organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Allyl-1-(3-cyano­phenyl­methyl­ene)-2-methyl-1H-benzoimidazol-3-ium bromide monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: yeqiong@seu.edu.cn

(Received 9 October 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C19H18N3+·Br·H2O, the dihedral angle between the allyl group and the imidazole ring is 89.59 (14)°, while the dihedral angle between the cyanophenyl ring and the imidazole ring is 78.72 (7)°. O—H⋯Br hydrogen bonds form an infinite chain in the c-axis direction and C—H⋯Br and C—H⋯O inter­actions expand this chain into an infinite three-dimensional network.

Related literature

For related literature, see Aakeröy et al. (2005[Aakeröy, C. B., Desper, J. & Urbina, J. F. (2005). Cryst. Growth Des. 5, 1283-1293.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N3+·Br·H2O

  • Mr = 386.29

  • Monoclinic, P 21 /c

  • a = 13.4291 (18) Å

  • b = 15.6490 (17) Å

  • c = 9.0335 (14) Å

  • β = 104.048 (8)°

  • V = 1841.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 293 (2) K

  • 0.22 × 0.15 × 0.08 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.840, Tmax = 1.000 (expected range = 0.702–0.836)

  • 14149 measured reflections

  • 4366 independent reflections

  • 3365 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.08

  • 4366 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯Br1 0.85 2.59 3.375 (2) 155
O1W—H2⋯Br1i 0.85 2.78 3.422 (3) 134
C6—H6A⋯Br1ii 0.93 3.21 3.939 (3) 137
C8—H8A⋯Br1iii 0.96 2.94 3.767 (3) 145
C8—H8C⋯N3iv 0.96 2.64 3.463 (4) 143
C13—H13A⋯O1Wv 0.93 2.50 3.359 (4) 154
C17—H17A⋯Br1vi 0.97 2.89 3.843 (3) 168
C17—H17B⋯Br1iii 0.97 2.91 3.862 (3) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+1, -y, -z; (iv) x, y, z-1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x-1, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Figure 1) was obtained by refluxing 3-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile and allyl bromide in THF. The X-ray diffraction experiment certified the successful synthesis of the title compound. The dihedral angle between the allyl groups and the imidazole ring is 89.59 (14)°, while the dihedral angle between the cyanobenzene ring and the imidazole ring is 78.72 (7)°. The twist of the allyl group (torsion N3—C17—C18=C19) is 5.1 (5)°. The O—H···Br H-bonds form an infinite chain in the c-direction and the C—H···Br and C—H···O interactions expand this chain into an infinite three-dimensional network (Figure 2). The interaction distances and angles are shown in Table.

Related literature top

For related literature, see Aakeröy et al. (2005).

Experimental top

The synthesis of 3-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl) benzonitrile has been reported by Aakeröy, et al. (2005). 2.48 g of this compound was dissolved in 30 ml THF and 3.7 g of allyl bromide (3-bromopropene) was added. The solution was stirred at 323 K for two days, after which a white solid appeared. This solid was filtered off and washed twice by acetone to get 1.90 g product (yield 64.7%). Colorless crystals of the title compound, suitable for X-ray diffraction, were obtained by evaporation of a solution in methanol and water.

Refinement top

H atoms of the crystal water were added at sites suitable for H-bonding. Positional parameters of other H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2 or 1.5 Ueq. The methyl group was refined as a rigid rotor, allowing the group to rotate along the C—C bond.

Structure description top

The title compound (Figure 1) was obtained by refluxing 3-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile and allyl bromide in THF. The X-ray diffraction experiment certified the successful synthesis of the title compound. The dihedral angle between the allyl groups and the imidazole ring is 89.59 (14)°, while the dihedral angle between the cyanobenzene ring and the imidazole ring is 78.72 (7)°. The twist of the allyl group (torsion N3—C17—C18=C19) is 5.1 (5)°. The O—H···Br H-bonds form an infinite chain in the c-direction and the C—H···Br and C—H···O interactions expand this chain into an infinite three-dimensional network (Figure 2). The interaction distances and angles are shown in Table.

For related literature, see Aakeröy et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level
[Figure 2] Fig. 2. View of the crystal packing of the title compound down the a axis.
3-Allyl-1-(3-cyanophenylmethylene)-2-methyl-1H-benzoimidazol-3-ium bromide monohydrate top
Crystal data top
C19H18N3+·Br·H2OF(000) = 792
Mr = 386.29Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4089 reflections
a = 13.4291 (18) Åθ = 3.0–28.3°
b = 15.6490 (17) ŵ = 2.24 mm1
c = 9.0335 (14) ÅT = 293 K
β = 104.048 (8)°Prism, colorless
V = 1841.6 (4) Å30.22 × 0.15 × 0.08 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4366 independent reflections
Radiation source: fine-focus sealed tube3365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω scanh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.840, Tmax = 1.000l = 811
14149 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1803P]
where P = (Fo2 + 2Fc2)/3
4366 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C19H18N3+·Br·H2OV = 1841.6 (4) Å3
Mr = 386.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4291 (18) ŵ = 2.24 mm1
b = 15.6490 (17) ÅT = 293 K
c = 9.0335 (14) Å0.22 × 0.15 × 0.08 mm
β = 104.048 (8)°
Data collection top
Rigaku Mercury2
diffractometer
4366 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3365 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1.000Rint = 0.036
14149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
4366 reflectionsΔρmin = 0.33 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.21740 (14)0.01484 (13)0.0889 (2)0.0399 (4)
N20.13955 (16)0.06050 (14)0.1380 (2)0.0467 (5)
N30.4739 (2)0.12165 (17)0.8335 (3)0.0710 (8)
C130.5074 (2)0.1603 (2)0.4691 (3)0.0578 (7)
H13A0.55440.19900.52460.069*
C160.4615 (2)0.11908 (17)0.7045 (4)0.0553 (7)
C20.08324 (19)0.09107 (16)0.0375 (3)0.0441 (6)
C110.37725 (18)0.05370 (16)0.4585 (3)0.0452 (6)
H11A0.33720.02130.50810.054*
C70.13222 (18)0.06166 (15)0.1066 (3)0.0419 (5)
C90.29401 (19)0.02289 (16)0.2168 (3)0.0441 (6)
H9A0.33300.06600.17790.053*
H9B0.25910.05070.28580.053*
C100.36673 (18)0.04385 (15)0.3033 (3)0.0411 (5)
C60.0942 (2)0.07708 (18)0.2331 (3)0.0513 (6)
H6A0.12670.05660.32930.062*
C10.21926 (18)0.01478 (16)0.0588 (3)0.0432 (6)
C120.4477 (2)0.11203 (16)0.5407 (3)0.0478 (6)
C30.0059 (2)0.13911 (17)0.0624 (4)0.0560 (7)
H3A0.03860.15930.15880.067*
C50.0052 (2)0.12465 (17)0.2082 (4)0.0612 (8)
H5A0.02330.13670.29000.073*
C150.4277 (2)0.09288 (18)0.2320 (3)0.0508 (6)
H15A0.42160.08660.12790.061*
C80.2952 (2)0.0302 (2)0.1243 (3)0.0585 (7)
H8A0.27280.02960.23360.088*
H8B0.30170.08820.08880.088*
H8C0.36040.00200.09310.088*
C140.4973 (2)0.1509 (2)0.3143 (4)0.0612 (8)
H14A0.53740.18360.26520.073*
C40.0434 (2)0.15524 (19)0.0631 (4)0.0624 (8)
H4A0.10290.18750.05150.075*
C170.1160 (2)0.0806 (2)0.3020 (3)0.0597 (8)
H17A0.04220.08520.34010.072*
H17B0.13940.03390.35550.072*
C180.1641 (3)0.1606 (3)0.3359 (4)0.0743 (9)
H18A0.14680.17840.43720.089*
C190.2281 (3)0.2095 (3)0.2405 (5)0.0915 (12)
H19A0.24810.19490.13770.110*
H19B0.25360.25880.27530.110*
O1W0.7083 (2)0.25974 (19)0.2290 (4)0.1174 (12)
H10.71920.22060.29630.176*
H20.75280.25640.17640.176*
Br10.83295 (2)0.126019 (17)0.50549 (3)0.04996 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0344 (10)0.0447 (11)0.0394 (12)0.0014 (8)0.0065 (8)0.0018 (8)
N20.0428 (11)0.0545 (13)0.0395 (12)0.0006 (10)0.0034 (9)0.0039 (9)
N30.0726 (19)0.085 (2)0.0525 (17)0.0022 (14)0.0088 (14)0.0114 (13)
C130.0448 (14)0.0614 (17)0.0614 (19)0.0065 (14)0.0014 (12)0.0066 (14)
C160.0478 (15)0.0593 (17)0.0553 (19)0.0010 (13)0.0058 (13)0.0084 (13)
C20.0380 (13)0.0477 (14)0.0454 (15)0.0015 (11)0.0079 (10)0.0042 (11)
C110.0377 (12)0.0482 (14)0.0495 (15)0.0033 (11)0.0103 (11)0.0050 (11)
C70.0376 (12)0.0418 (13)0.0463 (15)0.0028 (10)0.0103 (10)0.0024 (10)
C90.0400 (12)0.0416 (13)0.0485 (15)0.0012 (10)0.0067 (11)0.0047 (10)
C100.0365 (12)0.0416 (13)0.0434 (14)0.0025 (10)0.0062 (10)0.0033 (10)
C60.0524 (15)0.0555 (16)0.0497 (16)0.0002 (13)0.0194 (12)0.0003 (12)
C10.0359 (12)0.0470 (14)0.0446 (15)0.0051 (11)0.0055 (10)0.0075 (11)
C120.0395 (13)0.0525 (15)0.0476 (16)0.0054 (11)0.0031 (11)0.0011 (11)
C30.0459 (15)0.0548 (17)0.0629 (19)0.0037 (12)0.0045 (13)0.0010 (13)
C50.0600 (18)0.0604 (18)0.072 (2)0.0020 (15)0.0332 (16)0.0074 (14)
C150.0515 (15)0.0549 (15)0.0460 (16)0.0034 (13)0.0116 (12)0.0048 (12)
C80.0503 (15)0.075 (2)0.0502 (17)0.0063 (14)0.0124 (13)0.0138 (14)
C140.0550 (17)0.0614 (17)0.068 (2)0.0157 (15)0.0154 (14)0.0063 (15)
C40.0504 (16)0.0529 (16)0.086 (2)0.0124 (14)0.0196 (15)0.0016 (16)
C170.0580 (17)0.077 (2)0.0386 (16)0.0116 (16)0.0006 (12)0.0045 (13)
C180.084 (2)0.080 (2)0.062 (2)0.016 (2)0.0218 (18)0.0164 (18)
C190.094 (3)0.071 (2)0.118 (3)0.006 (2)0.042 (3)0.021 (2)
O1W0.0692 (16)0.126 (2)0.153 (3)0.0065 (16)0.0181 (17)0.084 (2)
Br10.05534 (19)0.05266 (18)0.04170 (18)0.00159 (12)0.01142 (12)0.00224 (11)
Geometric parameters (Å, º) top
N1—C11.340 (3)C6—H6A0.9300
N1—C71.400 (3)C1—C81.476 (4)
N1—C91.472 (3)C3—C41.371 (4)
N2—C11.341 (3)C3—H3A0.9300
N2—C21.400 (3)C5—C41.399 (5)
N2—C171.471 (3)C5—H5A0.9300
N3—C161.137 (4)C15—C141.383 (4)
C13—C121.372 (4)C15—H15A0.9300
C13—C141.379 (4)C8—H8A0.9600
C13—H13A0.9300C8—H8B0.9600
C16—C121.450 (4)C8—H8C0.9600
C2—C71.387 (4)C14—H14A0.9300
C2—C31.385 (4)C4—H4A0.9300
C11—C101.383 (3)C17—C181.475 (5)
C11—C121.392 (4)C17—H17A0.9700
C11—H11A0.9300C17—H17B0.9700
C7—C61.381 (3)C18—C191.306 (5)
C9—C101.512 (3)C18—H18A0.9300
C9—H9A0.9700C19—H19A0.9300
C9—H9B0.9700C19—H19B0.9300
C10—C151.389 (4)O1W—H10.8499
C6—C51.380 (4)O1W—H20.8502
C1—N1—C7109.1 (2)C11—C12—C16119.8 (3)
C1—N1—C9127.1 (2)C4—C3—C2116.2 (3)
C7—N1—C9123.7 (2)C4—C3—H3A121.9
C1—N2—C2108.8 (2)C2—C3—H3A121.9
C1—N2—C17126.9 (2)C6—C5—C4121.7 (3)
C2—N2—C17124.2 (2)C6—C5—H5A119.1
C12—C13—C14119.6 (3)C4—C5—H5A119.1
C12—C13—H13A120.2C14—C15—C10120.7 (3)
C14—C13—H13A120.2C14—C15—H15A119.6
N3—C16—C12177.5 (3)C10—C15—H15A119.6
C7—C2—C3121.8 (2)C1—C8—H8A109.5
C7—C2—N2106.7 (2)C1—C8—H8B109.5
C3—C2—N2131.5 (2)H8A—C8—H8B109.5
C10—C11—C12120.2 (2)C1—C8—H8C109.5
C10—C11—H11A119.9H8A—C8—H8C109.5
C12—C11—H11A119.9H8B—C8—H8C109.5
C2—C7—C6122.2 (2)C15—C14—C13120.1 (3)
C2—C7—N1106.3 (2)C15—C14—H14A119.9
C6—C7—N1131.5 (2)C13—C14—H14A119.9
N1—C9—C10111.70 (19)C3—C4—C5122.1 (3)
N1—C9—H9A109.3C3—C4—H4A119.0
C10—C9—H9A109.3C5—C4—H4A119.0
N1—C9—H9B109.3N2—C17—C18113.1 (3)
C10—C9—H9B109.3N2—C17—H17A109.0
H9A—C9—H9B107.9C18—C17—H17A109.0
C11—C10—C15118.8 (2)N2—C17—H17B109.0
C11—C10—C9119.7 (2)C18—C17—H17B109.0
C15—C10—C9121.4 (2)H17A—C17—H17B107.8
C7—C6—C5116.0 (3)C19—C18—C17127.6 (3)
C7—C6—H6A122.0C19—C18—H18A116.2
C5—C6—H6A122.0C17—C18—H18A116.2
N2—C1—N1109.0 (2)C18—C19—H19A120.0
N2—C1—C8125.4 (2)C18—C19—H19B120.0
N1—C1—C8125.5 (2)H19A—C19—H19B120.0
C13—C12—C11120.5 (3)H1—O1W—H2109.5
C13—C12—C16119.6 (3)
C1—N2—C2—C70.1 (3)C2—N2—C1—C8178.2 (3)
C17—N2—C2—C7177.1 (2)C17—N2—C1—C85.0 (4)
C1—N2—C2—C3178.3 (3)C7—N1—C1—N20.8 (3)
C17—N2—C2—C34.8 (4)C9—N1—C1—N2175.9 (2)
C3—C2—C7—C61.2 (4)C7—N1—C1—C8177.8 (2)
N2—C2—C7—C6177.2 (2)C9—N1—C1—C85.6 (4)
C3—C2—C7—N1178.9 (2)C14—C13—C12—C110.1 (4)
N2—C2—C7—N10.6 (3)C14—C13—C12—C16177.2 (3)
C1—N1—C7—C20.8 (3)C10—C11—C12—C130.0 (4)
C9—N1—C7—C2175.9 (2)C10—C11—C12—C16177.2 (2)
C1—N1—C7—C6176.6 (3)C7—C2—C3—C40.5 (4)
C9—N1—C7—C66.6 (4)N2—C2—C3—C4177.4 (3)
C1—N1—C9—C1099.8 (3)C7—C6—C5—C40.0 (4)
C7—N1—C9—C1076.3 (3)C11—C10—C15—C140.3 (4)
C12—C11—C10—C150.2 (4)C9—C10—C15—C14177.0 (3)
C12—C11—C10—C9176.8 (2)C10—C15—C14—C130.4 (5)
N1—C9—C10—C11123.7 (2)C12—C13—C14—C150.3 (5)
N1—C9—C10—C1559.7 (3)C2—C3—C4—C50.4 (4)
C2—C7—C6—C50.9 (4)C6—C5—C4—C30.6 (5)
N1—C7—C6—C5178.0 (3)C1—N2—C17—C1889.6 (3)
C2—N2—C1—N10.4 (3)C2—N2—C17—C1886.7 (3)
C17—N2—C1—N1176.5 (2)N2—C17—C18—C195.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···Br10.852.593.375 (2)155
O1W—H2···Br1i0.852.783.422 (3)134
C6—H6A···Br1ii0.933.213.939 (3)137
C8—H8A···Br1iii0.962.943.767 (3)145
C8—H8C···N3iv0.962.643.463 (4)143
C13—H13A···O1Wv0.932.503.359 (4)154
C17—H17A···Br1vi0.972.893.843 (3)168
C17—H17B···Br1iii0.972.913.862 (3)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y+1/2, z+1/2; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC19H18N3+·Br·H2O
Mr386.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.4291 (18), 15.6490 (17), 9.0335 (14)
β (°) 104.048 (8)
V3)1841.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.22 × 0.15 × 0.08
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.840, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14149, 4366, 3365
Rint0.036
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.08
No. of reflections4366
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.33

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···Br10.852.593.375 (2)154.5
O1W—H2···Br1i0.852.783.422 (3)133.5
C6—H6A···Br1ii0.933.213.939 (3)136.8
C8—H8A···Br1iii0.962.943.767 (3)145.3
C8—H8C···N3iv0.962.643.463 (4)143.4
C13—H13A···O1Wv0.932.503.359 (4)153.9
C17—H17A···Br1vi0.972.893.843 (3)168.0
C17—H17B···Br1iii0.972.913.862 (3)166.6
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y+1/2, z+1/2; (vi) x1, y, z1.
 

Acknowledgements

This work was supported by a Start-up Grant from SEU to YQ.

References

First citationAakeröy, C. B., Desper, J. & Urbina, J. F. (2005). Cryst. Growth Des. 5, 1283–1293.  Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds