organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N2,N2′-Bis(2,2-di­methyl­propano­yl)benzene-1,3-dicarbohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah, 711 103 India
*Correspondence e-mail: hkfun@usm.my

(Received 17 November 2007; accepted 26 November 2007; online 6 December 2007)

In the mol­ecular structure of the title hydrazide derivative, C18H26N4O4, the conformations of the two units of 2-(2,2-dimethyl-1-oxoprop­yl)hydrazide substituents are not planar; these two units are attached axially to the benzene ring with C(ortho)—C—C(=O)—N torsion angles of 28.1 (2) and 31.0 (2)° [where C(ortho) is the C atom at position 4 of the benzene ring relative to the substituent at position 3 or the C atom at position 6 of the benzene ring relative to the substituent at position 1, as appropriate]. The dihedral angles between the hydrazide units and the benzene ring are 62.66 (7) and 63.84 (7)°. In the crystal structure, mol­ecules are arranged in an anti-parallel manner and are linked by N—H⋯O inter­molecular hydrogen bonds and weak C—H⋯O inter­molecular inter­actions into a three-dimensional network. The structure is further stabilized by a weak C—H⋯N intra­molecular inter­action.

Related literature

For values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006[Feng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200-1208.]); Fernández et al. (2004[Fernández, R., Ferrete, A., Llera, J. M., Magriz, A., Martín-Zamora, E., Díez, E. & Lassaletta, J. M. (2004). Chem. Eur. J. 10, 737-745.]); Hołtra et al. (2007[Hołtra, A., Drożdżewski, P. & Kubiak, M. (2007). Polyhedron, 26, 2786-2794.]); Imramovský et al. (2007[Imramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551-2559.]); Kim et al. (2007[Kim, H.-Y., Lee, W.-J., Kang, H.-M. & Cho, C.-G. (2007). Org. Lett. 9, 3185-3186.]); Lemay et al. (2007[Lemay, M., Trant, J. & Ogilvie, W. W. (2007). Tetrahedron, 63, 11644-11655.]); Liu et al. (2006[Liu, F., Stephen, A. G., Adamson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165-5168.]); Nica et al. (2007[Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743-1752.]); Raveendran & Pal (2007[Raveendran, R. & Pal, S. (2007). J. Organomet. Chem. 692, 824-830.]); Rivero & Buchwald (2007[Rivero, M. R. & Buchwald, S. L. (2007). Org. Lett. 9, 973-976.]); Sicardi et al. (1980[Sicardi, S. M., Vega, C. M. & Cimijotti, E. B. (1980). J. Med. Chem. 23, 1139-1142.]); Yang et al. (2007[Yang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505-3509.]).

[Scheme 1]

Experimental

Crystal data
  • C18H26N4O4

  • Mr = 362.43

  • Monoclinic, P 21 /c

  • a = 7.1853 (2) Å

  • b = 14.8928 (4) Å

  • c = 17.1656 (5) Å

  • β = 96.050 (2)°

  • V = 1826.65 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.56 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.993

  • 34290 measured reflections

  • 5301 independent reflections

  • 3858 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.141

  • S = 1.06

  • 5301 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.90 (2) 2.12 (2) 3.0193 (16) 176.7 (16)
N2—H1N2⋯O4ii 0.845 (18) 1.993 (19) 2.8262 (17) 169 (2)
N3—H1N3⋯O1iii 0.876 (18) 1.969 (18) 2.8307 (16) 167.3 (16)
N4—H1N4⋯O2iv 0.878 (19) 2.059 (19) 2.9320 (16) 172.3 (19)
C1—H1A⋯O4ii 0.93 2.48 3.1879 (17) 133
C3—H3A⋯O1iii 0.93 2.56 3.2854 (17) 135
C12—H12C⋯O3i 0.96 2.52 3.433 (2) 159
C18—H18C⋯N4 0.96 2.61 2.9347 (19) 100
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Hydrazide derivatives of different compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptors (Feng et al., 2006; Yang et al., 2007). These types of compounds are also important for the metal coordinations and related studies (Hołtra et al., 2007; Nica et al., 2007; Raveendran & Pal, 2007). Hydrazide-based compounds are also involved in different synthetic applications (Fernández et al., 2004; Lemay et al., 2007; Kim et al., 2007; Rivero & Buchwald, 2007) as well as in medicinal activities (Imramovský et al., 2007; Liu et al., 2006; Sicardi et al., 1980). We synthesized the title compound for being a host of host–guest complexes syntheses. The single-crystal X-ray structural study of the title compound was undertaken in order to establish the three-dimensional structure and to gain more details of conformations of the various groups.

In the molecular structure of the title compound (Fig. 1), the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar which can be indicated by the dihedral angles between the mean planes of C6/C7/O2/N2 and O1/N1/N2/C8/C9 = 87.77 (8)° and C4/C13/O3/N3 and O4/N3/N4/C14/C15 = 87.90 (8)°. These two units are axially attached to the benzene ring with the torsion angles C1–C6–C7–N2 = 28.1 (2)° and C3–C4–C13–N3 = 31.0 (2)°. The orientations of the two hydrazide moieties with respect to the benzene ring can be indicated by the dihedral angles between the mean planes of N1/N2/C8/C9 and N3/N4/C14/C15 and the benzene ring being 62.66 (7) and 63.84 (7)°, respectively. The torsion angles of N1–N2–C7–C6 = -165.58 (12)° and N4–N3–C13–C14 = -160.69 (12)° indicate that the two substituents are in (-)-anti-periplanar conformations. All bond lengths and angles are in normal values (Allen et al., 1987).

In the crystal packing in Fig. 2, the molecules are arranged in an anti-parallel manner and linked by N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) into three dimensional networks. The crystal is further stabilized by a weak C—H···N intramolecular interaction.

Related literature top

For values of bond lengths and angles, see: Allen et al. (1987). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006); Fernández et al. (2004); Hołtra et al. (2007); Imramovský et al. (2007); Kim et al. (2007); Lemay et al. (2007); Liu et al. (2006); Nica et al. (2007); Raveendran & Pal (2007); Rivero & Buchwald (2007); Sicardi et al. (1980); Yang et al. (2007).

Experimental top

Initially isophthalic acid was converted to its methyl ester under refluxing condition with methanol and a catalytic amount of concentrated sulfuric acid. This ester was then refluxed with excess hydrazine hydrate and ethanol for three hours. After completion of the reaction, excess ethanol was evaporated out and the solid substance was washed well with water and dried under reduced pressure. The properly dried intermediate compound was treated with pivalic anhydride at 353 K for seven hours. The crude compound was extracted with chloroform after neutralizing the reaction mixture with aqueous sodium bicarbonate solution. The title compound was purified by column chromatography (Silica gel 100–200 mesh) using ethyl acetate as eluent to afford an off-white colored solid compound. Single crystals were grown by slow evaporation of CHCl3/MeOH solution (v/v 1:1) (m.p. over 523 K).

Refinement top

Hydrazide H atoms were located in a difference map and isotropically refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Hydrazide derivatives of different compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptors (Feng et al., 2006; Yang et al., 2007). These types of compounds are also important for the metal coordinations and related studies (Hołtra et al., 2007; Nica et al., 2007; Raveendran & Pal, 2007). Hydrazide-based compounds are also involved in different synthetic applications (Fernández et al., 2004; Lemay et al., 2007; Kim et al., 2007; Rivero & Buchwald, 2007) as well as in medicinal activities (Imramovský et al., 2007; Liu et al., 2006; Sicardi et al., 1980). We synthesized the title compound for being a host of host–guest complexes syntheses. The single-crystal X-ray structural study of the title compound was undertaken in order to establish the three-dimensional structure and to gain more details of conformations of the various groups.

In the molecular structure of the title compound (Fig. 1), the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar which can be indicated by the dihedral angles between the mean planes of C6/C7/O2/N2 and O1/N1/N2/C8/C9 = 87.77 (8)° and C4/C13/O3/N3 and O4/N3/N4/C14/C15 = 87.90 (8)°. These two units are axially attached to the benzene ring with the torsion angles C1–C6–C7–N2 = 28.1 (2)° and C3–C4–C13–N3 = 31.0 (2)°. The orientations of the two hydrazide moieties with respect to the benzene ring can be indicated by the dihedral angles between the mean planes of N1/N2/C8/C9 and N3/N4/C14/C15 and the benzene ring being 62.66 (7) and 63.84 (7)°, respectively. The torsion angles of N1–N2–C7–C6 = -165.58 (12)° and N4–N3–C13–C14 = -160.69 (12)° indicate that the two substituents are in (-)-anti-periplanar conformations. All bond lengths and angles are in normal values (Allen et al., 1987).

In the crystal packing in Fig. 2, the molecules are arranged in an anti-parallel manner and linked by N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) into three dimensional networks. The crystal is further stabilized by a weak C—H···N intramolecular interaction.

For values of bond lengths and angles, see: Allen et al. (1987). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006); Fernández et al. (2004); Hołtra et al. (2007); Imramovský et al. (2007); Kim et al. (2007); Lemay et al. (2007); Liu et al. (2006); Nica et al. (2007); Raveendran & Pal (2007); Rivero & Buchwald (2007); Sicardi et al. (1980); Yang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds were shown as dash lines.
N2,N2'—Bis(2,2-dimethylpropanoyl)benzene-1,3-dicarbohydrazide top
Crystal data top
C18H26N4O4F(000) = 776
Mr = 362.43Dx = 1.318 Mg m3
Monoclinic, P21/cMelting point: over 523 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1853 (2) ÅCell parameters from 5301 reflections
b = 14.8928 (4) Åθ = 2.4–30.0°
c = 17.1656 (5) ŵ = 0.10 mm1
β = 96.050 (2)°T = 100 K
V = 1826.65 (9) Å3Needle, colorless
Z = 40.56 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5301 independent reflections
Radiation source: fine-focus sealed tube3858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2020
Tmin = 0.949, Tmax = 0.993l = 2424
34290 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.4134P]
where P = (Fo2 + 2Fc2)/3
5301 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H26N4O4V = 1826.65 (9) Å3
Mr = 362.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1853 (2) ŵ = 0.10 mm1
b = 14.8928 (4) ÅT = 100 K
c = 17.1656 (5) Å0.56 × 0.10 × 0.08 mm
β = 96.050 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5301 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3858 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.993Rint = 0.071
34290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
5301 reflectionsΔρmin = 0.28 e Å3
257 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60769 (16)0.05613 (7)0.25206 (6)0.0237 (3)
O20.38220 (15)0.21786 (7)0.36444 (6)0.0184 (2)
O30.11704 (15)0.22624 (7)0.62797 (6)0.0187 (2)
O40.10708 (16)0.07187 (7)0.73429 (6)0.0240 (3)
N10.33903 (19)0.13157 (8)0.22251 (7)0.0184 (3)
N20.27315 (19)0.09916 (9)0.29066 (7)0.0184 (3)
N30.23552 (18)0.11418 (8)0.70784 (7)0.0172 (3)
N40.15571 (19)0.14796 (8)0.77239 (7)0.0173 (3)
C10.2816 (2)0.00484 (9)0.43413 (8)0.0159 (3)
H1A0.30210.03790.38990.019*
C20.2495 (2)0.04858 (9)0.50312 (8)0.0171 (3)
H2A0.24740.11100.50460.021*
C30.2207 (2)0.00018 (9)0.56966 (8)0.0157 (3)
H3A0.19980.02950.61560.019*
C40.2231 (2)0.09396 (9)0.56759 (7)0.0142 (3)
C50.25445 (19)0.13769 (9)0.49847 (7)0.0150 (3)
H5A0.25630.20010.49690.018*
C60.2831 (2)0.08878 (9)0.43155 (7)0.0143 (3)
C70.3208 (2)0.14076 (9)0.36016 (8)0.0152 (3)
C80.5108 (2)0.10397 (9)0.20601 (8)0.0177 (3)
C90.5743 (2)0.13472 (10)0.12760 (9)0.0219 (3)
C100.7443 (3)0.07870 (14)0.11231 (11)0.0404 (5)
H10A0.84420.08970.15290.061*
H10B0.78400.09500.06250.061*
H10C0.71180.01620.11190.061*
C110.6266 (3)0.23490 (11)0.13166 (10)0.0281 (4)
H11A0.73750.24300.16730.042*
H11B0.52570.26870.14960.042*
H11C0.64940.25550.08050.042*
C120.4177 (3)0.11974 (11)0.06080 (9)0.0270 (4)
H12A0.38700.05700.05730.040*
H12B0.45930.13940.01230.040*
H12C0.30900.15340.07110.040*
C130.1843 (2)0.15065 (9)0.63621 (8)0.0151 (3)
C140.0226 (2)0.12316 (9)0.78142 (8)0.0166 (3)
C150.1087 (2)0.16126 (10)0.85232 (8)0.0185 (3)
C160.2991 (3)0.11803 (12)0.85580 (10)0.0298 (4)
H16A0.28440.05420.86130.045*
H16B0.37780.13120.80850.045*
H16C0.35540.14140.89990.045*
C170.1340 (2)0.26337 (10)0.84314 (9)0.0242 (3)
H17A0.21750.27590.79700.036*
H17B0.01480.29080.83840.036*
H17C0.18530.28710.88830.036*
C180.0197 (2)0.14110 (12)0.92760 (8)0.0259 (4)
H18A0.02680.07740.93570.039*
H18B0.03010.16900.97140.039*
H18C0.14260.16430.92280.039*
H1N10.269 (3)0.1724 (13)0.1938 (11)0.032 (5)*
H1N20.235 (3)0.0455 (12)0.2878 (10)0.019 (4)*
H1N30.276 (3)0.0588 (12)0.7132 (10)0.023 (5)*
H1N40.215 (3)0.1885 (12)0.8028 (11)0.025 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (6)0.0224 (5)0.0232 (5)0.0051 (4)0.0001 (5)0.0054 (4)
O20.0197 (6)0.0175 (5)0.0182 (5)0.0023 (4)0.0031 (4)0.0015 (4)
O30.0208 (6)0.0174 (5)0.0184 (5)0.0020 (4)0.0041 (4)0.0004 (4)
O40.0255 (6)0.0245 (5)0.0217 (5)0.0061 (5)0.0013 (5)0.0053 (4)
N10.0213 (7)0.0212 (6)0.0133 (5)0.0034 (5)0.0050 (5)0.0042 (5)
N20.0246 (7)0.0188 (6)0.0127 (5)0.0039 (5)0.0057 (5)0.0006 (4)
N30.0217 (7)0.0184 (6)0.0123 (5)0.0038 (5)0.0049 (5)0.0008 (4)
N40.0192 (7)0.0203 (6)0.0131 (5)0.0009 (5)0.0050 (5)0.0044 (4)
C10.0166 (7)0.0180 (6)0.0133 (6)0.0001 (5)0.0024 (5)0.0026 (5)
C20.0183 (7)0.0148 (6)0.0183 (6)0.0005 (5)0.0020 (5)0.0001 (5)
C30.0157 (7)0.0176 (6)0.0139 (6)0.0008 (5)0.0021 (5)0.0008 (5)
C40.0113 (7)0.0180 (6)0.0132 (6)0.0003 (5)0.0012 (5)0.0015 (5)
C50.0142 (7)0.0151 (6)0.0155 (6)0.0009 (5)0.0015 (5)0.0002 (5)
C60.0116 (7)0.0177 (6)0.0133 (6)0.0011 (5)0.0005 (5)0.0006 (5)
C70.0123 (7)0.0179 (6)0.0157 (6)0.0018 (5)0.0025 (5)0.0008 (5)
C80.0215 (8)0.0157 (6)0.0160 (6)0.0003 (5)0.0024 (5)0.0004 (5)
C90.0231 (8)0.0247 (7)0.0192 (7)0.0043 (6)0.0078 (6)0.0055 (6)
C100.0371 (12)0.0497 (11)0.0387 (10)0.0206 (9)0.0236 (9)0.0158 (9)
C110.0261 (9)0.0297 (8)0.0287 (8)0.0028 (7)0.0037 (7)0.0079 (7)
C120.0373 (10)0.0286 (8)0.0157 (7)0.0005 (7)0.0059 (6)0.0005 (6)
C130.0126 (7)0.0172 (6)0.0158 (6)0.0019 (5)0.0026 (5)0.0003 (5)
C140.0197 (8)0.0153 (6)0.0148 (6)0.0008 (5)0.0028 (5)0.0010 (5)
C150.0183 (8)0.0201 (7)0.0180 (6)0.0006 (6)0.0061 (5)0.0014 (5)
C160.0243 (9)0.0319 (9)0.0350 (9)0.0069 (7)0.0121 (7)0.0048 (7)
C170.0245 (9)0.0225 (7)0.0265 (7)0.0012 (6)0.0067 (6)0.0031 (6)
C180.0290 (9)0.0340 (9)0.0155 (7)0.0056 (7)0.0057 (6)0.0006 (6)
Geometric parameters (Å, º) top
O1—C81.2252 (17)C8—C91.536 (2)
O2—C71.2295 (17)C9—C101.525 (2)
O3—C131.2273 (17)C9—C121.536 (2)
O4—C141.2261 (17)C9—C111.538 (2)
N1—C81.359 (2)C10—H10A0.9600
N1—N21.3935 (16)C10—H10B0.9600
N1—H1N10.90 (2)C10—H10C0.9600
N2—C71.3559 (17)C11—H11A0.9600
N2—H1N20.844 (18)C11—H11B0.9600
N3—C131.3592 (17)C11—H11C0.9600
N3—N41.3942 (16)C12—H12A0.9600
N3—H1N30.876 (18)C12—H12B0.9600
N4—C141.357 (2)C12—H12C0.9600
N4—H1N40.879 (19)C14—C151.5314 (19)
C1—C21.3920 (18)C15—C161.519 (2)
C1—C61.3951 (19)C15—C181.536 (2)
C1—H1A0.9300C15—C171.538 (2)
C2—C31.3874 (19)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.3973 (19)C16—H16C0.9600
C3—H3A0.9300C17—H17A0.9600
C4—C51.3926 (18)C17—H17B0.9600
C4—C131.4990 (19)C17—H17C0.9600
C5—C61.3937 (18)C18—H18A0.9600
C5—H5A0.9300C18—H18B0.9600
C6—C71.4979 (19)C18—H18C0.9600
C8—N1—N2117.82 (12)C9—C10—H10C109.5
C8—N1—H1N1123.8 (13)H10A—C10—H10C109.5
N2—N1—H1N1118.3 (13)H10B—C10—H10C109.5
C7—N2—N1120.25 (12)C9—C11—H11A109.5
C7—N2—H1N2122.2 (12)C9—C11—H11B109.5
N1—N2—H1N2114.5 (12)H11A—C11—H11B109.5
C13—N3—N4118.68 (12)C9—C11—H11C109.5
C13—N3—H1N3121.8 (12)H11A—C11—H11C109.5
N4—N3—H1N3114.6 (12)H11B—C11—H11C109.5
C14—N4—N3117.68 (12)C9—C12—H12A109.5
C14—N4—H1N4121.6 (12)C9—C12—H12B109.5
N3—N4—H1N4120.4 (12)H12A—C12—H12B109.5
C2—C1—C6119.81 (12)C9—C12—H12C109.5
C2—C1—H1A120.1H12A—C12—H12C109.5
C6—C1—H1A120.1H12B—C12—H12C109.5
C3—C2—C1120.54 (13)O3—C13—N3122.45 (12)
C3—C2—H2A119.7O3—C13—C4121.99 (12)
C1—C2—H2A119.7N3—C13—C4115.51 (12)
C2—C3—C4119.93 (12)O4—C14—N4120.13 (13)
C2—C3—H3A120.0O4—C14—C15122.80 (14)
C4—C3—H3A120.0N4—C14—C15117.07 (12)
C5—C4—C3119.52 (12)C16—C15—C14108.38 (12)
C5—C4—C13117.80 (12)C16—C15—C18110.34 (13)
C3—C4—C13122.63 (12)C14—C15—C18109.82 (12)
C4—C5—C6120.60 (13)C16—C15—C17109.03 (13)
C4—C5—H5A119.7C14—C15—C17109.77 (12)
C6—C5—H5A119.7C18—C15—C17109.48 (12)
C5—C6—C1119.60 (12)C15—C16—H16A109.5
C5—C6—C7117.34 (12)C15—C16—H16B109.5
C1—C6—C7123.03 (12)H16A—C16—H16B109.5
O2—C7—N2122.34 (12)C15—C16—H16C109.5
O2—C7—C6121.90 (12)H16A—C16—H16C109.5
N2—C7—C6115.66 (12)H16B—C16—H16C109.5
O1—C8—N1120.54 (13)C15—C17—H17A109.5
O1—C8—C9122.55 (14)C15—C17—H17B109.5
N1—C8—C9116.91 (12)H17A—C17—H17B109.5
C10—C9—C12109.22 (14)C15—C17—H17C109.5
C10—C9—C8107.75 (13)H17A—C17—H17C109.5
C12—C9—C8110.45 (13)H17B—C17—H17C109.5
C10—C9—C11109.98 (15)C15—C18—H18A109.5
C12—C9—C11109.34 (12)C15—C18—H18B109.5
C8—C9—C11110.08 (12)H18A—C18—H18B109.5
C9—C10—H10A109.5C15—C18—H18C109.5
C9—C10—H10B109.5H18A—C18—H18C109.5
H10A—C10—H10B109.5H18B—C18—H18C109.5
C8—N1—N2—C785.19 (17)O1—C8—C9—C1013.0 (2)
C13—N3—N4—C1476.61 (17)N1—C8—C9—C10166.35 (14)
C6—C1—C2—C30.6 (2)O1—C8—C9—C12132.24 (15)
C1—C2—C3—C40.2 (2)N1—C8—C9—C1247.12 (17)
C2—C3—C4—C50.0 (2)O1—C8—C9—C11106.92 (16)
C2—C3—C4—C13177.12 (13)N1—C8—C9—C1173.72 (17)
C3—C4—C5—C60.1 (2)N4—N3—C13—O321.9 (2)
C13—C4—C5—C6177.15 (13)N4—N3—C13—C4160.69 (12)
C4—C5—C6—C10.5 (2)C5—C4—C13—O325.5 (2)
C4—C5—C6—C7178.47 (13)C3—C4—C13—O3151.62 (15)
C2—C1—C6—C50.7 (2)C5—C4—C13—N3151.89 (13)
C2—C1—C6—C7178.61 (13)C3—C4—C13—N331.0 (2)
N1—N2—C7—O217.9 (2)N3—N4—C14—O40.9 (2)
N1—N2—C7—C6165.58 (12)N3—N4—C14—C15179.64 (12)
C5—C6—C7—O222.5 (2)O4—C14—C15—C165.10 (19)
C1—C6—C7—O2155.42 (14)N4—C14—C15—C16174.36 (13)
C5—C6—C7—N2154.00 (13)O4—C14—C15—C18125.70 (15)
C1—C6—C7—N228.1 (2)N4—C14—C15—C1853.76 (17)
N2—N1—C8—O13.9 (2)O4—C14—C15—C17113.89 (16)
N2—N1—C8—C9175.47 (12)N4—C14—C15—C1766.65 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.90 (2)2.12 (2)3.0193 (16)176.7 (16)
N2—H1N2···O4ii0.845 (18)1.993 (19)2.8262 (17)169 (2)
N3—H1N3···O1iii0.876 (18)1.969 (18)2.8307 (16)167.3 (16)
N4—H1N4···O2iv0.878 (19)2.059 (19)2.9320 (16)172.3 (19)
C1—H1A···O4ii0.932.483.1879 (17)133
C3—H3A···O1iii0.932.563.2854 (17)135
C12—H12C···O3i0.962.523.433 (2)159
C18—H18C···N40.962.612.9347 (19)100
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H26N4O4
Mr362.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1853 (2), 14.8928 (4), 17.1656 (5)
β (°) 96.050 (2)
V3)1826.65 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
34290, 5301, 3858
Rint0.071
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.06
No. of reflections5301
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O3i0.90 (2)2.12 (2)3.0193 (16)176.7 (16)
N2—H1N2···O4ii0.845 (18)1.993 (19)2.8262 (17)169 (2)
N3—H1N3···O1iii0.876 (18)1.969 (18)2.8307 (16)167.3 (16)
N4—H1N4···O2iv0.878 (19)2.059 (19)2.9320 (16)172.3 (19)
C1—H1A···O4ii0.932.47683.1879 (17)133
C3—H3A···O1iii0.932.56303.2854 (17)135
C12—H12C···O3i0.962.52043.433 (2)159
C18—H18C···N40.962.60492.9347 (19)100
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, email: suchada.c@psu.ac.th

Acknowledgements

SJ, AH and SG acknowledge the DST [SR/S1/OC-13/2005] and CSIR [01(1913)/04/EMR-II], Government of India, for financial support. SJ and AH thank the CSIR, Government of India, for research fellowships. SC thanks Prince of Songkla University for support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200–1208.  Web of Science CrossRef CAS Google Scholar
First citationFernández, R., Ferrete, A., Llera, J. M., Magriz, A., Martín-Zamora, E., Díez, E. & Lassaletta, J. M. (2004). Chem. Eur. J. 10, 737–745.  PubMed Google Scholar
First citationHołtra, A., Drożdżewski, P. & Kubiak, M. (2007). Polyhedron, 26, 2786–2794.  Google Scholar
First citationImramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551–2559.  Web of Science PubMed Google Scholar
First citationKim, H.-Y., Lee, W.-J., Kang, H.-M. & Cho, C.-G. (2007). Org. Lett. 9, 3185–3186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLemay, M., Trant, J. & Ogilvie, W. W. (2007). Tetrahedron, 63, 11644–11655.  Web of Science CrossRef CAS Google Scholar
First citationLiu, F., Stephen, A. G., Adamson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165–5168.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743–1752.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaveendran, R. & Pal, S. (2007). J. Organomet. Chem. 692, 824–830.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivero, M. R. & Buchwald, S. L. (2007). Org. Lett. 9, 973–976.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSicardi, S. M., Vega, C. M. & Cimijotti, E. B. (1980). J. Med. Chem. 23, 1139–1142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505–3509.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds