organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Imidazol-1-yl)-3-iso­propyl-1-benzothieno[3,2-d]pyrimidin-4(3H)-one

aCollege of Basic Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
*Correspondence e-mail: xsz1976@yahoo.com.cn

(Received 21 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, C16H14N4OS, the three fused rings of the benzothieno[3,2-d]pyrimidinone unit are essentially coplanar, the maximum deviation from the mean plane being 0.067 (3) Å. The dihedral angle between the mean plane of the fused rings and the imidazole ring is 72.00 (3)°. Offset ππ stacking inter­actions involving the fused rings are effective in the stabilization of the crystal structure. The centroid–centroid distances between the thienophene and benzene rings, and between the pyrimidine and benzene rings are 3.67 (1) and 3.93 (1) Å, respectively. There are two intramolecular C—H⋯O interactions.

Related literature

For related literature, see: Chambhare et al. (2003[Chambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem. 38, 89-100.]); Ding et al. (2004[Ding, M.-W., Xu, S.-Z. & Zhao, J.-F. (2004). J. Org. Chem. 69, 8366-8371.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Cao (2007[Cao, M.-H. (2007). Acta Cryst. E63, o2660.]); Xu et al. (2005[Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789-o2790.], 2006[Xu, S.-Z., Hu, Y.-G., Liu, M.-G. & Ding, M.-W. (2006). Acta Cryst. E62, o3428-o3429.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4OS

  • Mr = 310.37

  • Monoclinic, P 21 /c

  • a = 15.2759 (16) Å

  • b = 12.1387 (12) Å

  • c = 8.0172 (8) Å

  • β = 97.439 (2)°

  • V = 1474.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 (2) K

  • 0.36 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 8864 measured reflections

  • 3216 independent reflections

  • 2657 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 1.08

  • 3216 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1 0.96 2.38 2.963 (3) 119
C15—H15A⋯O1 0.96 2.45 3.046 (2) 120

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]) and PLATON.

Supporting information


Comment top

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We present here the structure of one such thienopyrimidine derivative, the title compound (I), (Fig. 1). Crystal structures of similar compounds have been reported (Cao, 2007; Xu et al., 2005, 2006).

In the molecule of (I), the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The three fused rings of (I) are essentially coplanar, the maximum deviation from the benzo[4,5]thieno[3,2-e]pyrimidinone mean plane being 0.067 (3) Å for atom N2. The dihedral angle between the three fused rings (S1/N1–2/C1–10) and imidazole ring B (N3–4/C11–13) is 72.00 (3)°.

Offset π-π stacking interactions, involving the rings; A (S1/C1/C6—C8), B (C1—C6) and C (N1—N2/C7—C10) are effective in the stabilization of the crystal structure. The adjacent thienophene ring A (S1/C1/C6—C8) and the benzene ring B (C1—C6) at (-x, 1 - y, 2 - z) have a centroid-centroid distance of 3.67 (1) Å The adjacent pyrimidine ring C (N2—N3/C10—C13) and the benzene ring B (C1—C6) at (-x, 1 - y, 2 - z) have a centroid-centroid distance of 3.93 (1) Å

Related literature top

For related literature, see: Chambhare et al. (2003); Ding et al. (2004). For bond- length data, see: Allen et al. (1987). For related structures, see: Cao (2007); Xu et al. (2005, 2006).

Experimental top

The title compound was synthesized according to the literature method (Ding et al., 2004). The product was recrystallized from ethanol/dichloromethane (1:2 v/v) at room temperature to give crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C), allowing for free rotation of the methyl groups.

Structure description top

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We present here the structure of one such thienopyrimidine derivative, the title compound (I), (Fig. 1). Crystal structures of similar compounds have been reported (Cao, 2007; Xu et al., 2005, 2006).

In the molecule of (I), the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The three fused rings of (I) are essentially coplanar, the maximum deviation from the benzo[4,5]thieno[3,2-e]pyrimidinone mean plane being 0.067 (3) Å for atom N2. The dihedral angle between the three fused rings (S1/N1–2/C1–10) and imidazole ring B (N3–4/C11–13) is 72.00 (3)°.

Offset π-π stacking interactions, involving the rings; A (S1/C1/C6—C8), B (C1—C6) and C (N1—N2/C7—C10) are effective in the stabilization of the crystal structure. The adjacent thienophene ring A (S1/C1/C6—C8) and the benzene ring B (C1—C6) at (-x, 1 - y, 2 - z) have a centroid-centroid distance of 3.67 (1) Å The adjacent pyrimidine ring C (N2—N3/C10—C13) and the benzene ring B (C1—C6) at (-x, 1 - y, 2 - z) have a centroid-centroid distance of 3.93 (1) Å

For related literature, see: Chambhare et al. (2003); Ding et al. (2004). For bond- length data, see: Allen et al. (1987). For related structures, see: Cao (2007); Xu et al. (2005, 2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001) and PLATON.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-(1H-Imidazol-1-yl)-3-isopropyl-1-benzothieno[3,2-d]pyrimidin-4(3H)-one top
Crystal data top
C16H14N4OSF(000) = 648
Mr = 310.37Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3860 reflections
a = 15.2759 (16) Åθ = 2.7–28.0°
b = 12.1387 (12) ŵ = 0.23 mm1
c = 8.0172 (8) ÅT = 298 K
β = 97.439 (2)°Block, colorless
V = 1474.1 (3) Å30.36 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2657 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 27.0°, θmin = 2.2°
φ and ω scansh = 1916
8864 measured reflectionsk = 1415
3216 independent reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.01P]
where P = (Fo2 + 2Fc2)/3
3216 reflections(Δ/σ)max = 0.017
201 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H14N4OSV = 1474.1 (3) Å3
Mr = 310.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2759 (16) ŵ = 0.23 mm1
b = 12.1387 (12) ÅT = 298 K
c = 8.0172 (8) Å0.36 × 0.23 × 0.20 mm
β = 97.439 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2657 reflections with I > 2σ(I)
8864 measured reflectionsRint = 0.042
3216 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.08Δρmax = 0.31 e Å3
3216 reflectionsΔρmin = 0.24 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01352 (10)0.41878 (12)0.82291 (18)0.0377 (3)
C20.04456 (11)0.48730 (14)0.7227 (2)0.0477 (4)
H20.02320.54380.66080.057*
C30.13345 (12)0.47032 (16)0.7166 (3)0.0591 (5)
H30.17280.51580.65040.071*
C40.16574 (12)0.38522 (16)0.8090 (3)0.0641 (5)
H40.22640.37500.80290.077*
C50.10994 (12)0.31650 (15)0.9083 (3)0.0567 (5)
H50.13200.26010.96950.068*
C60.01944 (11)0.33330 (12)0.9151 (2)0.0435 (4)
C70.10839 (10)0.41943 (11)0.84835 (18)0.0357 (3)
C80.14306 (10)0.33777 (12)0.95497 (19)0.0404 (4)
C90.23580 (11)0.32519 (13)1.0012 (2)0.0455 (4)
C100.24368 (10)0.47907 (11)0.81241 (18)0.0368 (3)
C110.30832 (14)0.65924 (14)0.7549 (3)0.0616 (5)
H110.28320.69830.83650.074*
C120.34470 (12)0.52387 (15)0.5998 (2)0.0520 (4)
H120.35050.45480.55210.062*
C130.37967 (12)0.61901 (15)0.5549 (2)0.0544 (4)
H130.41490.62610.46920.065*
C140.38228 (10)0.41578 (14)0.9892 (2)0.0459 (4)
H140.40430.47660.92590.055*
C150.39582 (13)0.44994 (16)1.1717 (3)0.0630 (5)
H15A0.36720.39801.23700.095*
H15B0.37100.52181.18270.095*
H15C0.45790.45181.21140.095*
C160.43350 (13)0.31491 (17)0.9501 (3)0.0676 (6)
H16A0.41570.25331.01280.101*
H16B0.49550.32810.98050.101*
H16C0.42200.29910.83190.101*
N10.16018 (8)0.48993 (10)0.77008 (16)0.0375 (3)
N20.28561 (8)0.40583 (10)0.92822 (16)0.0402 (3)
N30.29862 (8)0.54942 (10)0.73057 (16)0.0397 (3)
N40.35659 (12)0.70387 (13)0.6517 (2)0.0699 (5)
O10.27164 (10)0.25478 (10)1.09671 (19)0.0662 (4)
S10.06414 (3)0.25652 (3)1.02987 (6)0.05010 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0434 (8)0.0343 (7)0.0358 (8)0.0020 (6)0.0073 (6)0.0069 (6)
C20.0488 (9)0.0438 (8)0.0502 (10)0.0038 (7)0.0054 (7)0.0002 (7)
C30.0465 (10)0.0589 (11)0.0709 (13)0.0070 (8)0.0035 (9)0.0047 (9)
C40.0433 (10)0.0640 (11)0.0865 (15)0.0031 (9)0.0140 (10)0.0157 (11)
C50.0538 (11)0.0523 (10)0.0672 (12)0.0111 (8)0.0201 (9)0.0072 (9)
C60.0501 (9)0.0383 (7)0.0433 (9)0.0063 (7)0.0112 (7)0.0071 (7)
C70.0438 (8)0.0309 (7)0.0317 (7)0.0031 (6)0.0024 (6)0.0017 (6)
C80.0501 (9)0.0343 (7)0.0359 (8)0.0054 (6)0.0022 (6)0.0029 (6)
C90.0505 (9)0.0401 (8)0.0435 (9)0.0035 (7)0.0021 (7)0.0067 (7)
C100.0447 (8)0.0313 (7)0.0337 (8)0.0021 (6)0.0025 (6)0.0000 (6)
C110.0814 (14)0.0351 (8)0.0741 (13)0.0054 (8)0.0322 (11)0.0024 (8)
C120.0597 (11)0.0528 (10)0.0457 (10)0.0058 (8)0.0147 (8)0.0054 (8)
C130.0521 (10)0.0655 (11)0.0472 (10)0.0090 (9)0.0123 (8)0.0030 (8)
C140.0402 (8)0.0494 (9)0.0459 (9)0.0004 (7)0.0033 (7)0.0003 (7)
C150.0559 (10)0.0709 (12)0.0573 (12)0.0044 (9)0.0118 (9)0.0140 (9)
C160.0576 (11)0.0676 (13)0.0756 (14)0.0157 (9)0.0014 (10)0.0118 (10)
N10.0406 (7)0.0349 (6)0.0363 (7)0.0002 (5)0.0029 (5)0.0040 (5)
N20.0423 (7)0.0381 (6)0.0381 (7)0.0013 (5)0.0030 (5)0.0029 (5)
N30.0409 (7)0.0369 (6)0.0411 (7)0.0022 (5)0.0044 (5)0.0016 (5)
N40.0847 (13)0.0507 (9)0.0801 (12)0.0141 (8)0.0333 (10)0.0046 (8)
O10.0630 (9)0.0585 (8)0.0717 (10)0.0013 (6)0.0118 (7)0.0320 (6)
S10.0584 (3)0.0417 (3)0.0497 (3)0.01108 (17)0.0051 (2)0.01099 (17)
Geometric parameters (Å, º) top
C1—C21.393 (2)C10—N31.4166 (18)
C1—C61.405 (2)C11—N41.296 (2)
C1—C71.437 (2)C11—N31.353 (2)
C2—C31.368 (3)C11—H110.9300
C2—H20.9300C12—C131.341 (2)
C3—C41.397 (3)C12—N31.372 (2)
C3—H30.9300C12—H120.9300
C4—C51.371 (3)C13—N41.363 (2)
C4—H40.9300C13—H130.9300
C5—C61.392 (2)C14—N21.499 (2)
C5—H50.9300C14—C161.508 (2)
C6—S11.7437 (18)C14—C151.509 (3)
C7—C81.370 (2)C14—H140.9800
C7—N11.3713 (18)C15—H15A0.9600
C8—C91.425 (2)C15—H15B0.9600
C8—S11.7247 (15)C15—H15C0.9600
C9—O11.2279 (19)C16—H16A0.9600
C9—N21.4126 (19)C16—H16B0.9600
C10—N11.2835 (19)C16—H16C0.9600
C10—N21.3816 (18)
C2—C1—C6119.98 (14)C13—C12—N3105.79 (15)
C2—C1—C7129.35 (14)C13—C12—H12127.1
C6—C1—C7110.66 (13)N3—C12—H12127.1
C3—C2—C1119.07 (16)C12—C13—N4110.89 (16)
C3—C2—H2120.5C12—C13—H13124.6
C1—C2—H2120.5N4—C13—H13124.6
C2—C3—C4120.61 (18)N2—C14—C16112.49 (14)
C2—C3—H3119.7N2—C14—C15110.11 (14)
C4—C3—H3119.7C16—C14—C15114.53 (15)
C5—C4—C3121.45 (17)N2—C14—H14106.4
C5—C4—H4119.3C16—C14—H14106.4
C3—C4—H4119.3C15—C14—H14106.4
C4—C5—C6118.25 (17)C14—C15—H15A109.5
C4—C5—H5120.9C14—C15—H15B109.5
C6—C5—H5120.9H15A—C15—H15B109.5
C5—C6—C1120.63 (16)C14—C15—H15C109.5
C5—C6—S1126.75 (14)H15A—C15—H15C109.5
C1—C6—S1112.62 (12)H15B—C15—H15C109.5
C8—C7—N1122.53 (14)C14—C16—H16A109.5
C8—C7—C1112.70 (13)C14—C16—H16B109.5
N1—C7—C1124.70 (13)H16A—C16—H16B109.5
C7—C8—C9122.07 (14)C14—C16—H16C109.5
C7—C8—S1113.57 (12)H16A—C16—H16C109.5
C9—C8—S1124.34 (11)H16B—C16—H16C109.5
O1—C9—N2121.34 (15)C10—N1—C7115.30 (12)
O1—C9—C8125.79 (15)C10—N2—C9119.78 (12)
N2—C9—C8112.86 (12)C10—N2—C14121.25 (12)
N1—C10—N2127.02 (13)C9—N2—C14118.78 (12)
N1—C10—N3116.35 (12)C11—N3—C12106.00 (14)
N2—C10—N3116.63 (12)C11—N3—C10125.99 (14)
N4—C11—N3112.37 (17)C12—N3—C10127.67 (13)
N4—C11—H11123.8C11—N4—C13104.96 (15)
N3—C11—H11123.8C8—S1—C690.44 (8)
C6—C1—C2—C30.4 (2)C1—C7—N1—C10178.52 (13)
C7—C1—C2—C3179.29 (16)N1—C10—N2—C96.4 (2)
C1—C2—C3—C40.3 (3)N3—C10—N2—C9173.15 (12)
C2—C3—C4—C50.1 (3)N1—C10—N2—C14168.50 (14)
C3—C4—C5—C60.1 (3)N3—C10—N2—C1411.9 (2)
C4—C5—C6—C10.2 (2)O1—C9—N2—C10175.54 (16)
C4—C5—C6—S1179.33 (14)C8—C9—N2—C105.9 (2)
C2—C1—C6—C50.3 (2)O1—C9—N2—C149.4 (2)
C7—C1—C6—C5179.46 (14)C8—C9—N2—C14169.11 (13)
C2—C1—C6—S1179.26 (12)C16—C14—N2—C10119.77 (17)
C7—C1—C6—S10.14 (15)C15—C14—N2—C10111.16 (16)
C2—C1—C7—C8179.09 (15)C16—C14—N2—C965.26 (19)
C6—C1—C7—C80.07 (17)C15—C14—N2—C963.80 (18)
C2—C1—C7—N11.9 (2)N4—C11—N3—C120.4 (2)
C6—C1—C7—N1177.12 (13)N4—C11—N3—C10174.04 (16)
N1—C7—C8—C94.5 (2)C13—C12—N3—C110.6 (2)
C1—C7—C8—C9178.29 (13)C13—C12—N3—C10174.10 (15)
N1—C7—C8—S1177.29 (11)N1—C10—N3—C1170.9 (2)
C1—C7—C8—S10.03 (17)N2—C10—N3—C11109.48 (18)
C7—C8—C9—O1179.45 (17)N1—C10—N3—C12101.43 (18)
S1—C8—C9—O11.4 (3)N2—C10—N3—C1278.2 (2)
C7—C8—C9—N21.0 (2)N3—C11—N4—C130.0 (2)
S1—C8—C9—N2177.07 (11)C12—C13—N4—C110.4 (2)
N3—C12—C13—N40.6 (2)C7—C8—S1—C60.09 (12)
N2—C10—N1—C70.9 (2)C9—C8—S1—C6178.31 (14)
N3—C10—N1—C7178.70 (12)C5—C6—S1—C8179.44 (16)
C8—C7—N1—C104.6 (2)C1—C6—S1—C80.14 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O10.962.382.963 (3)119
C15—H15A···O10.962.453.046 (2)120

Experimental details

Crystal data
Chemical formulaC16H14N4OS
Mr310.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.2759 (16), 12.1387 (12), 8.0172 (8)
β (°) 97.439 (2)
V3)1474.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.36 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8864, 3216, 2657
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.08
No. of reflections3216
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001) and PLATON.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O10.962.382.963 (3)119
C15—H15A···O10.962.453.046 (2)120
 

Acknowledgements

The author acknowledges the National Basic Research Program of China (grant No. 2004CCA00100) and the National Natural Science Foundation of China (project No. 20102001).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, M.-H. (2007). Acta Cryst. E63, o2660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem. 38, 89–100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, M.-W., Xu, S.-Z. & Zhao, J.-F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, S.-Z., Hu, Y.-G., Liu, M.-G. & Ding, M.-W. (2006). Acta Cryst. E62, o3428–o3429.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds