metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Oxalatobis(propane-1,3-di­amine)manganese(II) chloride monohydrate

aCollege of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: qgmeng_weifang@yahoo.cn

(Received 18 November 2007; accepted 4 December 2007; online 12 December 2007)

In the asymmetric unit of the title compound, [Mn(C2O4)(C3H10N2)2]Cl·H2O, there are two independent MnIII complexes, two Cl anions and two uncoordinated water mol­ecules. Each MnIII atom is hexa­coordinated by four N atoms from two propane-1,3-diamine ligands and two O atoms from one oxalate ligand, resulting in a slightly distorted octa­hedral MnO2N4 geometry. Mn—O and Mn—N bond lengths are in the ranges 1.969 (2)–2.020 (3) and 2.068 (3)–2.113 (4) Å, respectively. There are weak inter­molecular O—H⋯O, O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds with DA distances in the range 2.831 (4)–3.423 (3) Å.

Related literature

For related literature, see: Chung et al. (1971[Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 469, 469-472.]); Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); Okabe & Oya (2000[Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417.]); Pocker & Fong (1980[Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 16, 2045-2049.]); Poowell (1953[Poowell, J. F. (1953). Biochemistry, 54, 205-207.]); Scapin et al. (1997[Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081-15092.]); Serre et al. (2005[Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654-657.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2O4)(C3H10N2)2]Cl·H2O

  • Mr = 344.69

  • Monoclinic, P n

  • a = 9.1286 (17) Å

  • b = 11.807 (2) Å

  • c = 13.912 (3) Å

  • β = 100.037 (14)°

  • V = 1476.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.23 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.787

  • 3373 measured reflections

  • 3060 independent reflections

  • 3032 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.00

  • 3060 reflections

  • 356 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 521 Friedel pairs

  • Flack parameter: 0.040 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H3W⋯Cl2 0.81 (6) 2.70 (7) 3.205 (5) 122 (7)
O10—H4W⋯O6 0.81 (5) 2.71 (7) 3.078 (5) 110 (5)
O9—H2W⋯Cl1i 0.83 (3) 2.55 (2) 3.348 (4) 163 (5)
O9—H1W⋯O10ii 0.82 (5) 2.03 (5) 2.845 (6) 170 (6)
N8—H8B⋯Cl2i 0.90 2.61 3.366 (3) 142
N8—H8A⋯O3iii 0.90 2.59 3.426 (4) 154
N7—H7B⋯O4iii 0.90 2.45 3.195 (4) 141
N7—H7A⋯O8iv 0.90 2.13 3.014 (4) 169
N6—H6D⋯O9 0.90 2.20 3.054 (4) 157
N6—H6C⋯O8iv 0.90 2.21 3.046 (4) 155
N5—H5D⋯O4iii 0.90 2.04 2.942 (4) 176
N5—H5C⋯Cl1v 0.90 2.41 3.299 (3) 172
N4—H4D⋯Cl1vi 0.90 2.53 3.423 (3) 170
N4—H4C⋯O2vii 0.90 2.42 3.206 (4) 147
N3—H3D⋯Cl2 0.90 2.25 3.115 (3) 162
N3—H3C⋯O5viii 0.90 2.02 2.831 (4) 149
N2—H2D⋯Cl1vi 0.90 2.54 3.317 (4) 144
N2—H2C⋯O8viii 0.90 2.15 3.024 (5) 163
N1—H1D⋯Cl2 0.90 2.71 3.404 (3) 135
N1—H1C⋯Cl1iii 0.90 2.55 3.388 (3) 155
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) x-1, y-1, z; (v) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) [x-{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decades, dicarboxylic acid has been widely used as one poly-dentate ligand involved in various metal chelation reactions to form transition or rare earth metal complexes that own thermal resistance of certain bacteria spores (Poowell, 1953; Church & Halvorson, 1959; Chung et al., 1971; Okabe & Oya, 2000) and the activation (Serre et al., 2005) or inhabitation (Pocker & Fong, 1980; Scapin et al., 1997) in some metallo-enzymes. In this paper, we report the structure of the title compound, (I).

In the title compound, the Mn atom is hexa-coordinated by four nitrogen atoms from two chealating propane-1,3-diamine ligands and two oxygen atoms from one oxalic acid, resulting in a slightly distorted octahedral MnO2N4 geometry for the metal (Fig. 1, Table 1). Mn—O and Mn—N bond lengths are in the range of 1.969 (2) - 2.020 (3) Å and 2.068 (3) - 2.113 (4) Å, respectively. Moreover, there exist weak intermolecular hydrogen bonds with the distance range of 2.830–3.423 Å (Table 2), forming a three-dimensional structure (Fig. 2).

Related literature top

For related literature, see: Chung et al. (1971); Church & Halvorson (1959); Okabe & Oya (2000); Pocker & Fong (1980); Poowell (1953); Scapin et al. (1997); Serre et al. (2005).

Experimental top

A mixed water and ethanol solution of manganese(III) acetate (1 mmoL) and oxalic acid (1 mmoL) was neutralized by propane-1,3-diamine. The resulted solution was saturated with 1 g sodium hydrochloride and evaporated at room temperature for one week. yellow block crystals were obtained with a yield of 21%. Anal. Calc. for C8H22ClMnN4O5: C 27.83, H 6.38, N 16.23%; Found: C 27.80, H 6.42, N 16.18%.

Refinement top

The H atoms of the water molecule were located in a difference Fourier map and were refined with distance restraints of H···H = 1.38 (2) Å and O–H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.93 Å and N—H = 0.90 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C, N).

Structure description top

During the past decades, dicarboxylic acid has been widely used as one poly-dentate ligand involved in various metal chelation reactions to form transition or rare earth metal complexes that own thermal resistance of certain bacteria spores (Poowell, 1953; Church & Halvorson, 1959; Chung et al., 1971; Okabe & Oya, 2000) and the activation (Serre et al., 2005) or inhabitation (Pocker & Fong, 1980; Scapin et al., 1997) in some metallo-enzymes. In this paper, we report the structure of the title compound, (I).

In the title compound, the Mn atom is hexa-coordinated by four nitrogen atoms from two chealating propane-1,3-diamine ligands and two oxygen atoms from one oxalic acid, resulting in a slightly distorted octahedral MnO2N4 geometry for the metal (Fig. 1, Table 1). Mn—O and Mn—N bond lengths are in the range of 1.969 (2) - 2.020 (3) Å and 2.068 (3) - 2.113 (4) Å, respectively. Moreover, there exist weak intermolecular hydrogen bonds with the distance range of 2.830–3.423 Å (Table 2), forming a three-dimensional structure (Fig. 2).

For related literature, see: Chung et al. (1971); Church & Halvorson (1959); Okabe & Oya (2000); Pocker & Fong (1980); Poowell (1953); Scapin et al. (1997); Serre et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines.
Oxalatobis(propane-1,3-diamine)manganese(II) chloride monohydrate top
Crystal data top
[Mn(C2O4)(C3H10N2)2]Cl·H2OF(000) = 720
Mr = 344.69Dx = 1.551 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3060 reflections
a = 9.1286 (17) Åθ = 2.9–25.0°
b = 11.807 (2) ŵ = 1.10 mm1
c = 13.912 (3) ÅT = 293 K
β = 100.037 (14)°Block, yellow
V = 1476.6 (5) Å30.43 × 0.28 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3060 independent reflections
Radiation source: fine-focus sealed tube3032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 110
Tmin = 0.650, Tmax = 0.787k = 141
3373 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.072P)2 + 0.2126P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.53 e Å3
3060 reflectionsΔρmin = 0.43 e Å3
356 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.0164 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 521 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.040 (15)
Crystal data top
[Mn(C2O4)(C3H10N2)2]Cl·H2OV = 1476.6 (5) Å3
Mr = 344.69Z = 4
Monoclinic, PnMo Kα radiation
a = 9.1286 (17) ŵ = 1.10 mm1
b = 11.807 (2) ÅT = 293 K
c = 13.912 (3) Å0.43 × 0.28 × 0.23 mm
β = 100.037 (14)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3060 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3032 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.787Rint = 0.023
3373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.53 e Å3
S = 1.00Δρmin = 0.43 e Å3
3060 reflectionsAbsolute structure: Flack (1983), 521 Friedel pairs
356 parametersAbsolute structure parameter: 0.040 (15)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.11279 (5)0.45504 (4)0.50737 (3)0.02681 (15)
Mn20.91703 (6)0.99201 (4)0.36505 (4)0.02996 (16)
C10.3604 (4)0.3805 (3)0.3916 (3)0.0360 (8)
H1A0.32630.43550.34090.043*
H1B0.40340.31720.36190.043*
C20.4805 (5)0.4350 (4)0.4694 (3)0.0404 (9)
H2A0.50530.38320.52390.048*
H2B0.56970.44710.44170.048*
C30.4322 (5)0.5455 (3)0.5062 (3)0.0378 (9)
H3A0.39750.59420.45080.045*
H3B0.51780.58180.54530.045*
C40.1361 (5)0.5164 (3)0.6257 (3)0.0373 (8)
H4A0.20800.48320.57380.045*
H4B0.18480.57780.65410.045*
C50.0860 (5)0.4271 (3)0.7035 (3)0.0401 (9)
H5A0.01350.46040.75500.048*
H5B0.17090.40350.73190.048*
C60.0192 (5)0.3260 (3)0.6642 (3)0.0351 (8)
H6A0.08860.29670.60900.042*
H6B0.00380.26770.71400.042*
C70.1264 (4)0.4394 (3)0.3465 (3)0.0289 (7)
C80.0207 (4)0.5353 (3)0.3226 (3)0.0308 (8)
C90.5848 (5)0.9640 (4)0.3832 (3)0.0417 (9)
H9A0.49530.91990.36200.050*
H9B0.61560.95180.45270.050*
C100.5504 (5)1.0872 (4)0.3649 (4)0.0486 (10)
H10A0.46671.10790.39570.058*
H10B0.52141.09940.29520.058*
C110.6810 (5)1.1632 (3)0.4035 (3)0.0431 (9)
H11A0.64901.24160.39720.052*
H11B0.71391.14770.47230.052*
C121.0022 (5)1.0344 (3)0.5651 (3)0.0377 (9)
C131.1333 (5)1.0806 (3)0.5152 (3)0.0360 (8)
C141.1008 (6)0.9676 (4)0.1977 (3)0.0478 (11)
H14A1.10310.97930.12900.057*
H14B1.17501.01670.23490.057*
C151.1384 (6)0.8483 (4)0.2233 (4)0.0516 (11)
H15A1.22740.82820.19790.062*
H15B1.05820.80040.19130.062*
C161.1650 (5)0.8233 (4)0.3342 (3)0.0428 (9)
H16A1.20090.74630.34520.051*
H16B1.24150.87380.36700.051*
N11.0262 (4)0.8377 (2)0.3781 (2)0.0324 (6)
H1C1.05020.82180.44220.039*
H1D0.96060.78470.35150.039*
N20.9487 (5)0.9993 (3)0.2183 (2)0.0375 (8)
H2C0.88140.95340.18290.045*
H2D0.92841.07040.19650.045*
N30.7056 (4)0.9230 (2)0.3304 (2)0.0327 (7)
H3C0.67380.93410.26620.039*
H3D0.71430.84770.33980.039*
N40.8095 (4)1.1468 (3)0.3503 (2)0.0340 (7)
H4C0.87731.20090.37060.041*
H4D0.77621.15860.28630.041*
N50.3116 (4)0.5354 (2)0.5663 (2)0.0291 (6)
H5C0.28890.60590.58350.035*
H5D0.35010.49870.62170.035*
N60.2302 (4)0.3396 (2)0.4346 (2)0.0297 (6)
H6C0.26300.28370.47690.036*
H6D0.16480.30830.38600.036*
N70.1268 (4)0.3507 (2)0.6321 (2)0.0313 (6)
H7A0.16880.28450.61970.038*
H7B0.18770.38410.68180.038*
N80.0078 (4)0.5630 (2)0.5835 (2)0.0319 (6)
H8A0.05680.59370.63300.038*
H8B0.04300.61990.54300.038*
O10.0942 (3)0.55365 (19)0.39175 (18)0.0302 (5)
O20.0783 (3)0.3917 (2)0.43141 (18)0.0301 (5)
O30.2391 (3)0.4152 (2)0.2880 (2)0.0402 (6)
O40.0474 (4)0.5855 (3)0.24339 (19)0.0440 (7)
O51.0023 (5)1.0508 (3)0.6534 (2)0.0583 (9)
O60.8993 (3)0.9836 (2)0.50604 (19)0.0362 (6)
O71.1132 (3)1.0658 (2)0.42064 (19)0.0365 (6)
O81.2408 (4)1.1305 (2)0.5639 (2)0.0457 (7)
O90.0571 (4)0.2740 (3)0.2343 (2)0.0600 (9)
H1W0.114 (5)0.246 (5)0.201 (4)0.072*
H2W0.031 (2)0.256 (6)0.214 (4)0.072*
O100.7709 (7)0.7953 (3)0.6200 (3)0.0795 (13)
H3W0.828 (7)0.772 (6)0.586 (4)0.095*
H4W0.728 (8)0.854 (4)0.603 (5)0.095*
Cl10.72741 (14)0.19856 (8)0.10470 (7)0.0495 (3)
Cl20.72971 (12)0.67594 (8)0.41008 (8)0.0427 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0300 (3)0.0243 (2)0.0252 (2)0.0010 (2)0.00198 (19)0.00041 (19)
Mn20.0339 (3)0.0262 (3)0.0277 (3)0.0024 (2)0.0005 (2)0.00098 (18)
C10.0375 (19)0.0338 (18)0.0389 (18)0.0004 (16)0.0132 (17)0.0015 (14)
C20.034 (2)0.0431 (19)0.044 (2)0.0002 (18)0.0074 (18)0.0010 (17)
C30.038 (2)0.036 (2)0.039 (2)0.0106 (16)0.0072 (17)0.0029 (15)
C40.039 (2)0.0368 (18)0.0375 (19)0.0047 (16)0.0108 (17)0.0016 (15)
C50.044 (2)0.040 (2)0.038 (2)0.0020 (19)0.0125 (18)0.0046 (16)
C60.042 (2)0.0303 (17)0.0341 (18)0.0043 (16)0.0088 (17)0.0045 (14)
C70.0311 (19)0.0277 (15)0.0270 (16)0.0012 (14)0.0025 (15)0.0032 (12)
C80.037 (2)0.0277 (17)0.0276 (17)0.0020 (15)0.0042 (16)0.0006 (13)
C90.037 (2)0.044 (2)0.045 (2)0.0050 (18)0.0078 (18)0.0003 (17)
C100.037 (2)0.045 (2)0.062 (3)0.0071 (19)0.005 (2)0.002 (2)
C110.049 (2)0.0307 (18)0.051 (2)0.0075 (18)0.0103 (19)0.0051 (16)
C120.048 (2)0.0302 (17)0.032 (2)0.0042 (17)0.0012 (18)0.0017 (14)
C130.036 (2)0.0230 (15)0.043 (2)0.0026 (16)0.0082 (17)0.0000 (15)
C140.061 (3)0.044 (2)0.044 (2)0.001 (2)0.022 (2)0.0083 (18)
C150.068 (3)0.040 (2)0.052 (2)0.013 (2)0.025 (2)0.0015 (19)
C160.039 (2)0.0382 (19)0.052 (2)0.0076 (17)0.0103 (18)0.0076 (17)
N10.0350 (15)0.0268 (13)0.0335 (15)0.0003 (13)0.0005 (13)0.0046 (12)
N20.052 (2)0.0294 (16)0.0305 (16)0.0041 (14)0.0041 (15)0.0026 (11)
N30.0333 (16)0.0261 (14)0.0348 (15)0.0006 (13)0.0049 (13)0.0040 (12)
N40.0404 (17)0.0233 (13)0.0361 (16)0.0014 (13)0.0003 (14)0.0002 (11)
N50.0293 (16)0.0256 (14)0.0298 (15)0.0026 (12)0.0021 (13)0.0019 (11)
N60.0374 (16)0.0235 (12)0.0284 (14)0.0014 (13)0.0063 (12)0.0001 (11)
N70.0385 (16)0.0265 (13)0.0276 (14)0.0007 (13)0.0023 (13)0.0000 (11)
N80.0369 (17)0.0257 (12)0.0322 (15)0.0019 (13)0.0033 (14)0.0001 (11)
O10.0371 (14)0.0263 (11)0.0244 (11)0.0045 (10)0.0022 (10)0.0027 (9)
O20.0336 (12)0.0258 (10)0.0291 (11)0.0037 (10)0.0003 (10)0.0006 (9)
O30.0378 (16)0.0410 (14)0.0380 (13)0.0050 (13)0.0041 (13)0.0037 (12)
O40.0555 (18)0.0412 (14)0.0300 (13)0.0042 (14)0.0072 (13)0.0097 (11)
O50.073 (2)0.069 (2)0.0287 (15)0.0011 (19)0.0039 (16)0.0109 (13)
O60.0444 (17)0.0346 (12)0.0281 (13)0.0032 (12)0.0018 (12)0.0045 (10)
O70.0375 (15)0.0334 (13)0.0356 (14)0.0069 (12)0.0019 (12)0.0007 (11)
O80.0472 (17)0.0290 (13)0.0522 (16)0.0039 (12)0.0155 (14)0.0002 (12)
O90.059 (2)0.074 (2)0.0471 (17)0.0031 (19)0.0081 (16)0.0112 (16)
O100.122 (4)0.048 (2)0.081 (3)0.007 (2)0.052 (3)0.0004 (19)
Cl10.0658 (7)0.0332 (4)0.0420 (5)0.0013 (5)0.0118 (5)0.0025 (4)
Cl20.0448 (5)0.0307 (4)0.0529 (5)0.0008 (4)0.0090 (4)0.0068 (4)
Geometric parameters (Å, º) top
Mn1—O11.969 (2)C10—C111.514 (7)
Mn1—O22.019 (3)C10—H10A0.9700
Mn1—N52.085 (3)C10—H10B0.9700
Mn1—N82.089 (3)C11—N41.504 (5)
Mn1—N62.100 (3)C11—H11A0.9700
Mn1—N72.113 (3)C11—H11B0.9700
Mn2—O61.999 (3)C12—O51.243 (5)
Mn2—O72.020 (3)C12—O61.284 (5)
Mn2—N42.068 (3)C12—C131.582 (6)
Mn2—N12.069 (3)C13—O81.241 (5)
Mn2—N32.073 (3)C13—O71.307 (5)
Mn2—N22.113 (4)C14—C151.478 (6)
C1—N61.500 (5)C14—N21.513 (7)
C1—C21.541 (6)C14—H14A0.9700
C1—H1A0.9700C14—H14B0.9700
C1—H1B0.9700C15—C161.548 (6)
C2—C31.495 (6)C15—H15A0.9700
C2—H2A0.9700C15—H15B0.9700
C2—H2B0.9700C16—N11.509 (5)
C3—N51.499 (5)C16—H16A0.9700
C3—H3A0.9700C16—H16B0.9700
C3—H3B0.9700N1—H1C0.9000
C4—N81.503 (5)N1—H1D0.9000
C4—C51.523 (6)N2—H2C0.9000
C4—H4A0.9700N2—H2D0.9000
C4—H4B0.9700N3—H3C0.9000
C5—C61.488 (6)N3—H3D0.9000
C5—H5A0.9700N4—H4C0.9000
C5—H5B0.9700N4—H4D0.9000
C6—N71.506 (5)N5—H5C0.9000
C6—H6A0.9700N5—H5D0.9000
C6—H6B0.9700N6—H6C0.9000
C7—O31.229 (5)N6—H6D0.9000
C7—O21.314 (4)N7—H7A0.9000
C7—C81.560 (5)N7—H7B0.9000
C8—O41.238 (5)N8—H8A0.9000
C8—O11.311 (5)N8—H8B0.9000
C9—C101.501 (6)O9—H1W0.82 (5)
C9—N31.507 (6)O9—H2W0.83 (3)
C9—H9A0.9700O10—H3W0.81 (6)
C9—H9B0.9700O10—H4W0.81 (5)
O1—Mn1—O281.23 (11)N4—C11—C10112.5 (3)
O1—Mn1—N589.86 (12)N4—C11—H11A109.1
O2—Mn1—N5171.03 (11)C10—C11—H11A109.1
O1—Mn1—N894.33 (11)N4—C11—H11B109.1
O2—Mn1—N890.45 (12)C10—C11—H11B109.1
N5—Mn1—N891.28 (13)H11A—C11—H11B107.8
O1—Mn1—N688.21 (11)O5—C12—O6125.4 (4)
O2—Mn1—N688.53 (11)O5—C12—C13120.6 (4)
N5—Mn1—N690.15 (12)O6—C12—C13113.9 (3)
N8—Mn1—N6177.09 (12)O8—C13—O7124.9 (4)
O1—Mn1—N7178.39 (13)O8—C13—C12120.7 (4)
O2—Mn1—N797.88 (11)O7—C13—C12114.3 (3)
N5—Mn1—N791.05 (12)C15—C14—N2111.9 (4)
N8—Mn1—N784.33 (12)C15—C14—H14A109.2
N6—Mn1—N793.11 (12)N2—C14—H14A109.2
O6—Mn2—O782.17 (12)C15—C14—H14B109.2
O6—Mn2—N491.31 (12)N2—C14—H14B109.2
O7—Mn2—N491.72 (12)H14A—C14—H14B107.9
O6—Mn2—N189.44 (12)C14—C15—C16114.3 (4)
O7—Mn2—N188.01 (12)C14—C15—H15A108.7
N4—Mn2—N1179.16 (14)C16—C15—H15A108.7
O6—Mn2—N388.68 (13)C14—C15—H15B108.7
O7—Mn2—N3170.31 (13)C16—C15—H15B108.7
N4—Mn2—N385.28 (13)H15A—C15—H15B107.6
N1—Mn2—N395.11 (13)N1—C16—C15112.7 (4)
O6—Mn2—N2176.79 (16)N1—C16—H16A109.1
O7—Mn2—N295.20 (14)C15—C16—H16A109.1
N4—Mn2—N290.61 (13)N1—C16—H16B109.1
N1—Mn2—N288.62 (13)C15—C16—H16B109.1
N3—Mn2—N294.04 (15)H16A—C16—H16B107.8
N6—C1—C2111.7 (3)C16—N1—Mn2119.3 (2)
N6—C1—H1A109.3C16—N1—H1C107.5
C2—C1—H1A109.3Mn2—N1—H1C107.5
N6—C1—H1B109.3C16—N1—H1D107.5
C2—C1—H1B109.3Mn2—N1—H1D107.5
H1A—C1—H1B107.9H1C—N1—H1D107.0
C3—C2—C1112.9 (3)C14—N2—Mn2117.2 (3)
C3—C2—H2A109.0C14—N2—H2C108.0
C1—C2—H2A109.0Mn2—N2—H2C108.0
C3—C2—H2B109.0C14—N2—H2D108.0
C1—C2—H2B109.0Mn2—N2—H2D108.0
H2A—C2—H2B107.8H2C—N2—H2D107.2
C2—C3—N5114.3 (3)C9—N3—Mn2119.5 (2)
C2—C3—H3A108.7C9—N3—H3C107.5
N5—C3—H3A108.7Mn2—N3—H3C107.5
C2—C3—H3B108.7C9—N3—H3D107.5
N5—C3—H3B108.7Mn2—N3—H3D107.5
H3A—C3—H3B107.6H3C—N3—H3D107.0
N8—C4—C5111.9 (3)C11—N4—Mn2117.5 (2)
N8—C4—H4A109.2C11—N4—H4C107.9
C5—C4—H4A109.2Mn2—N4—H4C107.9
N8—C4—H4B109.2C11—N4—H4D107.9
C5—C4—H4B109.2Mn2—N4—H4D107.9
H4A—C4—H4B107.9H4C—N4—H4D107.2
C6—C5—C4112.7 (3)C3—N5—Mn1119.4 (2)
C6—C5—H5A109.1C3—N5—H5C107.5
C4—C5—H5A109.1Mn1—N5—H5C107.5
C6—C5—H5B109.1C3—N5—H5D107.5
C4—C5—H5B109.1Mn1—N5—H5D107.5
H5A—C5—H5B107.8H5C—N5—H5D107.0
C5—C6—N7113.2 (3)C1—N6—Mn1119.3 (2)
C5—C6—H6A108.9C1—N6—H6C107.5
N7—C6—H6A108.9Mn1—N6—H6C107.5
C5—C6—H6B108.9C1—N6—H6D107.5
N7—C6—H6B108.9Mn1—N6—H6D107.5
H6A—C6—H6B107.7H6C—N6—H6D107.0
O3—C7—O2127.3 (4)C6—N7—Mn1115.2 (2)
O3—C7—C8120.4 (3)C6—N7—H7A108.5
O2—C7—C8112.3 (3)Mn1—N7—H7A108.5
O4—C8—O1125.6 (4)C6—N7—H7B108.5
O4—C8—C7120.2 (3)Mn1—N7—H7B108.5
O1—C8—C7114.2 (3)H7A—N7—H7B107.5
C10—C9—N3112.2 (4)C4—N8—Mn1119.4 (2)
C10—C9—H9A109.2C4—N8—H8A107.5
N3—C9—H9A109.2Mn1—N8—H8A107.5
C10—C9—H9B109.2C4—N8—H8B107.5
N3—C9—H9B109.2Mn1—N8—H8B107.5
H9A—C9—H9B107.9H8A—N8—H8B107.0
C9—C10—C11112.7 (4)C8—O1—Mn1116.5 (2)
C9—C10—H10A109.1C7—O2—Mn1115.8 (2)
C11—C10—H10A109.1C12—O6—Mn2115.4 (3)
C9—C10—H10B109.1C13—O7—Mn2113.7 (3)
C11—C10—H10B109.1H1W—O9—H2W112 (5)
H10A—C10—H10B107.8H3W—O10—H4W117 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H3W···Cl20.81 (6)2.70 (7)3.205 (5)122 (7)
O10—H4W···O60.81 (5)2.71 (7)3.078 (5)110 (5)
O9—H2W···Cl1i0.83 (3)2.55 (2)3.348 (4)163 (5)
O9—H1W···O10ii0.82 (5)2.03 (5)2.845 (6)170 (6)
N8—H8B···Cl2i0.902.613.366 (3)142
N8—H8A···O3iii0.902.593.426 (4)154
N7—H7B···O4iii0.902.453.195 (4)141
N7—H7A···O8iv0.902.133.014 (4)169
N6—H6D···O90.902.203.054 (4)157
N6—H6C···O8iv0.902.213.046 (4)155
N5—H5D···O4iii0.902.042.942 (4)176
N5—H5C···Cl1v0.902.413.299 (3)172
N4—H4D···Cl1vi0.902.533.423 (3)170
N4—H4C···O2vii0.902.423.206 (4)147
N3—H3D···Cl20.902.253.115 (3)162
N3—H3C···O5viii0.902.022.831 (4)149
N2—H2D···Cl1vi0.902.543.317 (4)144
N2—H2C···O8viii0.902.153.024 (5)163
N1—H1D···Cl20.902.713.404 (3)135
N1—H1C···Cl1iii0.902.553.388 (3)155
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1, z1/2; (iii) x+1/2, y+1, z+1/2; (iv) x1, y1, z; (v) x1/2, y+1, z+1/2; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C2O4)(C3H10N2)2]Cl·H2O
Mr344.69
Crystal system, space groupMonoclinic, Pn
Temperature (K)293
a, b, c (Å)9.1286 (17), 11.807 (2), 13.912 (3)
β (°) 100.037 (14)
V3)1476.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.43 × 0.28 × 0.23
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.650, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
3373, 3060, 3032
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.00
No. of reflections3060
No. of parameters356
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.43
Absolute structureFlack (1983), 521 Friedel pairs
Absolute structure parameter0.040 (15)

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H3W···Cl20.81 (6)2.70 (7)3.205 (5)122 (7)
O10—H4W···O60.81 (5)2.71 (7)3.078 (5)110 (5)
O9—H2W···Cl1i0.83 (3)2.55 (2)3.348 (4)163 (5)
O9—H1W···O10ii0.82 (5)2.03 (5)2.845 (6)170 (6)
N8—H8B···Cl2i0.902.613.366 (3)141.7
N8—H8A···O3iii0.902.593.426 (4)153.9
N7—H7B···O4iii0.902.453.195 (4)140.7
N7—H7A···O8iv0.902.133.014 (4)168.9
N6—H6D···O90.902.203.054 (4)157.2
N6—H6C···O8iv0.902.213.046 (4)155.3
N5—H5D···O4iii0.902.042.942 (4)175.6
N5—H5C···Cl1v0.902.413.299 (3)171.6
N4—H4D···Cl1vi0.902.533.423 (3)170.4
N4—H4C···O2vii0.902.423.206 (4)146.7
N3—H3D···Cl20.902.253.115 (3)162.2
N3—H3C···O5viii0.902.022.831 (4)148.9
N2—H2D···Cl1vi0.902.543.317 (4)144.3
N2—H2C···O8viii0.902.153.024 (5)163.4
N1—H1D···Cl20.902.713.404 (3)134.6
N1—H1C···Cl1iii0.902.553.388 (3)154.8
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1, z1/2; (iii) x+1/2, y+1, z+1/2; (iv) x1, y1, z; (v) x1/2, y+1, z+1/2; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x1/2, y+2, z1/2.
 

Acknowledgements

The authors thank the Education Department of Shandong Province for research and development projects (No. J06A55)

References

First citationBruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J. 469, 469–472.  CrossRef Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPocker, Y. & Fong, C. T. O. (1980). Biochemistry, 16, 2045–2049.  CrossRef Web of Science Google Scholar
First citationPoowell, J. F. (1953). Biochemistry, 54, 205–207.  Google Scholar
First citationScapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15092.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSerre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem. 44, 654–657.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds