organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro-4-methyl­phen­yl)-2-(4-fluoro­phen­yl)thia­zolidin-4-one

aJiangsu Key Laboratory of Chemistry of Low-Dimensional Materials, Department of Chemistry, Huaiyin Teachers' College, Huaian 223300, People's Republic of China
*Correspondence e-mail: sunxiaojun100@126.com.cn

(Received 27 October 2007; accepted 8 November 2007; online 6 December 2007)

The title compound, C16H13ClFNOS, possesses potent anti­bacterial activity. The overall mol­ecular conformation is described by the dihedral angles of 43.0 (1)° between the 3-chloro-4-methyl­benzene and thia­zolidinone rings, and 88.8 (5)° between the thia­zolidinone and 4-fluoro­benzene rings. The 3-chloro-4-methyl­benzene ring is disordered over two positions with occupancy factors approximately 3:1.

Related literature

For related literature, see: Tumul Srivastava et al. (2002[Tumul Srivastava, Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619-7624.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClFNOS

  • Mr = 321.78

  • Orthorhombic, P b c a

  • a = 12.265 (3) Å

  • b = 12.994 (3) Å

  • c = 18.192 (4) Å

  • V = 2899.3 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 113 (2) K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation.]) Tmin = 0.937, Tmax = 0.960

  • 34208 measured reflections

  • 3445 independent reflections

  • 2796 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.12

  • 3445 reflections

  • 240 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, Tokyo, Japan.]).

Supporting information


Comment top

In recent years, 4-thiazolidinones are the most extensively investigated class of compounds, which exhibits various biological activities, such as anticancer, antitubercular, antibacterial and herbicidal activities. In view of these properties and in a continuation of our interest in the chemistry of 4-thiazolidinones, we have attempted to synthesize a series of 4-thiazolidinone derivatives, some of which have comparatively high antibacterial activity.The crystal structure determination of the title compound, (I), was undertaken to investigate the relationship between structure and antibacterial activity (Fig. 1). The molecular conformation is described by the dihedral angle between 3-chloro-4-methylbenzene ring and thiazolidinone ring of 43.0 (1)° and the dihedral angle between thiazolidinone ring and 4-fluorobenzene ring of 88.8 (5)°.

Related literature top

For related literature, see: Tumul Srivastava, Haq & Katti (2002).

Experimental top

Compound (I) was synthesized according to the procedure of Tumul Srivastava et al. (2002). A crystal of (I) suitable for X-ray analysis was grown from an ethanol solution by slow evaporation at room temperature.

Refinement top

The 3-chloro-4-methylbenzene ring shows positional disorder. At the final stage of the refinement, the occupancy factors of two possible sites were fixed at 0.737 (2) and 0.263 (2), respectively. H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (aromatic), 0.99 (methylene), 1.00 (methylidyne) and 0.98 Å(methyl), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

In recent years, 4-thiazolidinones are the most extensively investigated class of compounds, which exhibits various biological activities, such as anticancer, antitubercular, antibacterial and herbicidal activities. In view of these properties and in a continuation of our interest in the chemistry of 4-thiazolidinones, we have attempted to synthesize a series of 4-thiazolidinone derivatives, some of which have comparatively high antibacterial activity.The crystal structure determination of the title compound, (I), was undertaken to investigate the relationship between structure and antibacterial activity (Fig. 1). The molecular conformation is described by the dihedral angle between 3-chloro-4-methylbenzene ring and thiazolidinone ring of 43.0 (1)° and the dihedral angle between thiazolidinone ring and 4-fluorobenzene ring of 88.8 (5)°.

For related literature, see: Tumul Srivastava, Haq & Katti (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only the major component of the disorder is shown.
3-(3-Chloro-4-methylphenyl)-2-(4-fluorophenyl)thiazolidin-4-one top
Crystal data top
C16H13ClFNOSDx = 1.474 Mg m3
Mr = 321.78Mo Kα radiation, λ = 0.71070 Å
Orthorhombic, PbcaCell parameters from 6992 reflections
a = 12.265 (3) Åθ = 2.0–27.9°
b = 12.994 (3) ŵ = 0.42 mm1
c = 18.192 (4) ÅT = 113 K
V = 2899.3 (10) Å3Block, colourless
Z = 80.16 × 0.14 × 0.10 mm
F(000) = 1328
Data collection top
Rigaku Saturn
diffractometer
3445 independent reflections
Radiation source: Rotating anode2796 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.056
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.5°
ω scansh = 1615
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1717
Tmin = 0.937, Tmax = 0.960l = 2323
34208 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.3972P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3445 reflectionsΔρmax = 0.38 e Å3
240 parametersΔρmin = 0.76 e Å3
8 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0157 (15)
Crystal data top
C16H13ClFNOSV = 2899.3 (10) Å3
Mr = 321.78Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.265 (3) ŵ = 0.42 mm1
b = 12.994 (3) ÅT = 113 K
c = 18.192 (4) Å0.16 × 0.14 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3445 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2796 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.960Rint = 0.056
34208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0488 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.12Δρmax = 0.38 e Å3
3445 reflectionsΔρmin = 0.76 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.30373 (5)0.52351 (4)0.39652 (3)0.0435 (2)
F10.49210 (13)0.10913 (11)0.54723 (7)0.0612 (4)
O10.09023 (11)0.42265 (11)0.25825 (7)0.0344 (3)
N10.25973 (12)0.37796 (11)0.29988 (7)0.0258 (3)
C10.16844 (15)0.43791 (14)0.29819 (9)0.0265 (4)
C20.17362 (16)0.52700 (14)0.35115 (10)0.0299 (4)
H2A0.11420.52150.38780.036*
H2B0.16500.59280.32430.036*
C30.35104 (15)0.40902 (14)0.34646 (9)0.0262 (4)
H3A0.41400.42870.31450.031*
C40.38717 (14)0.32583 (13)0.39887 (8)0.0226 (4)
C50.31314 (15)0.27742 (14)0.44550 (9)0.0270 (4)
H5A0.23800.29500.44300.032*
C60.34782 (18)0.20378 (14)0.49557 (10)0.0342 (4)
H6A0.29770.17070.52760.041*
C70.45733 (18)0.18018 (15)0.49737 (10)0.0374 (5)
C80.53130 (18)0.22326 (18)0.45151 (10)0.0408 (5)
H8A0.60580.20340.45350.049*
C90.49613 (16)0.29727 (17)0.40134 (10)0.0332 (4)
H9A0.54690.32830.36870.040*
Cl10.10556 (6)0.05302 (5)0.18509 (4)0.0425 (3)0.7369 (16)
C100.2796 (3)0.2928 (2)0.2516 (2)0.0241 (9)0.7369 (16)
C110.3781 (2)0.2805 (2)0.21479 (19)0.0251 (7)0.7369 (16)
H11A0.43540.32870.22200.030*0.7369 (16)
C120.39283 (18)0.19757 (18)0.16753 (13)0.0284 (7)0.7369 (16)
H12A0.46010.18910.14240.034*0.7369 (16)
C130.3091 (2)0.12703 (14)0.15704 (10)0.0273 (7)0.7369 (16)
C140.2106 (2)0.13939 (18)0.19381 (13)0.0285 (7)0.7369 (16)
C150.1959 (2)0.2223 (2)0.24107 (18)0.0259 (7)0.7369 (16)
H15A0.12860.23070.26620.031*0.7369 (16)
C160.3251 (3)0.0370 (2)0.10336 (15)0.0426 (8)0.7369 (16)
H16A0.39880.03980.08270.064*0.7369 (16)
H16B0.27150.04200.06360.064*0.7369 (16)
H16C0.31520.02820.12960.064*0.7369 (16)
Cl1'0.46197 (17)0.13594 (14)0.12449 (10)0.0381 (6)0.2631 (16)
C10'0.2546 (8)0.2828 (6)0.2566 (6)0.023 (2)0.2631 (16)
C11'0.1642 (6)0.2184 (6)0.2549 (5)0.0210 (18)0.2631 (16)
H11B0.10160.23440.28340.025*0.2631 (16)
C12'0.1654 (5)0.1304 (5)0.2114 (4)0.032 (2)0.2631 (16)
H12B0.10360.08640.21020.039*0.2631 (16)
C13'0.2570 (6)0.1070 (4)0.1696 (3)0.0234 (17)0.2631 (16)
C14'0.3474 (5)0.1714 (5)0.1714 (3)0.0197 (16)0.2631 (16)
C15'0.3462 (6)0.2594 (6)0.2149 (5)0.025 (2)0.2631 (16)
H15B0.40800.30340.21610.030*0.2631 (16)
C16'0.2502 (9)0.0116 (6)0.1187 (4)0.0398 (19)0.2631 (16)
H16D0.17960.02240.12560.060*0.2631 (16)
H16E0.30900.03640.13100.060*0.2631 (16)
H16F0.25760.03340.06740.060*0.2631 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0665 (4)0.0283 (3)0.0359 (3)0.0119 (2)0.0239 (2)0.0098 (2)
F10.1027 (12)0.0462 (8)0.0347 (7)0.0305 (8)0.0128 (7)0.0098 (6)
O10.0335 (8)0.0393 (8)0.0304 (7)0.0034 (6)0.0069 (6)0.0027 (6)
N10.0324 (8)0.0268 (8)0.0182 (7)0.0040 (6)0.0049 (6)0.0040 (6)
C10.0331 (10)0.0275 (9)0.0189 (8)0.0015 (7)0.0007 (7)0.0017 (7)
C20.0391 (11)0.0276 (9)0.0231 (9)0.0023 (8)0.0050 (8)0.0024 (7)
C30.0309 (10)0.0275 (9)0.0203 (8)0.0011 (7)0.0025 (7)0.0002 (7)
C40.0276 (9)0.0239 (9)0.0162 (8)0.0001 (7)0.0035 (6)0.0031 (6)
C50.0311 (10)0.0287 (9)0.0214 (8)0.0012 (7)0.0002 (7)0.0020 (7)
C60.0544 (13)0.0268 (10)0.0215 (9)0.0049 (9)0.0008 (8)0.0008 (7)
C70.0608 (13)0.0305 (10)0.0208 (8)0.0152 (9)0.0100 (9)0.0014 (7)
C80.0393 (11)0.0550 (13)0.0282 (10)0.0179 (10)0.0080 (9)0.0035 (9)
C90.0302 (10)0.0452 (12)0.0241 (9)0.0022 (8)0.0018 (7)0.0011 (8)
Cl10.0535 (5)0.0304 (4)0.0437 (4)0.0209 (3)0.0178 (3)0.0066 (3)
C100.032 (2)0.0235 (16)0.0173 (16)0.0010 (13)0.0065 (14)0.0009 (13)
C110.0264 (18)0.0251 (15)0.0238 (14)0.0027 (13)0.0027 (13)0.0022 (11)
C120.0331 (18)0.0302 (16)0.0220 (13)0.0030 (13)0.0025 (13)0.0013 (11)
C130.044 (2)0.0207 (16)0.0173 (13)0.0017 (14)0.0014 (14)0.0039 (11)
C140.036 (2)0.0262 (15)0.0233 (16)0.0052 (15)0.0077 (14)0.0044 (12)
C150.024 (2)0.0317 (15)0.0223 (16)0.0002 (13)0.0019 (13)0.0028 (11)
C160.073 (2)0.0288 (15)0.0263 (14)0.0019 (15)0.0060 (14)0.0073 (11)
Cl1'0.0519 (12)0.0304 (10)0.0321 (10)0.0123 (8)0.0154 (8)0.0041 (7)
C10'0.014 (4)0.037 (6)0.018 (4)0.015 (4)0.003 (3)0.004 (4)
C11'0.020 (4)0.026 (4)0.018 (4)0.006 (3)0.000 (3)0.011 (3)
C12'0.037 (6)0.034 (5)0.026 (4)0.008 (4)0.000 (4)0.008 (3)
C13'0.027 (5)0.021 (4)0.023 (4)0.005 (4)0.004 (4)0.009 (3)
C14'0.023 (5)0.016 (4)0.020 (3)0.000 (3)0.008 (3)0.001 (3)
C15'0.020 (5)0.036 (5)0.018 (4)0.004 (4)0.001 (3)0.009 (3)
C16'0.060 (6)0.032 (4)0.027 (4)0.005 (4)0.014 (4)0.009 (3)
Geometric parameters (Å, º) top
S1—C21.797 (2)C11—C121.3900
S1—C31.8382 (19)C11—H11A0.9500
F1—C71.363 (2)C12—C131.3900
O1—C11.220 (2)C12—H12A0.9500
N1—C11.364 (2)C13—C141.3900
N1—C101.434 (2)C13—C161.537 (3)
N1—C31.461 (2)C14—C151.3900
N1—C10'1.467 (4)C15—H15A0.9500
C1—C21.507 (2)C16—H16A0.9800
C2—H2A0.9900C16—H16B0.9800
C2—H2B0.9900C16—H16C0.9800
C3—C41.508 (2)Cl1'—C14'1.707 (5)
C3—H3A1.0000C10'—C11'1.3900
C4—C91.388 (3)C10'—C15'1.3900
C4—C51.393 (2)C11'—C12'1.3900
C5—C61.388 (3)C11'—H11B0.9500
C5—H5A0.9500C12'—C13'1.3900
C6—C71.378 (3)C12'—H12B0.9500
C6—H6A0.9500C13'—C14'1.3900
C7—C81.354 (3)C13'—C16'1.549 (7)
C8—C91.394 (3)C14'—C15'1.3900
C8—H8A0.9500C15'—H15B0.9500
C9—H9A0.9500C16'—H16D0.9800
Cl1—C141.716 (2)C16'—H16E0.9800
C10—C111.3900C16'—H16F0.9800
C10—C151.3900
C2—S1—C394.20 (8)C12—C11—H11A120.0
C1—N1—C10124.5 (2)C10—C11—H11A120.0
C1—N1—C3118.97 (14)C11—C12—C13120.0
C10—N1—C3116.0 (2)C11—C12—H12A120.0
C1—N1—C10'115.7 (5)C13—C12—H12A120.0
C10—N1—C10'13.6 (4)C12—C13—C14120.0
C3—N1—C10'125.2 (5)C12—C13—C16119.7 (2)
O1—C1—N1124.48 (16)C14—C13—C16120.3 (2)
O1—C1—C2122.60 (16)C15—C14—C13120.0
N1—C1—C2112.92 (15)C15—C14—Cl1117.82 (16)
C1—C2—S1108.15 (13)C13—C14—Cl1122.16 (16)
C1—C2—H2A110.1C14—C15—C10120.0
S1—C2—H2A110.1C14—C15—H15A120.0
C1—C2—H2B110.1C10—C15—H15A120.0
S1—C2—H2B110.1C13—C16—H16A109.5
H2A—C2—H2B108.4C13—C16—H16B109.5
N1—C3—C4113.20 (14)H16A—C16—H16B109.5
N1—C3—S1105.60 (12)C13—C16—H16C109.5
C4—C3—S1111.08 (11)H16A—C16—H16C109.5
N1—C3—H3A108.9H16B—C16—H16C109.5
C4—C3—H3A108.9C11'—C10'—C15'120.0
S1—C3—H3A108.9C11'—C10'—N1123.7 (5)
C9—C4—C5119.17 (16)C15'—C10'—N1116.3 (5)
C9—C4—C3119.69 (16)C10'—C11'—C12'120.0
C5—C4—C3121.14 (16)C10'—C11'—H11B120.0
C6—C5—C4120.75 (18)C12'—C11'—H11B120.0
C6—C5—H5A119.6C11'—C12'—C13'120.0
C4—C5—H5A119.6C11'—C12'—H12B120.0
C7—C6—C5117.89 (18)C13'—C12'—H12B120.0
C7—C6—H6A121.1C12'—C13'—C14'120.0
C5—C6—H6A121.1C12'—C13'—C16'117.3 (6)
C8—C7—F1118.72 (19)C14'—C13'—C16'122.6 (6)
C8—C7—C6123.13 (18)C13'—C14'—C15'120.0
F1—C7—C6118.14 (19)C13'—C14'—Cl1'118.8 (4)
C7—C8—C9118.77 (19)C15'—C14'—Cl1'121.0 (4)
C7—C8—H8A120.6C14'—C15'—C10'120.0
C9—C8—H8A120.6C14'—C15'—H15B120.0
C4—C9—C8120.24 (19)C10'—C15'—H15B120.0
C4—C9—H9A119.9C13'—C16'—H16D109.5
C8—C9—H9A119.9C13'—C16'—H16E109.5
C11—C10—C15120.0H16D—C16'—H16E109.5
C11—C10—N1122.16 (19)C13'—C16'—H16F109.5
C15—C10—N1117.83 (19)H16D—C16'—H16F109.5
C12—C11—C10120.0H16E—C16'—H16F109.5
C10—N1—C1—O14.4 (3)C3—N1—C10—C15141.68 (18)
C3—N1—C1—O1175.57 (17)C10'—N1—C10—C156 (3)
C10'—N1—C1—O17.7 (5)C15—C10—C11—C120.0
C10—N1—C1—C2175.3 (2)N1—C10—C11—C12178.9 (4)
C3—N1—C1—C24.1 (2)C10—C11—C12—C130.0
C10'—N1—C1—C2172.6 (5)C11—C12—C13—C140.0
O1—C1—C2—S1178.03 (15)C11—C12—C13—C16178.6 (2)
N1—C1—C2—S11.69 (19)C12—C13—C14—C150.0
C3—S1—C2—C10.67 (13)C16—C13—C14—C15178.6 (2)
C1—N1—C3—C4126.12 (17)C12—C13—C14—Cl1178.2 (2)
C10—N1—C3—C462.0 (3)C16—C13—C14—Cl13.2 (3)
C10'—N1—C3—C450.3 (5)C13—C14—C15—C100.0
C1—N1—C3—S14.38 (19)Cl1—C14—C15—C10178.24 (19)
C10—N1—C3—S1176.3 (2)C11—C10—C15—C140.0
C10'—N1—C3—S1172.0 (5)N1—C10—C15—C14178.9 (4)
C2—S1—C3—N12.61 (13)C1—N1—C10'—C11'42.6 (8)
C2—S1—C3—C4125.71 (13)C10—N1—C10'—C11'176 (4)
N1—C3—C4—C9127.67 (17)C3—N1—C10'—C11'133.9 (4)
S1—C3—C4—C9113.73 (16)C1—N1—C10'—C15'136.3 (4)
N1—C3—C4—C552.9 (2)C10—N1—C10'—C15'3 (3)
S1—C3—C4—C565.75 (18)C3—N1—C10'—C15'47.2 (8)
C9—C4—C5—C62.0 (3)C15'—C10'—C11'—C12'0.0
C3—C4—C5—C6177.47 (16)N1—C10'—C11'—C12'178.9 (10)
C4—C5—C6—C70.2 (3)C10'—C11'—C12'—C13'0.0
C5—C6—C7—C81.8 (3)C11'—C12'—C13'—C14'0.0
C5—C6—C7—F1178.96 (16)C11'—C12'—C13'—C16'176.3 (7)
F1—C7—C8—C9178.89 (17)C12'—C13'—C14'—C15'0.0
C6—C7—C8—C91.9 (3)C16'—C13'—C14'—C15'176.1 (7)
C5—C4—C9—C81.9 (3)C12'—C13'—C14'—Cl1'175.6 (5)
C3—C4—C9—C8177.55 (17)C16'—C13'—C14'—Cl1'8.4 (7)
C7—C8—C9—C40.0 (3)C13'—C14'—C15'—C10'0.0
C1—N1—C10—C11132.0 (2)Cl1'—C14'—C15'—C10'175.5 (5)
C3—N1—C10—C1139.4 (3)C11'—C10'—C15'—C14'0.0
C10'—N1—C10—C11175 (3)N1—C10'—C15'—C14'179.0 (10)
C1—N1—C10—C1546.9 (3)

Experimental details

Crystal data
Chemical formulaC16H13ClFNOS
Mr321.78
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)12.265 (3), 12.994 (3), 18.192 (4)
V3)2899.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.937, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
34208, 3445, 2796
Rint0.056
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.12
No. of reflections3445
No. of parameters240
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.76

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), CrystalStructure (Rigaku/MSC, 2005).

 

Acknowledgements

This work was supported by Jiangsu Key Laboratory of Chemistry of Low-Dimensional Materials.

References

First citationJacobson, R. (1998). Private communication to the Rigaku Corporation.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTumul Srivastava, Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds