organic compounds
N2,N2′-Bis(2,2-dimethylpropanoyl)benzene-1,3-dicarbohydrazide
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah, 711 103 India
*Correspondence e-mail: hkfun@usm.my
In the molecular structure of the title hydrazide derivative, C18H26N4O4, the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar; these two units are attached axially to the benzene ring with C(ortho)—C—C(=O)—N torsion angles of 28.1 (2) and 31.0 (2)° [where C(ortho) is the C atom at position 4 of the benzene ring relative to the substituent at position 3 or the C atom at position 6 of the benzene ring relative to the substituent at position 1, as appropriate]. The dihedral angles between the hydrazide units and the benzene ring are 62.66 (7) and 63.84 (7)°. In the molecules are arranged in an anti-parallel manner and are linked by N—H⋯O intermolecular hydrogen bonds and weak C—H⋯O intermolecular interactions into a three-dimensional network. The structure is further stabilized by a weak C—H⋯N intramolecular interaction.
Related literature
For values of bond lengths, see: Allen et al. (1987). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006); Fernández et al. (2004); Hołtra et al. (2007); Imramovský et al. (2007); Kim et al. (2007); Lemay et al. (2007); Liu et al. (2006); Nica et al. (2007); Raveendran & Pal (2007); Rivero & Buchwald (2007); Sicardi et al. (1980); Yang et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
https://doi.org/10.1107/S1600536807063210/is2255sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063210/is2255Isup2.hkl
Initially isophthalic acid was converted to its methyl ester under refluxing condition with methanol and a catalytic amount of concentrated sulfuric acid. This ester was then refluxed with excess hydrazine hydrate and ethanol for three hours. After completion of the reaction, excess ethanol was evaporated out and the solid substance was washed well with water and dried under reduced pressure. The properly dried intermediate compound was treated with pivalic anhydride at 353 K for seven hours. The crude compound was extracted with chloroform after neutralizing the reaction mixture with aqueous sodium bicarbonate solution. The title compound was purified by
(Silica gel 100–200 mesh) using ethyl acetate as to afford an off-white colored solid compound. Single crystals were grown by slow evaporation of CHCl3/MeOH solution (v/v 1:1) (m.p. over 523 K).Hydrazide H atoms were located in a difference map and isotropically refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic and 0.96 Å for CH3. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.Hydrazide derivatives of different compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptors (Feng et al., 2006; Yang et al., 2007). These types of compounds are also important for the metal coordinations and related studies (Hołtra et al., 2007; Nica et al., 2007; Raveendran & Pal, 2007). Hydrazide-based compounds are also involved in different synthetic applications (Fernández et al., 2004; Lemay et al., 2007; Kim et al., 2007; Rivero & Buchwald, 2007) as well as in medicinal activities (Imramovský et al., 2007; Liu et al., 2006; Sicardi et al., 1980). We synthesized the title compound for being a host of host–guest complexes syntheses. The single-crystal X-ray structural study of the title compound was undertaken in order to establish the three-dimensional structure and to gain more details of conformations of the various groups.
In the molecular structure of the title compound (Fig. 1), the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar which can be indicated by the dihedral angles between the mean planes of C6/C7/O2/N2 and O1/N1/N2/C8/C9 = 87.77 (8)° and C4/C13/O3/N3 and O4/N3/N4/C14/C15 = 87.90 (8)°. These two units are axially attached to the benzene ring with the torsion angles C1–C6–C7–N2 = 28.1 (2)° and C3–C4–C13–N3 = 31.0 (2)°. The orientations of the two hydrazide moieties with respect to the benzene ring can be indicated by the dihedral angles between the mean planes of N1/N2/C8/C9 and N3/N4/C14/C15 and the benzene ring being 62.66 (7) and 63.84 (7)°, respectively. The torsion angles of N1–N2–C7–C6 = -165.58 (12)° and N4–N3–C13–C14 = -160.69 (12)° indicate that the two substituents are in (-)-anti-periplanar conformations. All bond lengths and angles are in normal values (Allen et al., 1987).
In the crystal packing in Fig. 2, the molecules are arranged in an anti-parallel manner and linked by N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) into three dimensional networks. The crystal is further stabilized by a weak C—H···N intramolecular interaction.
For values of bond lengths and angles, see: Allen et al. (1987). For related literature on the applications and bioactivities of hydrazide derivatives, see for example: Feng et al. (2006); Fernández et al. (2004); Hołtra et al. (2007); Imramovský et al. (2007); Kim et al. (2007); Lemay et al. (2007); Liu et al. (2006); Nica et al. (2007); Raveendran & Pal (2007); Rivero & Buchwald (2007); Sicardi et al. (1980); Yang et al. (2007).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. | |
Fig. 2. The crystal packing of the title compound. Hydrogen bonds were shown as dash lines. |
C18H26N4O4 | F(000) = 776 |
Mr = 362.43 | Dx = 1.318 Mg m−3 |
Monoclinic, P21/c | Melting point: over 523 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1853 (2) Å | Cell parameters from 5301 reflections |
b = 14.8928 (4) Å | θ = 2.4–30.0° |
c = 17.1656 (5) Å | µ = 0.10 mm−1 |
β = 96.050 (2)° | T = 100 K |
V = 1826.65 (9) Å3 | Needle, colorless |
Z = 4 | 0.56 × 0.10 × 0.08 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 5301 independent reflections |
Radiation source: fine-focus sealed tube | 3858 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 8.33 pixels mm-1 | θmax = 30.0°, θmin = 2.4° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −20→20 |
Tmin = 0.949, Tmax = 0.993 | l = −24→24 |
34290 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.4134P] where P = (Fo2 + 2Fc2)/3 |
5301 reflections | (Δ/σ)max < 0.001 |
257 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C18H26N4O4 | V = 1826.65 (9) Å3 |
Mr = 362.43 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.1853 (2) Å | µ = 0.10 mm−1 |
b = 14.8928 (4) Å | T = 100 K |
c = 17.1656 (5) Å | 0.56 × 0.10 × 0.08 mm |
β = 96.050 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5301 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3858 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.993 | Rint = 0.071 |
34290 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.46 e Å−3 |
5301 reflections | Δρmin = −0.28 e Å−3 |
257 parameters |
Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.60769 (16) | 0.05613 (7) | 0.25206 (6) | 0.0237 (3) | |
O2 | 0.38220 (15) | 0.21786 (7) | 0.36444 (6) | 0.0184 (2) | |
O3 | 0.11704 (15) | 0.22624 (7) | 0.62797 (6) | 0.0187 (2) | |
O4 | −0.10708 (16) | 0.07187 (7) | 0.73429 (6) | 0.0240 (3) | |
N1 | 0.33903 (19) | 0.13157 (8) | 0.22251 (7) | 0.0184 (3) | |
N2 | 0.27315 (19) | 0.09916 (9) | 0.29066 (7) | 0.0184 (3) | |
N3 | 0.23552 (18) | 0.11418 (8) | 0.70784 (7) | 0.0172 (3) | |
N4 | 0.15571 (19) | 0.14796 (8) | 0.77239 (7) | 0.0173 (3) | |
C1 | 0.2816 (2) | −0.00484 (9) | 0.43413 (8) | 0.0159 (3) | |
H1A | 0.3021 | −0.0379 | 0.3899 | 0.019* | |
C2 | 0.2495 (2) | −0.04858 (9) | 0.50312 (8) | 0.0171 (3) | |
H2A | 0.2474 | −0.1110 | 0.5046 | 0.021* | |
C3 | 0.2207 (2) | 0.00018 (9) | 0.56966 (8) | 0.0157 (3) | |
H3A | 0.1998 | −0.0295 | 0.6156 | 0.019* | |
C4 | 0.2231 (2) | 0.09396 (9) | 0.56759 (7) | 0.0142 (3) | |
C5 | 0.25445 (19) | 0.13769 (9) | 0.49847 (7) | 0.0150 (3) | |
H5A | 0.2563 | 0.2001 | 0.4969 | 0.018* | |
C6 | 0.2831 (2) | 0.08878 (9) | 0.43155 (7) | 0.0143 (3) | |
C7 | 0.3208 (2) | 0.14076 (9) | 0.36016 (8) | 0.0152 (3) | |
C8 | 0.5108 (2) | 0.10397 (9) | 0.20601 (8) | 0.0177 (3) | |
C9 | 0.5743 (2) | 0.13472 (10) | 0.12760 (9) | 0.0219 (3) | |
C10 | 0.7443 (3) | 0.07870 (14) | 0.11231 (11) | 0.0404 (5) | |
H10A | 0.8442 | 0.0897 | 0.1529 | 0.061* | |
H10B | 0.7840 | 0.0950 | 0.0625 | 0.061* | |
H10C | 0.7118 | 0.0162 | 0.1119 | 0.061* | |
C11 | 0.6266 (3) | 0.23490 (11) | 0.13166 (10) | 0.0281 (4) | |
H11A | 0.7375 | 0.2430 | 0.1673 | 0.042* | |
H11B | 0.5257 | 0.2687 | 0.1496 | 0.042* | |
H11C | 0.6494 | 0.2555 | 0.0805 | 0.042* | |
C12 | 0.4177 (3) | 0.11974 (11) | 0.06080 (9) | 0.0270 (4) | |
H12A | 0.3870 | 0.0570 | 0.0573 | 0.040* | |
H12B | 0.4593 | 0.1394 | 0.0123 | 0.040* | |
H12C | 0.3090 | 0.1534 | 0.0711 | 0.040* | |
C13 | 0.1843 (2) | 0.15065 (9) | 0.63621 (8) | 0.0151 (3) | |
C14 | −0.0226 (2) | 0.12316 (9) | 0.78142 (8) | 0.0166 (3) | |
C15 | −0.1087 (2) | 0.16126 (10) | 0.85232 (8) | 0.0185 (3) | |
C16 | −0.2991 (3) | 0.11803 (12) | 0.85580 (10) | 0.0298 (4) | |
H16A | −0.2844 | 0.0542 | 0.8613 | 0.045* | |
H16B | −0.3778 | 0.1312 | 0.8085 | 0.045* | |
H16C | −0.3554 | 0.1414 | 0.8999 | 0.045* | |
C17 | −0.1340 (2) | 0.26337 (10) | 0.84314 (9) | 0.0242 (3) | |
H17A | −0.2175 | 0.2759 | 0.7970 | 0.036* | |
H17B | −0.0148 | 0.2908 | 0.8384 | 0.036* | |
H17C | −0.1853 | 0.2871 | 0.8883 | 0.036* | |
C18 | 0.0197 (2) | 0.14110 (12) | 0.92760 (8) | 0.0259 (4) | |
H18A | 0.0268 | 0.0774 | 0.9357 | 0.039* | |
H18B | −0.0301 | 0.1690 | 0.9714 | 0.039* | |
H18C | 0.1426 | 0.1643 | 0.9228 | 0.039* | |
H1N1 | 0.269 (3) | 0.1724 (13) | 0.1938 (11) | 0.032 (5)* | |
H1N2 | 0.235 (3) | 0.0455 (12) | 0.2878 (10) | 0.019 (4)* | |
H1N3 | 0.276 (3) | 0.0588 (12) | 0.7132 (10) | 0.023 (5)* | |
H1N4 | 0.215 (3) | 0.1885 (12) | 0.8028 (11) | 0.025 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0249 (6) | 0.0224 (5) | 0.0232 (5) | 0.0051 (4) | −0.0001 (5) | 0.0054 (4) |
O2 | 0.0197 (6) | 0.0175 (5) | 0.0182 (5) | −0.0023 (4) | 0.0031 (4) | 0.0015 (4) |
O3 | 0.0208 (6) | 0.0174 (5) | 0.0184 (5) | 0.0020 (4) | 0.0041 (4) | 0.0004 (4) |
O4 | 0.0255 (6) | 0.0245 (5) | 0.0217 (5) | −0.0061 (5) | 0.0013 (5) | −0.0053 (4) |
N1 | 0.0213 (7) | 0.0212 (6) | 0.0133 (5) | 0.0034 (5) | 0.0050 (5) | 0.0042 (5) |
N2 | 0.0246 (7) | 0.0188 (6) | 0.0127 (5) | −0.0039 (5) | 0.0057 (5) | 0.0006 (4) |
N3 | 0.0217 (7) | 0.0184 (6) | 0.0123 (5) | 0.0038 (5) | 0.0049 (5) | −0.0008 (4) |
N4 | 0.0192 (7) | 0.0203 (6) | 0.0131 (5) | −0.0009 (5) | 0.0050 (5) | −0.0044 (4) |
C1 | 0.0166 (7) | 0.0180 (6) | 0.0133 (6) | 0.0001 (5) | 0.0024 (5) | −0.0026 (5) |
C2 | 0.0183 (7) | 0.0148 (6) | 0.0183 (6) | −0.0005 (5) | 0.0020 (5) | 0.0001 (5) |
C3 | 0.0157 (7) | 0.0176 (6) | 0.0139 (6) | −0.0008 (5) | 0.0021 (5) | 0.0008 (5) |
C4 | 0.0113 (7) | 0.0180 (6) | 0.0132 (6) | 0.0003 (5) | 0.0012 (5) | −0.0015 (5) |
C5 | 0.0142 (7) | 0.0151 (6) | 0.0155 (6) | −0.0009 (5) | 0.0015 (5) | −0.0002 (5) |
C6 | 0.0116 (7) | 0.0177 (6) | 0.0133 (6) | −0.0011 (5) | 0.0005 (5) | 0.0006 (5) |
C7 | 0.0123 (7) | 0.0179 (6) | 0.0157 (6) | 0.0018 (5) | 0.0025 (5) | 0.0008 (5) |
C8 | 0.0215 (8) | 0.0157 (6) | 0.0160 (6) | −0.0003 (5) | 0.0024 (5) | −0.0004 (5) |
C9 | 0.0231 (8) | 0.0247 (7) | 0.0192 (7) | 0.0043 (6) | 0.0078 (6) | 0.0055 (6) |
C10 | 0.0371 (12) | 0.0497 (11) | 0.0387 (10) | 0.0206 (9) | 0.0236 (9) | 0.0158 (9) |
C11 | 0.0261 (9) | 0.0297 (8) | 0.0287 (8) | −0.0028 (7) | 0.0037 (7) | 0.0079 (7) |
C12 | 0.0373 (10) | 0.0286 (8) | 0.0157 (7) | −0.0005 (7) | 0.0059 (6) | 0.0005 (6) |
C13 | 0.0126 (7) | 0.0172 (6) | 0.0158 (6) | −0.0019 (5) | 0.0026 (5) | −0.0003 (5) |
C14 | 0.0197 (8) | 0.0153 (6) | 0.0148 (6) | −0.0008 (5) | 0.0028 (5) | 0.0010 (5) |
C15 | 0.0183 (8) | 0.0201 (7) | 0.0180 (6) | −0.0006 (6) | 0.0061 (5) | −0.0014 (5) |
C16 | 0.0243 (9) | 0.0319 (9) | 0.0350 (9) | −0.0069 (7) | 0.0121 (7) | −0.0048 (7) |
C17 | 0.0245 (9) | 0.0225 (7) | 0.0265 (7) | 0.0012 (6) | 0.0067 (6) | −0.0031 (6) |
C18 | 0.0290 (9) | 0.0340 (9) | 0.0155 (7) | 0.0056 (7) | 0.0057 (6) | −0.0006 (6) |
O1—C8 | 1.2252 (17) | C8—C9 | 1.536 (2) |
O2—C7 | 1.2295 (17) | C9—C10 | 1.525 (2) |
O3—C13 | 1.2273 (17) | C9—C12 | 1.536 (2) |
O4—C14 | 1.2261 (17) | C9—C11 | 1.538 (2) |
N1—C8 | 1.359 (2) | C10—H10A | 0.9600 |
N1—N2 | 1.3935 (16) | C10—H10B | 0.9600 |
N1—H1N1 | 0.90 (2) | C10—H10C | 0.9600 |
N2—C7 | 1.3559 (17) | C11—H11A | 0.9600 |
N2—H1N2 | 0.844 (18) | C11—H11B | 0.9600 |
N3—C13 | 1.3592 (17) | C11—H11C | 0.9600 |
N3—N4 | 1.3942 (16) | C12—H12A | 0.9600 |
N3—H1N3 | 0.876 (18) | C12—H12B | 0.9600 |
N4—C14 | 1.357 (2) | C12—H12C | 0.9600 |
N4—H1N4 | 0.879 (19) | C14—C15 | 1.5314 (19) |
C1—C2 | 1.3920 (18) | C15—C16 | 1.519 (2) |
C1—C6 | 1.3951 (19) | C15—C18 | 1.536 (2) |
C1—H1A | 0.9300 | C15—C17 | 1.538 (2) |
C2—C3 | 1.3874 (19) | C16—H16A | 0.9600 |
C2—H2A | 0.9300 | C16—H16B | 0.9600 |
C3—C4 | 1.3973 (19) | C16—H16C | 0.9600 |
C3—H3A | 0.9300 | C17—H17A | 0.9600 |
C4—C5 | 1.3926 (18) | C17—H17B | 0.9600 |
C4—C13 | 1.4990 (19) | C17—H17C | 0.9600 |
C5—C6 | 1.3937 (18) | C18—H18A | 0.9600 |
C5—H5A | 0.9300 | C18—H18B | 0.9600 |
C6—C7 | 1.4979 (19) | C18—H18C | 0.9600 |
C8—N1—N2 | 117.82 (12) | C9—C10—H10C | 109.5 |
C8—N1—H1N1 | 123.8 (13) | H10A—C10—H10C | 109.5 |
N2—N1—H1N1 | 118.3 (13) | H10B—C10—H10C | 109.5 |
C7—N2—N1 | 120.25 (12) | C9—C11—H11A | 109.5 |
C7—N2—H1N2 | 122.2 (12) | C9—C11—H11B | 109.5 |
N1—N2—H1N2 | 114.5 (12) | H11A—C11—H11B | 109.5 |
C13—N3—N4 | 118.68 (12) | C9—C11—H11C | 109.5 |
C13—N3—H1N3 | 121.8 (12) | H11A—C11—H11C | 109.5 |
N4—N3—H1N3 | 114.6 (12) | H11B—C11—H11C | 109.5 |
C14—N4—N3 | 117.68 (12) | C9—C12—H12A | 109.5 |
C14—N4—H1N4 | 121.6 (12) | C9—C12—H12B | 109.5 |
N3—N4—H1N4 | 120.4 (12) | H12A—C12—H12B | 109.5 |
C2—C1—C6 | 119.81 (12) | C9—C12—H12C | 109.5 |
C2—C1—H1A | 120.1 | H12A—C12—H12C | 109.5 |
C6—C1—H1A | 120.1 | H12B—C12—H12C | 109.5 |
C3—C2—C1 | 120.54 (13) | O3—C13—N3 | 122.45 (12) |
C3—C2—H2A | 119.7 | O3—C13—C4 | 121.99 (12) |
C1—C2—H2A | 119.7 | N3—C13—C4 | 115.51 (12) |
C2—C3—C4 | 119.93 (12) | O4—C14—N4 | 120.13 (13) |
C2—C3—H3A | 120.0 | O4—C14—C15 | 122.80 (14) |
C4—C3—H3A | 120.0 | N4—C14—C15 | 117.07 (12) |
C5—C4—C3 | 119.52 (12) | C16—C15—C14 | 108.38 (12) |
C5—C4—C13 | 117.80 (12) | C16—C15—C18 | 110.34 (13) |
C3—C4—C13 | 122.63 (12) | C14—C15—C18 | 109.82 (12) |
C4—C5—C6 | 120.60 (13) | C16—C15—C17 | 109.03 (13) |
C4—C5—H5A | 119.7 | C14—C15—C17 | 109.77 (12) |
C6—C5—H5A | 119.7 | C18—C15—C17 | 109.48 (12) |
C5—C6—C1 | 119.60 (12) | C15—C16—H16A | 109.5 |
C5—C6—C7 | 117.34 (12) | C15—C16—H16B | 109.5 |
C1—C6—C7 | 123.03 (12) | H16A—C16—H16B | 109.5 |
O2—C7—N2 | 122.34 (12) | C15—C16—H16C | 109.5 |
O2—C7—C6 | 121.90 (12) | H16A—C16—H16C | 109.5 |
N2—C7—C6 | 115.66 (12) | H16B—C16—H16C | 109.5 |
O1—C8—N1 | 120.54 (13) | C15—C17—H17A | 109.5 |
O1—C8—C9 | 122.55 (14) | C15—C17—H17B | 109.5 |
N1—C8—C9 | 116.91 (12) | H17A—C17—H17B | 109.5 |
C10—C9—C12 | 109.22 (14) | C15—C17—H17C | 109.5 |
C10—C9—C8 | 107.75 (13) | H17A—C17—H17C | 109.5 |
C12—C9—C8 | 110.45 (13) | H17B—C17—H17C | 109.5 |
C10—C9—C11 | 109.98 (15) | C15—C18—H18A | 109.5 |
C12—C9—C11 | 109.34 (12) | C15—C18—H18B | 109.5 |
C8—C9—C11 | 110.08 (12) | H18A—C18—H18B | 109.5 |
C9—C10—H10A | 109.5 | C15—C18—H18C | 109.5 |
C9—C10—H10B | 109.5 | H18A—C18—H18C | 109.5 |
H10A—C10—H10B | 109.5 | H18B—C18—H18C | 109.5 |
C8—N1—N2—C7 | 85.19 (17) | O1—C8—C9—C10 | 13.0 (2) |
C13—N3—N4—C14 | 76.61 (17) | N1—C8—C9—C10 | −166.35 (14) |
C6—C1—C2—C3 | −0.6 (2) | O1—C8—C9—C12 | 132.24 (15) |
C1—C2—C3—C4 | 0.2 (2) | N1—C8—C9—C12 | −47.12 (17) |
C2—C3—C4—C5 | 0.0 (2) | O1—C8—C9—C11 | −106.92 (16) |
C2—C3—C4—C13 | 177.12 (13) | N1—C8—C9—C11 | 73.72 (17) |
C3—C4—C5—C6 | 0.1 (2) | N4—N3—C13—O3 | 21.9 (2) |
C13—C4—C5—C6 | −177.15 (13) | N4—N3—C13—C4 | −160.69 (12) |
C4—C5—C6—C1 | −0.5 (2) | C5—C4—C13—O3 | 25.5 (2) |
C4—C5—C6—C7 | −178.47 (13) | C3—C4—C13—O3 | −151.62 (15) |
C2—C1—C6—C5 | 0.7 (2) | C5—C4—C13—N3 | −151.89 (13) |
C2—C1—C6—C7 | 178.61 (13) | C3—C4—C13—N3 | 31.0 (2) |
N1—N2—C7—O2 | 17.9 (2) | N3—N4—C14—O4 | 0.9 (2) |
N1—N2—C7—C6 | −165.58 (12) | N3—N4—C14—C15 | −179.64 (12) |
C5—C6—C7—O2 | 22.5 (2) | O4—C14—C15—C16 | 5.10 (19) |
C1—C6—C7—O2 | −155.42 (14) | N4—C14—C15—C16 | −174.36 (13) |
C5—C6—C7—N2 | −154.00 (13) | O4—C14—C15—C18 | 125.70 (15) |
C1—C6—C7—N2 | 28.1 (2) | N4—C14—C15—C18 | −53.76 (17) |
N2—N1—C8—O1 | −3.9 (2) | O4—C14—C15—C17 | −113.89 (16) |
N2—N1—C8—C9 | 175.47 (12) | N4—C14—C15—C17 | 66.65 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3i | 0.90 (2) | 2.12 (2) | 3.0193 (16) | 176.7 (16) |
N2—H1N2···O4ii | 0.845 (18) | 1.993 (19) | 2.8262 (17) | 169 (2) |
N3—H1N3···O1iii | 0.876 (18) | 1.969 (18) | 2.8307 (16) | 167.3 (16) |
N4—H1N4···O2iv | 0.878 (19) | 2.059 (19) | 2.9320 (16) | 172.3 (19) |
C1—H1A···O4ii | 0.93 | 2.48 | 3.1879 (17) | 133 |
C3—H3A···O1iii | 0.93 | 2.56 | 3.2854 (17) | 135 |
C12—H12C···O3i | 0.96 | 2.52 | 3.433 (2) | 159 |
C18—H18C···N4 | 0.96 | 2.61 | 2.9347 (19) | 100 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H26N4O4 |
Mr | 362.43 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.1853 (2), 14.8928 (4), 17.1656 (5) |
β (°) | 96.050 (2) |
V (Å3) | 1826.65 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.56 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.949, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34290, 5301, 3858 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.141, 1.06 |
No. of reflections | 5301 |
No. of parameters | 257 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3i | 0.90 (2) | 2.12 (2) | 3.0193 (16) | 176.7 (16) |
N2—H1N2···O4ii | 0.845 (18) | 1.993 (19) | 2.8262 (17) | 169 (2) |
N3—H1N3···O1iii | 0.876 (18) | 1.969 (18) | 2.8307 (16) | 167.3 (16) |
N4—H1N4···O2iv | 0.878 (19) | 2.059 (19) | 2.9320 (16) | 172.3 (19) |
C1—H1A···O4ii | 0.93 | 2.4768 | 3.1879 (17) | 133 |
C3—H3A···O1iii | 0.93 | 2.5630 | 3.2854 (17) | 135 |
C12—H12C···O3i | 0.96 | 2.5204 | 3.433 (2) | 159 |
C18—H18C···N4 | 0.96 | 2.6049 | 2.9347 (19) | 100 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) x, −y+1/2, z+1/2. |
Footnotes
‡Additional correspondence author, email: suchada.c@psu.ac.th
Acknowledgements
SJ, AH and SG acknowledge the DST [SR/S1/OC-13/2005] and CSIR [01(1913)/04/EMR-II], Government of India, for financial support. SJ and AH thank the CSIR, Government of India, for research fellowships. SC thanks Prince of Songkla University for support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Feng, D.-J., Wang, P., Li, X.-Q. & Li, Z.-T. (2006). Chin. J. Chem. 24, 1200–1208. Web of Science CrossRef CAS Google Scholar
Fernández, R., Ferrete, A., Llera, J. M., Magriz, A., Martín-Zamora, E., Díez, E. & Lassaletta, J. M. (2004). Chem. Eur. J. 10, 737–745. PubMed Google Scholar
Hołtra, A., Drożdżewski, P. & Kubiak, M. (2007). Polyhedron, 26, 2786–2794. Google Scholar
Imramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551–2559. Web of Science PubMed Google Scholar
Kim, H.-Y., Lee, W.-J., Kang, H.-M. & Cho, C.-G. (2007). Org. Lett. 9, 3185–3186. Web of Science CrossRef PubMed CAS Google Scholar
Lemay, M., Trant, J. & Ogilvie, W. W. (2007). Tetrahedron, 63, 11644–11655. Web of Science CrossRef CAS Google Scholar
Liu, F., Stephen, A. G., Adamson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett. 8, 5165–5168. Web of Science CrossRef PubMed CAS Google Scholar
Nica, S., Rudolph, M., Görls, H. & Plass, W. (2007). Inorg. Chim. Acta, 360, 1743–1752. Web of Science CSD CrossRef CAS Google Scholar
Raveendran, R. & Pal, S. (2007). J. Organomet. Chem. 692, 824–830. Web of Science CSD CrossRef CAS Google Scholar
Rivero, M. R. & Buchwald, S. L. (2007). Org. Lett. 9, 973–976. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sicardi, S. M., Vega, C. M. & Cimijotti, E. B. (1980). J. Med. Chem. 23, 1139–1142. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, Y., Hu, H.-Y. & Chen, C.-F. (2007). Tetrahedron Lett. 48, 3505–3509. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazide derivatives of different compounds are very important units in host–guest chemistry due to their special arrangement of donor-acceptors (Feng et al., 2006; Yang et al., 2007). These types of compounds are also important for the metal coordinations and related studies (Hołtra et al., 2007; Nica et al., 2007; Raveendran & Pal, 2007). Hydrazide-based compounds are also involved in different synthetic applications (Fernández et al., 2004; Lemay et al., 2007; Kim et al., 2007; Rivero & Buchwald, 2007) as well as in medicinal activities (Imramovský et al., 2007; Liu et al., 2006; Sicardi et al., 1980). We synthesized the title compound for being a host of host–guest complexes syntheses. The single-crystal X-ray structural study of the title compound was undertaken in order to establish the three-dimensional structure and to gain more details of conformations of the various groups.
In the molecular structure of the title compound (Fig. 1), the conformations of the two units of 2-(2,2-dimethyl-1-oxopropyl)hydrazide substituents are not planar which can be indicated by the dihedral angles between the mean planes of C6/C7/O2/N2 and O1/N1/N2/C8/C9 = 87.77 (8)° and C4/C13/O3/N3 and O4/N3/N4/C14/C15 = 87.90 (8)°. These two units are axially attached to the benzene ring with the torsion angles C1–C6–C7–N2 = 28.1 (2)° and C3–C4–C13–N3 = 31.0 (2)°. The orientations of the two hydrazide moieties with respect to the benzene ring can be indicated by the dihedral angles between the mean planes of N1/N2/C8/C9 and N3/N4/C14/C15 and the benzene ring being 62.66 (7) and 63.84 (7)°, respectively. The torsion angles of N1–N2–C7–C6 = -165.58 (12)° and N4–N3–C13–C14 = -160.69 (12)° indicate that the two substituents are in (-)-anti-periplanar conformations. All bond lengths and angles are in normal values (Allen et al., 1987).
In the crystal packing in Fig. 2, the molecules are arranged in an anti-parallel manner and linked by N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions (Table 1) into three dimensional networks. The crystal is further stabilized by a weak C—H···N intramolecular interaction.