organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-3-ethyl-9-phenyl-2-tosyl­pyrrolo[3,4-b]quinoline

aDepartment of Physics, Anna University, Chennai 600025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title compound, C26H27BrN2O2S, the pyrrolidine ring adopts a twist conformation, while the tetra­hydro­pyridine ring is in a half-chair conformation. The two rings are trans-fused. The dihedral angle between the phenyl ring and the sulfonyl-bound benzene ring is 22.83 (7)°. N—H⋯O hydrogen bonds link the mol­ecules into a chain along the b axis, and the chains are cross-linked into a three-dimensional network by a C—H⋯π inter­action and a weak π-π inter­action between the sulfonyl-bound benzene rings; the centroid–centroid distance is 3.6957 (8) Å.

Related literature

The crystal structure of the title compound is similar to that of its chloro analogue (Sudha et al., 2007[Sudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914-o4915.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27BrN2O2S

  • Mr = 511.47

  • Monoclinic, P 21 /c

  • a = 9.6293 (2) Å

  • b = 13.4574 (3) Å

  • c = 20.2179 (4) Å

  • β = 116.930 (1)°

  • V = 2335.84 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.52 × 0.34 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.323, Tmax = 0.529

  • 58171 measured reflections

  • 14302 independent reflections

  • 9599 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.01

  • 14302 reflections

  • 294 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.83 (2) 2.33 (2) 3.1381 (14) 162 (2)
C25—H25A⋯O2 0.97 2.49 3.1312 (15) 123
C3—H3⋯Cg1ii 0.98 2.83 3.7921 (12) 168
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z. Cg1 is the centroid of the C4–C9 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 1998[Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Previously, we have reported the crystal structure of 7-chloro-2-ethyl-5-phenyl-3-tosyl-pyrrolo[3,4-b]quinoline (Sudha et al., 2007). Now we report here the crystal structure of the bromo analogue, the title compound.

Bond lengths and angles are comparable with those in the chloro analogue (Sudha et al., 2007). A superposition of the non-H atoms (except halides) of the title molecule and its chloro analogue (Fig. 2) using XP in SHELXTL (Sheldrick, 1998), gave an r.m.s. deviation of 0.868 Å. In both compounds, the pyrrolidine ring is trans-fused to the tetrahydropyridine ring.

The pyrrolidine ring has a twist conformation; the asymmetry parameters ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and φ (Cremer & Pople, 1975) are 0.5 (1)°, 0.481 (1) Å and 270.5 (1)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a half-chair conformation, with Q, θ, φ and ΔC2[C4—C9] values of 0.461 (1) Å, 44.6 (2)°, 269.1 (2)° and 2.4 (2)°, respectively. The phenyl group is attached to the tetrahydropyridine ring in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 72.42 (3) and 22.83 (7)°, respectively, with the C4—C9 and C12—C17 benzene rings.

As observed in the isomorphous chloro analogue, the screw-related molecules are linked into a chain along the b axis through N—H···O hydrogen bonds and the chains are cross-linked into a three-dimensional framework (Fig. 3) by C—H···π interactions (Table 2) and π-π interactions between the C12—C17 benzene rings of molecules at (x, y, z) and (2 - x, 1 - y, 1 - z) [the centroid-centroid distance is 3.6957 (8) Å].

Related literature top

The crystal structure of the title compound is similar to that of its chloro analogue (Sudha et al., 2007). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 is the centroid of the C4–C9 benzene ring

Experimental top

InCl3 (20 mol%) was added to a mixture of 2-(N-cinnamyl-N-tosylamino)butanal (1 mmol) and arylamine (1 mmol) in acetonitrile (20 ml). The reaction mixture was stirred at room temperature for 30 min. On completion of the reaction, as indicated by TLC, the mixture was quenched with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over Na2SO4. The solvent was evaporated in vacuo and the crude product was chromatographed using a hexane-ethyl acetate (8.5:1.5 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The N-bound H atom was located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups attached to aromatic rings. The highest residual density peak and the deepest hole are located 0.65 and 0.58 Å, respectively, from atom Br1.

Structure description top

Previously, we have reported the crystal structure of 7-chloro-2-ethyl-5-phenyl-3-tosyl-pyrrolo[3,4-b]quinoline (Sudha et al., 2007). Now we report here the crystal structure of the bromo analogue, the title compound.

Bond lengths and angles are comparable with those in the chloro analogue (Sudha et al., 2007). A superposition of the non-H atoms (except halides) of the title molecule and its chloro analogue (Fig. 2) using XP in SHELXTL (Sheldrick, 1998), gave an r.m.s. deviation of 0.868 Å. In both compounds, the pyrrolidine ring is trans-fused to the tetrahydropyridine ring.

The pyrrolidine ring has a twist conformation; the asymmetry parameters ΔC2[C2—C10] (Duax et al., 1976) and the puckering parameters q2 and φ (Cremer & Pople, 1975) are 0.5 (1)°, 0.481 (1) Å and 270.5 (1)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The tetrahydropyridine ring adopts a half-chair conformation, with Q, θ, φ and ΔC2[C4—C9] values of 0.461 (1) Å, 44.6 (2)°, 269.1 (2)° and 2.4 (2)°, respectively. The phenyl group is attached to the tetrahydropyridine ring in a biaxial position. The C19—C24 phenyl ring forms dihedral angles of 72.42 (3) and 22.83 (7)°, respectively, with the C4—C9 and C12—C17 benzene rings.

As observed in the isomorphous chloro analogue, the screw-related molecules are linked into a chain along the b axis through N—H···O hydrogen bonds and the chains are cross-linked into a three-dimensional framework (Fig. 3) by C—H···π interactions (Table 2) and π-π interactions between the C12—C17 benzene rings of molecules at (x, y, z) and (2 - x, 1 - y, 1 - z) [the centroid-centroid distance is 3.6957 (8) Å].

The crystal structure of the title compound is similar to that of its chloro analogue (Sudha et al., 2007). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). Cg1 is the centroid of the C4–C9 benzene ring

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 80% probability level.
[Figure 2] Fig. 2. Fit of the title molecule (solid lines) with its chloro analogue (Dashed lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Part of the three-dimensional network in the title compound. Dashed and dotted lines indicate N—H···O and C—H···π interactions, respectively. The π-π interaction is shown by a dashed open line. For the sake of clarity, H atoms not involved in the interactions have been omitted.
7-Bromo-3-ethyl-9-phenyl-2-tosylpyrrolo[3,4-b]quinoline top
Crystal data top
C26H27BrN2O2SF(000) = 1056
Mr = 511.47Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5745 reflections
a = 9.6293 (2) Åθ = 2.4–38.4°
b = 13.4574 (3) ŵ = 1.88 mm1
c = 20.2179 (4) ÅT = 100 K
β = 116.930 (1)°Block, colourless
V = 2335.84 (9) Å30.58 × 0.52 × 0.34 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
14302 independent reflections
Radiation source: fine-focus sealed tube9599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.33 pixels mm-1θmax = 40.0°, θmin = 2.3°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2423
Tmin = 0.323, Tmax = 0.529l = 3636
58171 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.5198P]
where P = (Fo2 + 2Fc2)/3
14302 reflections(Δ/σ)max = 0.001
294 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C26H27BrN2O2SV = 2335.84 (9) Å3
Mr = 511.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6293 (2) ŵ = 1.88 mm1
b = 13.4574 (3) ÅT = 100 K
c = 20.2179 (4) Å0.58 × 0.52 × 0.34 mm
β = 116.930 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
14302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9599 reflections with I > 2σ(I)
Tmin = 0.323, Tmax = 0.529Rint = 0.055
58171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.13 e Å3
14302 reflectionsΔρmin = 0.63 e Å3
294 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.009166 (12)0.383484 (9)0.061858 (7)0.01903 (3)
S11.10805 (3)0.50065 (2)0.342333 (16)0.01644 (5)
O11.16380 (10)0.60150 (7)0.35422 (6)0.02221 (18)
O21.21739 (10)0.42008 (7)0.36992 (5)0.02180 (17)
N11.00957 (10)0.48551 (7)0.25246 (6)0.01539 (16)
N20.70188 (11)0.31729 (7)0.13123 (6)0.01682 (17)
H1N20.738 (2)0.2632 (16)0.1260 (10)0.024 (4)*
C10.87389 (12)0.55496 (8)0.21501 (6)0.01499 (18)
H1A0.88350.59400.17700.018*
H1B0.86420.59930.25050.018*
C20.73638 (11)0.48360 (8)0.18133 (6)0.01310 (16)
H20.71740.45740.22170.016*
C30.58180 (11)0.52210 (8)0.12093 (6)0.01333 (16)
H30.60320.56030.08530.016*
C40.48065 (12)0.43277 (8)0.08039 (6)0.01331 (16)
C50.32017 (12)0.44516 (8)0.03642 (6)0.01504 (17)
H50.27500.50700.03410.018*
C60.22782 (12)0.36598 (8)0.00374 (6)0.01598 (18)
C70.29217 (13)0.27321 (9)0.00227 (7)0.01821 (19)
H70.23020.22110.03050.022*
C80.45046 (13)0.25954 (9)0.04208 (7)0.01821 (19)
H80.49420.19740.04380.022*
C90.54584 (12)0.33745 (8)0.08428 (6)0.01469 (17)
C100.80650 (12)0.40097 (8)0.15527 (6)0.01407 (17)
H100.82710.42450.11470.017*
C110.95981 (12)0.38117 (8)0.22454 (6)0.01524 (17)
H110.93650.34570.26070.018*
C120.97389 (13)0.48916 (9)0.37889 (7)0.01797 (19)
C130.93661 (13)0.39511 (9)0.39459 (7)0.0197 (2)
H130.98720.33920.38910.024*
C140.82254 (14)0.38560 (11)0.41864 (7)0.0231 (2)
H140.79980.32310.43080.028*
C150.74214 (15)0.46833 (12)0.42474 (7)0.0246 (2)
C160.78110 (17)0.56192 (12)0.40851 (8)0.0274 (3)
H160.72830.61770.41250.033*
C170.89758 (16)0.57311 (10)0.38651 (8)0.0233 (2)
H170.92440.63600.37700.028*
C180.61530 (19)0.45797 (15)0.44829 (10)0.0352 (3)
H18A0.60930.39010.46130.053*
H18B0.51750.47740.40810.053*
H18C0.63820.49980.49040.053*
C190.51164 (12)0.59192 (8)0.15662 (6)0.01492 (18)
C200.53584 (13)0.69413 (9)0.15655 (7)0.0195 (2)
H200.58360.71980.12930.023*
C210.48931 (15)0.75812 (10)0.19693 (8)0.0268 (3)
H210.50760.82600.19710.032*
C220.41570 (16)0.72071 (12)0.23691 (8)0.0295 (3)
H220.38460.76340.26390.035*
C230.38881 (16)0.61938 (12)0.23646 (8)0.0281 (3)
H230.33780.59430.26240.034*
C240.43787 (14)0.55503 (10)0.19723 (7)0.0213 (2)
H240.42140.48700.19810.026*
C251.08137 (13)0.32202 (9)0.21256 (7)0.0192 (2)
H25A1.17490.31780.25950.023*
H25B1.04260.25490.19820.023*
C261.12569 (16)0.36324 (11)0.15477 (9)0.0265 (3)
H26A1.20250.32100.15130.040*
H26B1.16760.42890.16890.040*
H26C1.03500.36590.10750.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01395 (4)0.02093 (5)0.01897 (6)0.00094 (4)0.00462 (4)0.00109 (4)
S10.01233 (9)0.01608 (11)0.01730 (12)0.00234 (8)0.00355 (8)0.00071 (9)
O10.0193 (4)0.0188 (4)0.0239 (5)0.0068 (3)0.0058 (3)0.0019 (3)
O20.0137 (3)0.0224 (4)0.0233 (4)0.0014 (3)0.0031 (3)0.0035 (3)
N10.0130 (3)0.0142 (4)0.0165 (4)0.0004 (3)0.0046 (3)0.0013 (3)
N20.0143 (3)0.0113 (4)0.0230 (5)0.0005 (3)0.0068 (3)0.0021 (3)
C10.0139 (4)0.0123 (4)0.0172 (5)0.0001 (3)0.0057 (3)0.0005 (3)
C20.0128 (3)0.0117 (4)0.0150 (4)0.0002 (3)0.0064 (3)0.0001 (3)
C30.0136 (4)0.0126 (4)0.0143 (4)0.0000 (3)0.0067 (3)0.0001 (3)
C40.0140 (4)0.0128 (4)0.0137 (4)0.0004 (3)0.0068 (3)0.0002 (3)
C50.0151 (4)0.0150 (4)0.0150 (5)0.0005 (3)0.0067 (3)0.0001 (3)
C60.0140 (4)0.0170 (5)0.0155 (5)0.0018 (3)0.0054 (3)0.0011 (4)
C70.0172 (4)0.0156 (4)0.0199 (5)0.0028 (3)0.0067 (4)0.0028 (4)
C80.0176 (4)0.0133 (4)0.0218 (5)0.0011 (3)0.0072 (4)0.0024 (4)
C90.0147 (4)0.0131 (4)0.0163 (5)0.0001 (3)0.0070 (3)0.0000 (3)
C100.0128 (4)0.0126 (4)0.0166 (5)0.0002 (3)0.0064 (3)0.0001 (3)
C110.0141 (4)0.0133 (4)0.0172 (5)0.0001 (3)0.0061 (3)0.0009 (4)
C120.0157 (4)0.0206 (5)0.0148 (5)0.0023 (3)0.0045 (4)0.0004 (4)
C130.0157 (4)0.0215 (5)0.0183 (5)0.0002 (3)0.0045 (4)0.0045 (4)
C140.0195 (5)0.0283 (6)0.0191 (5)0.0039 (4)0.0068 (4)0.0039 (5)
C150.0231 (5)0.0342 (7)0.0169 (5)0.0046 (5)0.0094 (4)0.0031 (5)
C160.0328 (6)0.0282 (7)0.0260 (7)0.0002 (5)0.0176 (5)0.0061 (5)
C170.0300 (6)0.0197 (5)0.0228 (6)0.0022 (4)0.0141 (5)0.0038 (4)
C180.0327 (7)0.0498 (10)0.0309 (8)0.0065 (6)0.0212 (6)0.0053 (7)
C190.0133 (4)0.0147 (4)0.0157 (5)0.0018 (3)0.0056 (3)0.0021 (3)
C200.0185 (4)0.0152 (5)0.0220 (6)0.0024 (3)0.0067 (4)0.0019 (4)
C210.0241 (5)0.0196 (5)0.0304 (7)0.0064 (4)0.0067 (5)0.0080 (5)
C220.0244 (5)0.0361 (7)0.0248 (6)0.0097 (5)0.0084 (5)0.0108 (5)
C230.0251 (5)0.0393 (8)0.0240 (6)0.0039 (5)0.0146 (5)0.0052 (6)
C240.0210 (5)0.0242 (6)0.0216 (6)0.0001 (4)0.0123 (4)0.0023 (4)
C250.0162 (4)0.0161 (5)0.0244 (6)0.0032 (3)0.0083 (4)0.0012 (4)
C260.0230 (5)0.0265 (6)0.0361 (8)0.0056 (4)0.0188 (5)0.0046 (5)
Geometric parameters (Å, º) top
Br1—C61.9048 (11)C12—C131.3909 (17)
S1—O21.4363 (10)C12—C171.3937 (19)
S1—O11.4392 (9)C13—C141.3940 (18)
S1—N11.6375 (10)C13—H130.93
S1—C121.7619 (12)C14—C151.393 (2)
N1—C11.5025 (14)C14—H140.93
N1—C111.5083 (15)C15—C161.395 (2)
N2—C91.3930 (14)C15—C181.505 (2)
N2—C101.4408 (14)C16—C171.389 (2)
N2—H1N20.83 (2)C16—H160.93
C1—C21.5239 (14)C17—H170.93
C1—H1A0.97C18—H18A0.96
C1—H1B0.97C18—H18B0.96
C2—C101.5140 (15)C18—H18C0.96
C2—C31.5260 (14)C19—C201.3952 (16)
C2—H20.98C19—C241.3976 (17)
C3—C191.5171 (15)C20—C211.3929 (18)
C3—C41.5306 (15)C20—H200.93
C3—H30.98C21—C221.389 (2)
C4—C51.4006 (14)C21—H210.93
C4—C91.4145 (15)C22—C231.387 (2)
C5—C61.3898 (15)C22—H220.93
C5—H50.93C23—C241.3933 (19)
C6—C71.3881 (17)C23—H230.93
C7—C81.3867 (16)C24—H240.93
C7—H70.93C25—C261.5188 (19)
C8—C91.4003 (16)C25—H25A0.97
C8—H80.93C25—H25B0.97
C10—C111.5294 (15)C26—H26A0.96
C10—H100.98C26—H26B0.96
C11—C251.5230 (16)C26—H26C0.96
C11—H110.98
O2—S1—O1119.64 (6)N1—C11—H11108.4
O2—S1—N1106.93 (6)C25—C11—H11108.4
O1—S1—N1106.70 (6)C10—C11—H11108.4
O2—S1—C12108.58 (6)C13—C12—C17120.60 (12)
O1—S1—C12107.56 (6)C13—C12—S1119.32 (10)
N1—S1—C12106.77 (5)C17—C12—S1119.91 (10)
C1—N1—C11109.52 (8)C12—C13—C14119.25 (12)
C1—N1—S1114.59 (8)C12—C13—H13120.4
C11—N1—S1117.20 (8)C14—C13—H13120.4
C9—N2—C10116.82 (9)C15—C14—C13120.98 (12)
C9—N2—H1N2117.8 (13)C15—C14—H14119.5
C10—N2—H1N2117.2 (13)C13—C14—H14119.5
N1—C1—C2102.39 (8)C14—C15—C16118.77 (12)
N1—C1—H1A111.3C14—C15—C18121.14 (14)
C2—C1—H1A111.3C16—C15—C18120.09 (14)
N1—C1—H1B111.3C17—C16—C15121.01 (13)
C2—C1—H1B111.3C17—C16—H16119.5
H1A—C1—H1B109.2C15—C16—H16119.5
C10—C2—C1100.61 (8)C16—C17—C12119.34 (13)
C10—C2—C3113.45 (9)C16—C17—H17120.3
C1—C2—C3118.62 (9)C12—C17—H17120.3
C10—C2—H2107.9C15—C18—H18A109.5
C1—C2—H2107.9C15—C18—H18B109.5
C3—C2—H2107.9H18A—C18—H18B109.5
C19—C3—C2108.23 (9)C15—C18—H18C109.5
C19—C3—C4115.39 (9)H18A—C18—H18C109.5
C2—C3—C4108.39 (9)H18B—C18—H18C109.5
C19—C3—H3108.2C20—C19—C24118.71 (11)
C2—C3—H3108.2C20—C19—C3119.97 (10)
C4—C3—H3108.2C24—C19—C3120.91 (10)
C5—C4—C9118.53 (10)C21—C20—C19120.71 (13)
C5—C4—C3119.87 (9)C21—C20—H20119.6
C9—C4—C3121.58 (9)C19—C20—H20119.6
C6—C5—C4120.63 (10)C22—C21—C20120.10 (13)
C6—C5—H5119.7C22—C21—H21120.0
C4—C5—H5119.7C20—C21—H21120.0
C7—C6—C5121.05 (10)C23—C22—C21119.70 (12)
C7—C6—Br1118.84 (8)C23—C22—H22120.1
C5—C6—Br1120.10 (8)C21—C22—H22120.1
C8—C7—C6118.84 (10)C22—C23—C24120.29 (14)
C8—C7—H7120.6C22—C23—H23119.9
C6—C7—H7120.6C24—C23—H23119.9
C7—C8—C9121.34 (11)C23—C24—C19120.47 (13)
C7—C8—H8119.3C23—C24—H24119.8
C9—C8—H8119.3C19—C24—H24119.8
N2—C9—C8118.47 (10)C26—C25—C11115.82 (10)
N2—C9—C4121.95 (10)C26—C25—H25A108.3
C8—C9—C4119.54 (10)C11—C25—H25A108.3
N2—C10—C2109.73 (9)C26—C25—H25B108.3
N2—C10—C11114.21 (9)C11—C25—H25B108.3
C2—C10—C11101.94 (9)H25A—C25—H25B107.4
N2—C10—H10110.2C25—C26—H26A109.5
C2—C10—H10110.2C25—C26—H26B109.5
C11—C10—H10110.2H26A—C26—H26B109.5
N1—C11—C25114.16 (9)C25—C26—H26C109.5
N1—C11—C10101.06 (8)H26A—C26—H26C109.5
C25—C11—C10115.98 (10)H26B—C26—H26C109.5
O2—S1—N1—C1171.86 (8)C1—N1—C11—C25140.52 (10)
O1—S1—N1—C159.00 (9)S1—N1—C11—C2586.74 (11)
C12—S1—N1—C155.78 (9)C1—N1—C11—C1015.29 (11)
O2—S1—N1—C1141.45 (9)S1—N1—C11—C10148.03 (8)
O1—S1—N1—C11170.58 (8)N2—C10—C11—N1158.08 (9)
C12—S1—N1—C1174.64 (9)C2—C10—C11—N139.82 (10)
C11—N1—C1—C214.81 (12)N2—C10—C11—C2577.92 (13)
S1—N1—C1—C2119.27 (8)C2—C10—C11—C25163.81 (9)
N1—C1—C2—C1039.19 (10)O2—S1—C12—C1330.53 (11)
N1—C1—C2—C3163.49 (9)O1—S1—C12—C13161.35 (9)
C10—C2—C3—C19171.06 (9)N1—S1—C12—C1384.45 (10)
C1—C2—C3—C1971.20 (12)O2—S1—C12—C17154.32 (10)
C10—C2—C3—C445.25 (12)O1—S1—C12—C1723.50 (12)
C1—C2—C3—C4162.98 (9)N1—S1—C12—C1790.71 (11)
C19—C3—C4—C541.53 (14)C17—C12—C13—C140.47 (18)
C2—C3—C4—C5163.04 (10)S1—C12—C13—C14175.59 (9)
C19—C3—C4—C9140.35 (11)C12—C13—C14—C152.16 (19)
C2—C3—C4—C918.85 (14)C13—C14—C15—C162.0 (2)
C9—C4—C5—C61.42 (17)C13—C14—C15—C18177.98 (13)
C3—C4—C5—C6176.75 (10)C14—C15—C16—C170.1 (2)
C4—C5—C6—C70.96 (18)C18—C15—C16—C17179.85 (14)
C4—C5—C6—Br1178.88 (9)C15—C16—C17—C121.5 (2)
C5—C6—C7—C82.08 (19)C13—C12—C17—C161.4 (2)
Br1—C6—C7—C8177.76 (10)S1—C12—C17—C16173.74 (11)
C6—C7—C8—C90.81 (19)C2—C3—C19—C2095.33 (12)
C10—N2—C9—C8160.86 (11)C4—C3—C19—C20143.08 (11)
C10—N2—C9—C421.63 (16)C2—C3—C19—C2477.22 (12)
C7—C8—C9—N2176.02 (11)C4—C3—C19—C2444.37 (14)
C7—C8—C9—C41.56 (18)C24—C19—C20—C210.84 (17)
C5—C4—C9—N2174.85 (11)C3—C19—C20—C21171.88 (11)
C3—C4—C9—N27.01 (17)C19—C20—C21—C221.04 (19)
C5—C4—C9—C82.64 (17)C20—C21—C22—C230.0 (2)
C3—C4—C9—C8175.50 (11)C21—C22—C23—C241.2 (2)
C9—N2—C10—C247.11 (14)C22—C23—C24—C191.4 (2)
C9—N2—C10—C11160.83 (10)C20—C19—C24—C230.37 (18)
C1—C2—C10—N2171.23 (9)C3—C19—C24—C23173.02 (11)
C3—C2—C10—N261.01 (12)N1—C11—C25—C2662.22 (14)
C1—C2—C10—C1149.81 (10)C10—C11—C25—C2654.68 (14)
C3—C2—C10—C11177.58 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.83 (2)2.33 (2)3.1381 (14)162 (2)
C25—H25A···O20.972.493.1312 (15)123
C3—H3···Cg1ii0.982.833.7921 (12)168
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H27BrN2O2S
Mr511.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.6293 (2), 13.4574 (3), 20.2179 (4)
β (°) 116.930 (1)
V3)2335.84 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.58 × 0.52 × 0.34
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.323, 0.529
No. of measured, independent and
observed [I > 2σ(I)] reflections
58171, 14302, 9599
Rint0.055
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.01
No. of reflections14302
No. of parameters294
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 0.63

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.83 (2)2.33 (2)3.1381 (14)162 (2)
C25—H25A···O20.972.493.1312 (15)123
C3—H3···Cg1ii0.982.833.7921 (12)168
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Footnotes

Working at: Department of Physics, R. M. K. Engineering College, R. S. M Nagar, Kavaraipettai 601206, Tamil Nadu, India.

§Additional correspondence author, email: kali@annauniv.edu

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

References

First citationBruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationSheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudha, D., Chinnakali, K., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4914–o4915.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds