organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(1-iso­propyl-5-phenyl-1H-pyrazol-3-yl)pyridine

aSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China, bDepartment of Chemistry, Zhejiang University, Xixi Campus, Hangzhou 310028, People's Republic of China, and cDepartment of Agriculture, Guangshan County, Henan 465400, People's Republic of China
*Correspondence e-mail: zybdjy@163.com

(Received 20 November 2007; accepted 3 December 2007; online 6 December 2007)

In the title compound, C29H29N5, the central pyridine ring and the two pyrazole rings are approximately coplanar, the dihedral angles between the pyridine and pyrazole rings being 3.94 (12) and 14.84 (12)°. The pyrazole and phenyl rings on each side of the mol­ecule are twisted with dihedral angles of 46.72 (8) and 73.39 (8)°. One phenyl ring inter­acts with a pyrazole ring of a neighbouring mol­ecule via a weak inter­molecular C—H⋯π inter­action, which stabilizes the mol­ecular packing.

Related literature

For general background, see: Dias & Gamage (2007[Dias, H. V. R. & Gamage, C. S. P. (2007). Angew. Chem. Int. Ed. 46, 2192-2194.]); Zhou & Chen (2007[Zhou, Y. B. & Chen, W. Z. (2007). Dalton Trans. pp. 5123-5125.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29N5

  • Mr = 447.57

  • Triclinic, [P \overline 1]

  • a = 9.973 (3) Å

  • b = 10.172 (3) Å

  • c = 14.014 (4) Å

  • α = 110.940 (4)°

  • β = 106.494 (4)°

  • γ = 94.583 (4)°

  • V = 1246.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.53 × 0.43 × 0.39 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.972

  • 6572 measured reflections

  • 4332 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.05

  • 4332 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cg1i 0.93 2.86 3.710 (3) 153
Symmetry code: (i) -x+1, -y, -z. Cg1 is the centroid of the C6-C8/N2/N3 pyrazole ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Pyrazolyl ligands are a kind of mutifuntional organic ligands often displaying exo-bidentate coordination mode (Dias & Gamage, 2007). The title compound, 2,6-bis(5-phenyl-1-isopropyl-1H-pyrazol-3-yl)pyridine (hereinafter abbreviated to bpipp), is a potentially tridentate pincer ligand by N-alkylation of a bispyrazolyl ligand.

The asymmetric unit of the title compound contains only one bpipp molecule (Fig. 1). The pyrazole and pyridine rings are near-coplanar [inter-ring dihedral angles 3.94 (12) and 14.84 (12)°], whereas the pyrazole rings are twisted from the phenyl rings with the two dihedral angles 46.72 (8) and 73.39 (8)°. The phenyl ring interacts with the pyrazole ring of the neighbouring molecule to afford a weak intermolecular C—H··· π interaction (Table 1; Cg1 is the centroid of the C6—C8/N2/N3 pyrazole ring) which stabilizes the molecular packing. The centroid to centroid distance between stacked pyridine rings is ca 4.88 Å, which is very long and prevents π-π stacking (Fig. 2). All bond lengths and angles are normal.

Related literature top

For general background, see: Dias & Gamage (2007); Zhou & Chen (2007). Cg1 is the centroid of the C6—C8/N2/N3 pyrazole ring.

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used as received, unless stated otherwise. 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine (bppp) was prepared by the general procedure of Zhou and Chen (2007). A mixture of bppp (0.72 g, 2 mmol) and 60% NaH (0.32 g, 8 mmol) in dry DMF (15 ml) was stirred for 2 h at room temperature. To the solution was added 2-bromopropane (0.98 g, 8 mmol). After stirring at 333 K for two days, the resulting solution was concentrated to 4 ml. Addition of H2O (15 ml) precipitated a pale yellow powder. Column chromatography involved elution with ethyl acetate/ petroleum ether (1:4) separated the compound as a white powder (0.56 g). Yield: 62%. Anal. Calcd for C29H29N5: C 77.82, H 6.53, N 15.65; Found: C 77.60, H 6.62, N 15.57. MS (m/z): 447 (M+, 100), 432, 405, 390, 363, 334, 304, 195, 168, 115, 77. 1H NMR (DMSO-d6): 7.90 (br, 3H), 7.56–7.48 (m, 10H), 6.99 (s, 2H), 4.58(m, 2H), 1.47(s, 6H), 1.45 (s, 6H). 13C NMR (100 MHz, DMSO-d6): δ 151.8, 150.5, 144.5, 130.6, 129.3, 129.2, 129.0, 125.14, 118.1, 104.8, 50.3, 23.2, 23.1. Colorless single crystals were grown from slow evaporation of a saturated MeOH solution of the compound.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.93 (aromatic CH), 0.98 (methylene CH), or 0.96 Å (methyl CH3), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Pyrazolyl ligands are a kind of mutifuntional organic ligands often displaying exo-bidentate coordination mode (Dias & Gamage, 2007). The title compound, 2,6-bis(5-phenyl-1-isopropyl-1H-pyrazol-3-yl)pyridine (hereinafter abbreviated to bpipp), is a potentially tridentate pincer ligand by N-alkylation of a bispyrazolyl ligand.

The asymmetric unit of the title compound contains only one bpipp molecule (Fig. 1). The pyrazole and pyridine rings are near-coplanar [inter-ring dihedral angles 3.94 (12) and 14.84 (12)°], whereas the pyrazole rings are twisted from the phenyl rings with the two dihedral angles 46.72 (8) and 73.39 (8)°. The phenyl ring interacts with the pyrazole ring of the neighbouring molecule to afford a weak intermolecular C—H··· π interaction (Table 1; Cg1 is the centroid of the C6—C8/N2/N3 pyrazole ring) which stabilizes the molecular packing. The centroid to centroid distance between stacked pyridine rings is ca 4.88 Å, which is very long and prevents π-π stacking (Fig. 2). All bond lengths and angles are normal.

For general background, see: Dias & Gamage (2007); Zhou & Chen (2007). Cg1 is the centroid of the C6—C8/N2/N3 pyrazole ring.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing view of the title compound along the b axis. H atoms have been omitted for clarity.
2,6-Bis(1-isopropyl-5-phenyl-1H-pyrazol-3-yl)pyridine top
Crystal data top
C29H29N5Z = 2
Mr = 447.57F(000) = 476
Triclinic, P1Dx = 1.192 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.973 (3) ÅCell parameters from 1546 reflections
b = 10.172 (3) Åθ = 2.8–21.8°
c = 14.014 (4) ŵ = 0.07 mm1
α = 110.940 (4)°T = 298 K
β = 106.494 (4)°Prism, colorless
γ = 94.583 (4)°0.53 × 0.43 × 0.39 mm
V = 1246.8 (6) Å3
Data collection top
SMART 1K CCD area-detector
diffractometer
4332 independent reflections
Radiation source: fine-focus sealed tube2417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 117
Tmin = 0.963, Tmax = 0.972k = 1012
6572 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.0355P]
where P = (Fo2 + 2Fc2)/3
4332 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C29H29N5γ = 94.583 (4)°
Mr = 447.57V = 1246.8 (6) Å3
Triclinic, P1Z = 2
a = 9.973 (3) ÅMo Kα radiation
b = 10.172 (3) ŵ = 0.07 mm1
c = 14.014 (4) ÅT = 298 K
α = 110.940 (4)°0.53 × 0.43 × 0.39 mm
β = 106.494 (4)°
Data collection top
SMART 1K CCD area-detector
diffractometer
4332 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2417 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.972Rint = 0.023
6572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
4332 reflectionsΔρmin = 0.18 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.49140 (17)0.25670 (17)0.32171 (13)0.0437 (5)
N20.75204 (19)0.58665 (18)0.45974 (14)0.0507 (5)
N30.77219 (19)0.67986 (18)0.41370 (14)0.0510 (5)
N40.28141 (19)0.09220 (18)0.24676 (14)0.0522 (5)
N50.19993 (19)0.17780 (17)0.14410 (14)0.0519 (5)
C10.4400 (2)0.1424 (2)0.33672 (17)0.0419 (5)
C20.4774 (2)0.1347 (2)0.43729 (17)0.0494 (6)
H20.44000.05390.44500.059*
C30.5705 (2)0.2481 (2)0.52506 (18)0.0520 (6)
H30.59760.24510.59330.062*
C40.6235 (2)0.3662 (2)0.51153 (17)0.0491 (6)
H40.68570.44490.57050.059*
C50.5832 (2)0.3665 (2)0.40889 (17)0.0412 (5)
C60.6374 (2)0.4876 (2)0.38672 (17)0.0437 (5)
C70.5864 (2)0.5158 (2)0.29458 (17)0.0473 (6)
H70.50880.46140.23270.057*
C80.6735 (2)0.6402 (2)0.31321 (18)0.0468 (6)
C90.6679 (2)0.7231 (2)0.24527 (19)0.0492 (6)
C100.6480 (3)0.6519 (3)0.1365 (2)0.0699 (8)
H100.64020.55280.10730.084*
C110.6396 (3)0.7265 (4)0.0706 (2)0.0927 (10)
H110.62570.67750.00270.111*
C120.6517 (3)0.8726 (4)0.1130 (3)0.0894 (9)
H120.64780.92270.06870.107*
C130.6693 (3)0.9441 (3)0.2190 (3)0.0743 (8)
H130.67711.04330.24750.089*
C140.6757 (3)0.8699 (3)0.2845 (2)0.0623 (7)
H140.68560.91960.35690.075*
C150.3432 (2)0.0234 (2)0.23969 (17)0.0436 (5)
C160.3022 (2)0.0097 (2)0.13208 (17)0.0489 (6)
H160.33110.07590.10650.059*
C170.2110 (2)0.1202 (2)0.07220 (16)0.0454 (6)
C180.1321 (3)0.1941 (2)0.04508 (17)0.0469 (6)
C190.2024 (3)0.2537 (3)0.1166 (2)0.0655 (7)
H190.30050.24710.09070.079*
C200.1282 (3)0.3234 (3)0.2265 (2)0.0724 (8)
H200.17660.36430.27400.087*
C210.0148 (3)0.3324 (2)0.2656 (2)0.0632 (7)
H210.06410.37930.33970.076*
C220.0861 (3)0.2729 (3)0.1964 (2)0.0647 (7)
H220.18410.27920.22300.078*
C230.0128 (3)0.2035 (2)0.08679 (19)0.0603 (7)
H230.06200.16210.04010.072*
C240.9034 (2)0.7923 (2)0.46856 (19)0.0549 (6)
H240.90620.84360.42160.066*
C251.0336 (3)0.7258 (3)0.4818 (2)0.0694 (7)
H25A1.03050.65840.41220.104*
H25B1.03540.67680.52920.104*
H25C1.11800.79980.51230.104*
C260.8991 (3)0.8999 (2)0.5743 (2)0.0707 (8)
H26A0.81470.93920.56090.106*
H26B0.98200.97590.60670.106*
H26C0.89780.85300.62270.106*
C270.1273 (3)0.3221 (2)0.12085 (19)0.0606 (7)
H270.06130.36270.04590.073*
C280.0417 (3)0.3145 (3)0.1945 (3)0.1074 (11)
H28A0.02570.25390.18540.161*
H28B0.10460.27550.26840.161*
H28C0.00850.40930.17660.161*
C290.2353 (3)0.4163 (3)0.1301 (2)0.0955 (10)
H29A0.28690.41810.08150.143*
H29B0.18700.51210.11160.143*
H29C0.30070.37870.20320.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (11)0.0382 (10)0.0421 (11)0.0014 (9)0.0103 (9)0.0141 (9)
N20.0509 (12)0.0475 (11)0.0481 (11)0.0066 (9)0.0097 (10)0.0214 (9)
N30.0506 (12)0.0459 (11)0.0497 (12)0.0065 (9)0.0095 (10)0.0205 (9)
N40.0565 (12)0.0441 (11)0.0403 (11)0.0105 (9)0.0036 (9)0.0132 (9)
N50.0594 (13)0.0424 (11)0.0393 (11)0.0091 (9)0.0037 (10)0.0137 (9)
C10.0401 (13)0.0374 (12)0.0413 (13)0.0013 (10)0.0089 (10)0.0131 (10)
C20.0519 (14)0.0473 (13)0.0439 (14)0.0016 (11)0.0075 (12)0.0214 (11)
C30.0570 (15)0.0535 (14)0.0390 (13)0.0010 (12)0.0081 (12)0.0197 (11)
C40.0458 (14)0.0482 (14)0.0410 (14)0.0025 (11)0.0067 (11)0.0124 (11)
C50.0390 (12)0.0383 (12)0.0410 (13)0.0022 (10)0.0116 (10)0.0124 (10)
C60.0414 (13)0.0403 (12)0.0429 (14)0.0002 (10)0.0125 (11)0.0123 (10)
C70.0460 (14)0.0445 (13)0.0404 (13)0.0023 (11)0.0077 (11)0.0121 (11)
C80.0447 (14)0.0465 (13)0.0443 (14)0.0037 (11)0.0114 (11)0.0166 (11)
C90.0435 (14)0.0525 (14)0.0516 (15)0.0037 (11)0.0138 (11)0.0239 (12)
C100.091 (2)0.0616 (16)0.0548 (17)0.0085 (15)0.0238 (15)0.0228 (14)
C110.132 (3)0.098 (2)0.0558 (19)0.021 (2)0.0343 (18)0.0376 (18)
C120.120 (3)0.090 (2)0.084 (2)0.027 (2)0.042 (2)0.057 (2)
C130.090 (2)0.0635 (17)0.088 (2)0.0216 (15)0.0353 (18)0.0445 (17)
C140.0726 (18)0.0569 (16)0.0619 (17)0.0134 (13)0.0242 (14)0.0274 (14)
C150.0450 (13)0.0386 (12)0.0415 (13)0.0004 (10)0.0093 (11)0.0154 (10)
C160.0562 (15)0.0434 (13)0.0432 (14)0.0009 (11)0.0111 (11)0.0195 (11)
C170.0489 (14)0.0437 (13)0.0372 (13)0.0027 (11)0.0072 (11)0.0157 (11)
C180.0556 (15)0.0380 (12)0.0382 (13)0.0017 (11)0.0077 (12)0.0131 (10)
C190.0613 (17)0.0722 (17)0.0494 (17)0.0066 (14)0.0105 (14)0.0167 (14)
C200.079 (2)0.0789 (19)0.0476 (17)0.0149 (16)0.0219 (15)0.0116 (14)
C210.082 (2)0.0518 (15)0.0399 (15)0.0044 (14)0.0058 (15)0.0136 (12)
C220.0591 (17)0.0623 (16)0.0521 (17)0.0051 (13)0.0022 (14)0.0172 (13)
C230.0582 (17)0.0623 (16)0.0450 (15)0.0106 (13)0.0088 (13)0.0110 (12)
C240.0507 (15)0.0502 (14)0.0573 (16)0.0097 (12)0.0108 (12)0.0239 (12)
C250.0542 (17)0.0721 (17)0.0763 (19)0.0010 (14)0.0205 (14)0.0266 (14)
C260.0722 (18)0.0486 (15)0.0715 (18)0.0080 (13)0.0199 (15)0.0092 (13)
C270.0692 (17)0.0422 (14)0.0496 (15)0.0176 (13)0.0001 (13)0.0164 (12)
C280.107 (3)0.091 (2)0.120 (3)0.0275 (19)0.048 (2)0.038 (2)
C290.106 (2)0.0529 (17)0.105 (3)0.0048 (17)0.016 (2)0.0243 (16)
Geometric parameters (Å, º) top
N1—C11.341 (2)C15—C161.397 (3)
N1—C51.343 (2)C16—C171.364 (3)
N2—C61.335 (2)C16—H160.9300
N2—N31.355 (2)C17—C181.474 (3)
N3—C81.363 (2)C18—C191.377 (3)
N3—C241.474 (2)C18—C231.378 (3)
N4—C151.332 (2)C19—C201.383 (3)
N4—N51.348 (2)C19—H190.9300
N5—C171.358 (3)C20—C211.357 (3)
N5—C271.463 (2)C20—H200.9300
C1—C21.385 (3)C21—C221.362 (3)
C1—C151.462 (3)C21—H210.9300
C2—C31.368 (3)C22—C231.377 (3)
C2—H20.9300C22—H220.9300
C3—C41.370 (3)C23—H230.9300
C3—H30.9300C24—C251.507 (3)
C4—C51.380 (3)C24—C261.510 (3)
C4—H40.9300C24—H240.9800
C5—C61.473 (3)C25—H25A0.9600
C6—C71.387 (3)C25—H25B0.9600
C7—C81.373 (3)C25—H25C0.9600
C7—H70.9300C26—H26A0.9600
C8—C91.474 (3)C26—H26B0.9600
C9—C101.380 (3)C26—H26C0.9600
C9—C141.381 (3)C27—C281.501 (4)
C10—C111.378 (3)C27—C291.506 (3)
C10—H100.9300C27—H270.9800
C11—C121.369 (4)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—C131.351 (4)C28—H28C0.9600
C12—H120.9300C29—H29A0.9600
C13—C141.374 (3)C29—H29B0.9600
C13—H130.9300C29—H29C0.9600
C14—H140.9300
C1—N1—C5117.55 (18)N5—C17—C16105.95 (18)
C6—N2—N3104.67 (17)N5—C17—C18122.37 (18)
N2—N3—C8112.07 (16)C16—C17—C18131.7 (2)
N2—N3—C24117.84 (17)C19—C18—C23118.0 (2)
C8—N3—C24129.40 (18)C19—C18—C17120.6 (2)
C15—N4—N5104.86 (17)C23—C18—C17121.5 (2)
N4—N5—C17112.34 (16)C18—C19—C20120.6 (2)
N4—N5—C27119.23 (17)C18—C19—H19119.7
C17—N5—C27127.95 (18)C20—C19—H19119.7
N1—C1—C2122.68 (18)C21—C20—C19120.4 (3)
N1—C1—C15116.11 (18)C21—C20—H20119.8
C2—C1—C15121.20 (18)C19—C20—H20119.8
C3—C2—C1118.8 (2)C20—C21—C22120.0 (2)
C3—C2—H2120.6C20—C21—H21120.0
C1—C2—H2120.6C22—C21—H21120.0
C2—C3—C4119.5 (2)C21—C22—C23119.9 (2)
C2—C3—H3120.3C21—C22—H22120.1
C4—C3—H3120.3C23—C22—H22120.1
C3—C4—C5118.91 (19)C22—C23—C18121.2 (3)
C3—C4—H4120.5C22—C23—H23119.4
C5—C4—H4120.5C18—C23—H23119.4
N1—C5—C4122.63 (18)N3—C24—C25110.52 (18)
N1—C5—C6114.89 (18)N3—C24—C26110.4 (2)
C4—C5—C6122.47 (18)C25—C24—C26113.2 (2)
N2—C6—C7111.30 (18)N3—C24—H24107.5
N2—C6—C5120.23 (19)C25—C24—H24107.5
C7—C6—C5128.46 (19)C26—C24—H24107.5
C8—C7—C6106.11 (18)C24—C25—H25A109.5
C8—C7—H7126.9C24—C25—H25B109.5
C6—C7—H7126.9H25A—C25—H25B109.5
N3—C8—C7105.83 (18)C24—C25—H25C109.5
N3—C8—C9123.87 (18)H25A—C25—H25C109.5
C7—C8—C9130.3 (2)H25B—C25—H25C109.5
C10—C9—C14117.7 (2)C24—C26—H26A109.5
C10—C9—C8119.4 (2)C24—C26—H26B109.5
C14—C9—C8122.9 (2)H26A—C26—H26B109.5
C11—C10—C9120.6 (3)C24—C26—H26C109.5
C11—C10—H10119.7H26A—C26—H26C109.5
C9—C10—H10119.7H26B—C26—H26C109.5
C12—C11—C10120.1 (3)N5—C27—C28110.2 (2)
C12—C11—H11120.0N5—C27—C29109.6 (2)
C10—C11—H11120.0C28—C27—C29112.5 (2)
C13—C12—C11120.3 (3)N5—C27—H27108.2
C13—C12—H12119.8C28—C27—H27108.2
C11—C12—H12119.8C29—C27—H27108.2
C12—C13—C14119.7 (3)C27—C28—H28A109.5
C12—C13—H13120.1C27—C28—H28B109.5
C14—C13—H13120.1H28A—C28—H28B109.5
C13—C14—C9121.5 (2)C27—C28—H28C109.5
C13—C14—H14119.2H28A—C28—H28C109.5
C9—C14—H14119.2H28B—C28—H28C109.5
N4—C15—C16110.78 (18)C27—C29—H29A109.5
N4—C15—C1120.71 (19)C27—C29—H29B109.5
C16—C15—C1128.51 (19)H29A—C29—H29B109.5
C17—C16—C15106.06 (18)C27—C29—H29C109.5
C17—C16—H16127.0H29A—C29—H29C109.5
C15—C16—H16127.0H29B—C29—H29C109.5
C6—N2—N3—C80.6 (2)C12—C13—C14—C91.5 (4)
C6—N2—N3—C24171.95 (18)C10—C9—C14—C132.3 (4)
C15—N4—N5—C171.2 (2)C8—C9—C14—C13179.6 (2)
C15—N4—N5—C27173.9 (2)N5—N4—C15—C160.8 (2)
C5—N1—C1—C20.3 (3)N5—N4—C15—C1179.42 (19)
C5—N1—C1—C15178.48 (18)N1—C1—C15—N4176.9 (2)
N1—C1—C2—C30.0 (3)C2—C1—C15—N44.3 (3)
C15—C1—C2—C3178.8 (2)N1—C1—C15—C163.4 (3)
C1—C2—C3—C40.3 (3)C2—C1—C15—C16175.4 (2)
C2—C3—C4—C51.1 (3)N4—C15—C16—C170.2 (3)
C1—N1—C5—C41.1 (3)C1—C15—C16—C17179.9 (2)
C1—N1—C5—C6179.08 (18)N4—N5—C17—C161.1 (3)
C3—C4—C5—N11.5 (3)C27—N5—C17—C16173.0 (2)
C3—C4—C5—C6178.7 (2)N4—N5—C17—C18179.9 (2)
N3—N2—C6—C70.9 (2)C27—N5—C17—C188.0 (4)
N3—N2—C6—C5179.74 (19)C15—C16—C17—N50.5 (2)
N1—C5—C6—N2164.57 (19)C15—C16—C17—C18179.4 (2)
C4—C5—C6—N215.6 (3)N5—C17—C18—C19107.9 (3)
N1—C5—C6—C714.0 (3)C16—C17—C18—C1973.4 (3)
C4—C5—C6—C7165.8 (2)N5—C17—C18—C2373.3 (3)
N2—C6—C7—C80.9 (3)C16—C17—C18—C23105.4 (3)
C5—C6—C7—C8179.6 (2)C23—C18—C19—C201.4 (4)
N2—N3—C8—C70.0 (2)C17—C18—C19—C20179.8 (2)
C24—N3—C8—C7170.1 (2)C18—C19—C20—C210.8 (4)
N2—N3—C8—C9178.7 (2)C19—C20—C21—C220.1 (4)
C24—N3—C8—C911.2 (4)C20—C21—C22—C230.1 (4)
C6—C7—C8—N30.5 (2)C21—C22—C23—C180.7 (4)
C6—C7—C8—C9178.1 (2)C19—C18—C23—C221.4 (3)
N3—C8—C9—C10135.3 (2)C17—C18—C23—C22179.8 (2)
C7—C8—C9—C1046.4 (4)N2—N3—C24—C2557.3 (3)
N3—C8—C9—C1447.5 (3)C8—N3—C24—C25112.3 (3)
C7—C8—C9—C14130.9 (3)N2—N3—C24—C2668.7 (3)
C14—C9—C10—C111.4 (4)C8—N3—C24—C26121.7 (2)
C8—C9—C10—C11178.8 (2)N4—N5—C27—C2852.8 (3)
C9—C10—C11—C120.3 (5)C17—N5—C27—C28135.8 (3)
C10—C11—C12—C131.2 (5)N4—N5—C27—C2971.5 (3)
C11—C12—C13—C140.3 (5)C17—N5—C27—C2999.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg1i0.932.863.710 (3)153
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC29H29N5
Mr447.57
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.973 (3), 10.172 (3), 14.014 (4)
α, β, γ (°)110.940 (4), 106.494 (4), 94.583 (4)
V3)1246.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.53 × 0.43 × 0.39
Data collection
DiffractometerSMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.963, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6572, 4332, 2417
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.123, 1.05
No. of reflections4332
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2001) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···Cg1i0.932.863.710 (3)153
Symmetry code: (i) x+1, y, z.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDias, H. V. R. & Gamage, C. S. P. (2007). Angew. Chem. Int. Ed. 46, 2192–2194.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhou, Y. B. & Chen, W. Z. (2007). Dalton Trans. pp. 5123–5125.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds