
H110.46800.66370.73120.090*
C120.3137 (4)0.5065 (4)0.71468 (19)0.0776 (10)
H120.27040.53420.75660.093*
C130.2590 (3)0.3874 (3)0.66831 (16)0.0641 (8)
H130.17880.33600.67910.077*
C140.0055 (3)0.1827 (3)0.52919 (16)0.0569 (7)
C150.1547 (4)0.2031 (3)0.47419 (17)0.0622 (8)
H150.16070.24330.42370.075*
C160.2751 (4)0.1660 (4)0.4955 (2)0.0807 (10)
H16A0.27020.12580.54590.097*
H16B0.36690.17960.46040.097*
Cl10.09117 (12)0.51004 (11)0.18992 (5)0.0938 (4)
N10.1152 (3)0.2311 (2)0.50484 (12)0.0537 (6)
O10.0044 (3)0.1269 (2)0.59589 (12)0.0769 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0522 (16)0.0546 (17)0.0341 (13)0.0008 (13)0.0014 (12)0.0025 (11)
C20.074 (2)0.0544 (17)0.0410 (15)0.0033 (15)0.0019 (14)0.0061 (12)
C30.073 (2)0.073 (2)0.0352 (15)0.0065 (16)0.0005 (14)0.0101 (13)
C40.0506 (17)0.074 (2)0.0385 (15)0.0049 (14)0.0020 (13)0.0064 (13)
C50.0630 (19)0.0550 (17)0.0540 (17)0.0017 (14)0.0053 (14)0.0020 (13)
C60.0683 (19)0.0553 (18)0.0420 (15)0.0004 (14)0.0036 (14)0.0072 (13)
C70.0650 (19)0.0652 (19)0.0442 (15)0.0101 (15)0.0045 (14)0.0000 (13)
C80.0536 (17)0.0630 (18)0.0326 (13)0.0028 (14)0.0074 (12)0.0008 (12)
C90.0597 (19)0.077 (2)0.0411 (15)0.0046 (17)0.0035 (14)0.0050 (14)
C100.060 (2)0.081 (2)0.066 (2)0.0098 (17)0.0038 (17)0.0063 (17)
C110.069 (2)0.085 (2)0.060 (2)0.0075 (19)0.0065 (17)0.0151 (17)
C120.079 (2)0.099 (3)0.0520 (18)0.004 (2)0.0088 (17)0.0219 (17)
C130.0554 (18)0.085 (2)0.0488 (17)0.0074 (16)0.0057 (14)0.0068 (15)
C140.074 (2)0.0511 (17)0.0410 (15)0.0084 (15)0.0031 (15)0.0050 (12)
C150.068 (2)0.0663 (19)0.0489 (17)0.0113 (16)0.0054 (15)0.0012 (14)
C160.061 (2)0.0653 (2)0.053 (2)0.009 (2)0.0097 (19)0.0015 (18)
Cl10.1158 (8)0.1115 (8)0.0498 (5)0.0131 (6)0.0093 (5)0.0202 (5)
N10.0605 (15)0.0593 (15)0.0345 (11)0.0032 (12)0.0044 (11)0.0001 (10)
O10.0958 (17)0.0819 (15)0.0480 (12)0.0129 (12)0.0052 (11)0.0133 (11)
Geometric parameters (Å, º) top
C1—C61.372 (4)C8—C131.382 (4)
C1—C21.380 (3)C9—C101.383 (4)
C1—N11.443 (3)C9—H90.9300
C2—C31.386 (4)C10—C111.363 (4)
C2—H20.9300C10—H100.9300
C3—C41.365 (4)C11—C121.367 (5)
C3—H30.9300C11—H110.9300
C4—C51.376 (4)C12—C131.381 (4)
C4—Cl11.747 (3)C12—H120.9300
C5—C61.382 (4)C13—H130.9300
C5—H50.9300C14—O11.235 (3)
C6—H60.9300C14—N11.347 (4)
C7—N11.476 (3)C14—C151.495 (4)
C7—C81.509 (4)C15—C161.288 (4)
C7—H7A0.9700C15—H150.9300
C7—H7B0.9700C16—H16A0.9300
C8—C91.371 (4)C16—H16B0.9300
C6—C1—C2120.4 (2)C8—C9—C10121.2 (3)
C6—C1—N1120.2 (2)C8—C9—H9119.4
C2—C1—N1119.4 (2)C10—C9—H9119.4
C1—C2—C3119.4 (3)C11—C10—C9120.1 (3)
C1—C2—H2120.3C11—C10—H10119.9
C3—C2—H2120.3C9—C10—H10119.9
C4—C3—C2119.4 (3)C10—C11—C12119.4 (3)
C4—C3—H3120.3C10—C11—H11120.3
C2—C3—H3120.3C12—C11—H11120.3
C3—C4—C5121.8 (3)C11—C12—C13120.6 (3)
C3—C4—Cl1119.2 (2)C11—C12—H12119.7
C5—C4—Cl1119.0 (2)C13—C12—H12119.7
C4—C5—C6118.4 (3)C12—C13—C8120.5 (3)
C4—C5—H5120.8C12—C13—H13119.8
C6—C5—H5120.8C8—C13—H13119.8
C1—C6—C5120.5 (3)O1—C14—N1121.7 (3)
C1—C6—H6119.8O1—C14—C15120.1 (3)
C5—C6—H6119.8N1—C14—C15118.1 (2)
N1—C7—C8113.8 (2)C16—C15—C14121.3 (3)
N1—C7—H7A108.8C16—C15—H15119.4
C8—C7—H7A108.8C14—C15—H15119.4
N1—C7—H7B108.8C15—C16—H16A120.0
C8—C7—H7B108.8C15—C16—H16B120.0
H7A—C7—H7B107.7H16A—C16—H16B120.0
C9—C8—C13118.1 (3)C14—N1—C1123.8 (2)
C9—C8—C7121.8 (3)C14—N1—C7119.7 (2)
C13—C8—C7120.1 (3)C1—N1—C7116.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.405 (4)157
C6—H6···Cg1ii0.933.023.75 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14ClNO
Mr271.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)9.215 (4), 9.210 (4), 17.090 (8)
β (°) 102.842 (6)
V3)1414.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.93, 0.94
No. of measured, independent and
observed [I > 2σ(I)] reflections
11395, 3172, 1666
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.158, 1.06
No. of reflections3172
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.405 (4)157
C6—H6···Cg1ii0.933.023.75 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the National Science Foundation of Anhui Province (project No. 2004kj164zd), the Education Department of Anhui Province Program (grant Nos. 2006K J006TD and TD200707) and the National Science Foundation of China (project No. 20572001) for financial support of this work.

References

First citationBruker (2000). SMART (Version 5.0), SAINT-Plus (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairlamb, I. J. S. (2004). Angew. Chem. Int. Ed. 43, 1048–1052.  Web of Science CrossRef CAS Google Scholar
First citationHu, Y.-M., Zhou, J., Lian, H.-Z., Zhu, C.-J. & Pan, Y. (2003). Synthesis, pp. 1177–1180.  Google Scholar
First citationOtero, T. F. & Cantero, I. (1995). J. Electroanal. Chem. 395, 75–78.  CrossRef Web of Science Google Scholar
First citationPark, T. G. & Hoffmann, A. S. (1990). Biotechnol. Bioeng. 35, 152–154.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRiggi, I. D., Gastaldi, S., Surzur, J. M. & Bertrand, M. P. M. (1992). J. Org. Chem. 50, 6118–6125.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds