metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(μ-propanoato-κ2O:O′)bis­­[(1,10-phenanthroline-κ2N,N′)(propanoato-κ2O,O′)samarium(III)]

aSchool of Materials and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
*Correspondence e-mail: jxlzfeng@yahoo.com.cn

(Received 9 November 2007; accepted 30 November 2007; online 6 December 2007)

The title complex, [Sm2(C3H5O2)6(C12H8N2)2], is a dinuclear centrosymmetric mol­ecule, in which two crystallographically equivalent Sm atoms, separated by 3.9502 (2) Å, are bridged by four propanoate anions. Each Sm atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxylate O atoms from five propanoate anions, to form a distorted tricapped trigonal prism.

Related literature

For related literature, see: Lu et al. (2000[Lu, W.-Q., Wu, B. & Zheng, X.-M. (2000). J. Chem. Cryst. 30, 777-782.]); Lu, Lu, Wu & Wang (2001[Lu, Y.-Q., Lu, W.-M., Wu, B. & Wang, L.-N. (2001). J. Coord. Chem. 53, 15-23.]); Lu, Wu & Wang (2001[Lu, W.-M., Wu, B. & Wang, L.-N. (2001). Chem. J. Chin. Univ. 22, 535-538.]); Wang et al. (2005[Wang, P., Song, L.-P., Li, Z.-F. & Han, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 469-470.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm2(C3H5O2)6(C12H8N2)2]

  • Mr = 1099.55

  • Monoclinic, P 21 /n

  • a = 9.5740 (2) Å

  • b = 18.3182 (5) Å

  • c = 12.7307 (3) Å

  • β = 107.103 (1)°

  • V = 2133.95 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 290 (2) K

  • 0.25 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.508, Tmax = 0.613

  • 22209 measured reflections

  • 5133 independent reflections

  • 4563 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.065

  • S = 0.96

  • 5133 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Sm1—O1 2.5901 (16)
Sm1—O2 2.5432 (15)
Sm1—O2i 2.3783 (14)
Sm1—O3 2.5078 (19)
Sm1—O4 2.4608 (17)
Sm1—O5 2.4030 (16)
Sm1—O6i 2.4023 (15)
Sm1—N1 2.6528 (19)
Sm1—N2 2.6042 (16)
Sm1⋯Sm1i 3.9502 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.27), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.27), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2004[Bruker (2004). APEX2 (Version 1.27), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the recent years, a series of dimeric [M(phen)(C5H7O2)3]2 (M= La (Lu, Lu, Wu & Wang, 2001; Lu, Wu & Wang, 2001), Tb, Ho (Lu et al., 2000), Dy (Wang et al., 2005), C5H7O2= trans-2,3-dimethylacrylate) analogues have been reported, in which the lanthanide ions form a dinuclear centrosymmetric molecule through the coordination of bridging carboxylato groups. An isostructural complex, [Sm(phen)(C3H5O2)3]2, (I), was obtained after the trans-2,3-dimethylacrylate ligands were replaced by propanoato ligands. Each Sm atom exhibits a distorted tricapped trigonal prism coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxyl oxygen atoms from five propanoato anions (Fig. 1). The carboxylato groups exhibit three different coordination modes: a common bidentate chelating mode, a bidentate bridging mode, and tridentate bridging mode, resulting in a dinuclear centrosymmetric molecule with the Sm1···Sm1i distance of 3.9502 (2) Å. The Sm1—O bond distances vary from 2.3784 (14)Å to 2.5901 (16)Å and the Sm1—N bond length are 2.6042 (16)Å and 2.6528 (19)Å (Table 1) similar to those found in the previously mentioned trans-2,3-dimethylacrylato complexes. The C—O and C—C distances are within the range of 1.242 (3)Å to 1.272 (3)Å and 1.502 (4) Å–1.515 (3) Å, respectively. The dimeric molecules are assembled into two-dimensional sheets parallel to (100) by face-to-face π-π stacking interactions. The phenanthroline rings involved in π-π stacking interactions located at (x, y, z) and (1 - x, 1 - y, 2 - z) are strictly parallel with an interplanar spacing of 3.301 (3)Å [the centroid separation of 4.492 (2) Å and the centroid offset of 3.047 (3) Å] and those located at (x, y, z) and (2 - x, 1 - y, 2 - z) with interplanar spacing of 3.371 (3) Å [the centroid separation of 4.838 (3) Å and the centroid offset of 3.470 (3) Å]. However, there are no direction-specific interactions between adjacent sheets.

Related literature top

For related literature, see: Lu et al. (2000); Lu, Lu, Wu & Wang (2001); Lu, Wu & Wang (2001); Wang et al. (2005).

Experimental top

A solution obtained by dissolving 0.200 g (0.463 mmol) of Sm2O3 in 20 ml (36.5%) HCl was evaporated to dryness. Then 25 ml of CH3OH / H2O (1:1 v/v) was added followed by 0.5 ml of propanoic acid, and 0.25 g (1.261 mmol) phenanthroline with strring. A colourless solution was left for several days and crystals were obtain by slow evaporation at room temperature. Yield of 20% based on the initial Sm2O3.

Refinement top

H atoms attached to C atoms were included at calculated positions and treated as riding atoms, with C–H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl), and with Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq for others.

Structure description top

In the recent years, a series of dimeric [M(phen)(C5H7O2)3]2 (M= La (Lu, Lu, Wu & Wang, 2001; Lu, Wu & Wang, 2001), Tb, Ho (Lu et al., 2000), Dy (Wang et al., 2005), C5H7O2= trans-2,3-dimethylacrylate) analogues have been reported, in which the lanthanide ions form a dinuclear centrosymmetric molecule through the coordination of bridging carboxylato groups. An isostructural complex, [Sm(phen)(C3H5O2)3]2, (I), was obtained after the trans-2,3-dimethylacrylate ligands were replaced by propanoato ligands. Each Sm atom exhibits a distorted tricapped trigonal prism coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxyl oxygen atoms from five propanoato anions (Fig. 1). The carboxylato groups exhibit three different coordination modes: a common bidentate chelating mode, a bidentate bridging mode, and tridentate bridging mode, resulting in a dinuclear centrosymmetric molecule with the Sm1···Sm1i distance of 3.9502 (2) Å. The Sm1—O bond distances vary from 2.3784 (14)Å to 2.5901 (16)Å and the Sm1—N bond length are 2.6042 (16)Å and 2.6528 (19)Å (Table 1) similar to those found in the previously mentioned trans-2,3-dimethylacrylato complexes. The C—O and C—C distances are within the range of 1.242 (3)Å to 1.272 (3)Å and 1.502 (4) Å–1.515 (3) Å, respectively. The dimeric molecules are assembled into two-dimensional sheets parallel to (100) by face-to-face π-π stacking interactions. The phenanthroline rings involved in π-π stacking interactions located at (x, y, z) and (1 - x, 1 - y, 2 - z) are strictly parallel with an interplanar spacing of 3.301 (3)Å [the centroid separation of 4.492 (2) Å and the centroid offset of 3.047 (3) Å] and those located at (x, y, z) and (2 - x, 1 - y, 2 - z) with interplanar spacing of 3.371 (3) Å [the centroid separation of 4.838 (3) Å and the centroid offset of 3.470 (3) Å]. However, there are no direction-specific interactions between adjacent sheets.

For related literature, see: Lu et al. (2000); Lu, Lu, Wu & Wang (2001); Lu, Wu & Wang (2001); Wang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The dinuclear structure of the title compound with the atom numbering scheme showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z.]
Tetrakis(µ-propanoato-κ2O:O')bis[(1,10-phenanthroline- κ2N,N')(propanoato-κ2O,O')samarium(III)] top
Crystal data top
[Sm2(C3H5O2)6(C12H8N2)2]F(000) = 1092
Mr = 1099.55Dx = 1.711 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 198 reflections
a = 9.5740 (2) Åθ = 2.1–26.7°
b = 18.3182 (5) ŵ = 2.79 mm1
c = 12.7307 (3) ÅT = 290 K
β = 107.103 (1)°Cloumn, colourless
V = 2133.95 (9) Å30.25 × 0.21 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5133 independent reflections
Radiation source: fine-focus sealed tube4563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1112
Tmin = 0.508, Tmax = 0.613k = 2422
22209 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.012
5133 reflectionsΔρmax = 1.10 e Å3
275 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00050 (8)
Crystal data top
[Sm2(C3H5O2)6(C12H8N2)2]V = 2133.95 (9) Å3
Mr = 1099.55Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.5740 (2) ŵ = 2.79 mm1
b = 18.3182 (5) ÅT = 290 K
c = 12.7307 (3) Å0.25 × 0.21 × 0.17 mm
β = 107.103 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4563 reflections with I > 2σ(I)
Tmin = 0.508, Tmax = 0.613Rint = 0.030
22209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.96Δρmax = 1.10 e Å3
5133 reflectionsΔρmin = 0.66 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.603212 (11)0.530844 (5)0.651651 (8)0.0277 (6)
C10.8823 (3)0.41499 (14)0.8116 (2)0.0425 (5)
H10.89100.40650.74180.051*
C20.9724 (3)0.37486 (16)0.9002 (2)0.0532 (6)
H21.03710.34000.88870.064*
C30.9625 (3)0.38827 (16)1.0030 (2)0.0523 (7)
H31.02080.36241.06270.063*
C40.8639 (2)0.44146 (14)1.01906 (18)0.0403 (5)
C50.8517 (3)0.45852 (16)1.1256 (2)0.0507 (7)
H50.91140.43491.18720.061*
C60.7545 (3)0.50857 (16)1.13715 (19)0.0490 (6)
H60.74600.51831.20670.059*
C70.6635 (3)0.54731 (14)1.04381 (18)0.0397 (5)
C80.5635 (3)0.60054 (14)1.05310 (19)0.0450 (6)
H80.55340.61231.12160.054*
C90.4809 (3)0.63520 (14)0.96118 (19)0.0456 (6)
H90.41510.67140.96630.055*
C100.4962 (3)0.61560 (13)0.85904 (18)0.0400 (5)
H100.43830.63920.79670.048*
C110.6732 (3)0.53143 (11)0.93823 (18)0.0333 (5)
C120.7774 (3)0.47707 (11)0.92520 (19)0.0336 (5)
C130.4212 (2)0.39864 (12)0.61132 (16)0.0322 (4)
C140.3063 (3)0.33972 (16)0.5805 (2)0.0504 (6)
H14A0.34590.29860.55050.060*
H14B0.22340.35820.52300.060*
C150.2530 (4)0.31277 (19)0.6741 (2)0.0685 (9)
H15A0.33280.29110.72950.103*
H15B0.17750.27710.64710.103*
H15C0.21470.35310.70530.103*
C160.7414 (3)0.66842 (13)0.70839 (18)0.0383 (5)
C170.8162 (3)0.73884 (15)0.7554 (3)0.0549 (6)
H17A0.79350.77620.69900.066*
H17B0.92120.73160.77880.066*
C180.7672 (4)0.76422 (16)0.8528 (3)0.0689 (9)
H18A0.66290.76990.83040.103*
H18B0.81260.81010.87900.103*
H18C0.79510.72860.91060.103*
C190.7591 (2)0.43839 (13)0.47916 (17)0.0352 (4)
C200.8978 (3)0.40185 (17)0.4716 (2)0.0580 (7)
H20A0.95360.43700.44350.070*
H20B0.95610.38840.54510.070*
C210.8744 (4)0.33504 (18)0.4002 (3)0.0666 (8)
H21A0.82270.29890.42880.100*
H21B0.96730.31570.39930.100*
H21C0.81830.34780.32670.100*
N10.7860 (2)0.46400 (9)0.82208 (16)0.0342 (4)
N20.58902 (19)0.56515 (10)0.84676 (13)0.0328 (4)
O10.47819 (18)0.41818 (9)0.70787 (12)0.0412 (4)
O20.45959 (17)0.42819 (8)0.53367 (11)0.0349 (3)
O30.60502 (17)0.66725 (10)0.66879 (13)0.0425 (4)
O40.81734 (19)0.61156 (9)0.71259 (15)0.0451 (4)
O50.76476 (19)0.46719 (8)0.57009 (14)0.0420 (4)
O60.65199 (16)0.43918 (10)0.39479 (12)0.0394 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.0318 (9)0.0357 (10)0.0182 (9)0.0015 (8)0.0047 (7)0.0013 (7)
C10.0376 (13)0.0473 (14)0.0390 (13)0.0044 (10)0.0057 (10)0.0005 (10)
C20.0483 (15)0.0514 (15)0.0538 (16)0.0129 (12)0.0052 (12)0.0059 (12)
C30.0423 (14)0.0595 (17)0.0467 (15)0.0055 (12)0.0008 (12)0.0160 (12)
C40.0334 (12)0.0507 (14)0.0320 (12)0.0082 (11)0.0012 (9)0.0075 (10)
C50.0460 (16)0.0687 (18)0.0288 (13)0.0083 (13)0.0022 (11)0.0131 (11)
C60.0552 (16)0.0669 (17)0.0224 (11)0.0122 (14)0.0071 (11)0.0029 (11)
C70.0441 (14)0.0502 (13)0.0233 (11)0.0129 (11)0.0065 (10)0.0013 (9)
C80.0519 (15)0.0567 (16)0.0301 (12)0.0102 (12)0.0181 (11)0.0074 (10)
C90.0527 (15)0.0512 (15)0.0387 (13)0.0032 (12)0.0215 (11)0.0082 (10)
C100.0445 (13)0.0473 (13)0.0305 (11)0.0021 (11)0.0136 (10)0.0001 (9)
C110.0335 (12)0.0410 (13)0.0240 (11)0.0098 (8)0.0064 (9)0.0003 (7)
C120.0291 (11)0.0397 (13)0.0274 (12)0.0080 (8)0.0022 (9)0.0023 (8)
C130.0329 (11)0.0363 (12)0.0272 (10)0.0033 (9)0.0081 (9)0.0029 (8)
C140.0540 (16)0.0587 (17)0.0367 (13)0.0172 (13)0.0092 (11)0.0020 (11)
C150.076 (2)0.075 (2)0.0565 (18)0.0412 (18)0.0227 (16)0.0012 (15)
C160.0424 (13)0.0419 (13)0.0301 (11)0.0030 (10)0.0102 (10)0.0013 (9)
C170.0544 (16)0.0416 (14)0.0673 (18)0.0076 (12)0.0153 (14)0.0041 (12)
C180.084 (2)0.0476 (17)0.071 (2)0.0055 (16)0.0155 (17)0.0220 (14)
C190.0306 (11)0.0443 (13)0.0306 (11)0.0030 (9)0.0093 (9)0.0034 (9)
C200.0359 (14)0.081 (2)0.0528 (16)0.0165 (13)0.0068 (12)0.0200 (14)
C210.066 (2)0.068 (2)0.070 (2)0.0218 (16)0.0262 (16)0.0120 (15)
N10.0315 (10)0.0411 (11)0.0270 (10)0.0014 (7)0.0031 (8)0.0005 (7)
N20.0341 (10)0.0414 (11)0.0230 (9)0.0014 (8)0.0076 (7)0.0018 (7)
O10.0459 (10)0.0540 (10)0.0222 (7)0.0113 (8)0.0076 (7)0.0010 (6)
O20.0433 (10)0.0396 (9)0.0231 (10)0.0012 (7)0.0066 (6)0.0013 (6)
O30.0418 (10)0.0357 (10)0.0365 (9)0.0029 (7)0.0065 (7)0.0011 (8)
O40.0387 (9)0.0404 (10)0.0526 (11)0.0004 (7)0.0077 (8)0.0032 (7)
O50.0359 (10)0.0584 (12)0.0301 (9)0.0114 (7)0.0068 (7)0.0070 (6)
O60.0314 (8)0.0551 (10)0.0308 (8)0.0058 (8)0.0069 (7)0.0061 (7)
Geometric parameters (Å, º) top
Sm1—O12.5901 (16)C11—N21.355 (3)
Sm1—O22.5432 (15)C11—C121.453 (3)
Sm1—O2i2.3783 (14)C12—N11.361 (3)
Sm1—O32.5078 (19)C13—O11.242 (3)
Sm1—O42.4608 (17)C13—O21.272 (2)
Sm1—O52.4030 (16)C13—C141.508 (3)
Sm1—O6i2.4023 (15)C14—C151.511 (4)
Sm1—N12.6528 (19)C14—H14A0.9700
Sm1—N22.6042 (16)C14—H14B0.9700
Sm1—Sm1i3.9502 (2)C15—H15A0.9600
C1—N11.321 (3)C15—H15B0.9600
C1—C21.409 (4)C15—H15C0.9600
C1—H10.9300C16—O31.254 (3)
C2—C31.362 (4)C16—O41.262 (3)
C2—H20.9300C16—C171.511 (3)
C3—C41.413 (4)C17—C181.521 (4)
C3—H30.9300C17—H17A0.9700
C4—C121.399 (3)C17—H17B0.9700
C4—C51.430 (4)C18—H18A0.9600
C5—C61.345 (4)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—C71.437 (3)C19—O61.248 (3)
C6—H60.9300C19—O51.259 (3)
C7—C81.396 (4)C19—C201.515 (3)
C7—C111.405 (3)C20—C211.502 (4)
C8—C91.361 (4)C20—H20A0.9700
C8—H80.9300C20—H20B0.9700
C9—C101.398 (3)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—N21.323 (3)C21—H21C0.9600
C10—H100.9300
O2i—Sm1—O6i75.03 (5)C8—C9—H9120.4
O2i—Sm1—O574.43 (6)C10—C9—H9120.4
O6i—Sm1—O5137.89 (5)N2—C10—C9123.2 (2)
O2i—Sm1—O493.86 (6)N2—C10—H10118.4
O6i—Sm1—O4129.27 (6)C9—C10—H10118.4
O5—Sm1—O481.11 (6)N2—C11—C7122.5 (2)
O2i—Sm1—O376.42 (5)N2—C11—C12117.99 (19)
O6i—Sm1—O376.95 (6)C7—C11—C12119.5 (2)
O5—Sm1—O3122.16 (6)N1—C12—C4123.6 (2)
O4—Sm1—O352.42 (5)N1—C12—C11118.0 (2)
O2i—Sm1—O273.28 (5)C4—C12—C11118.4 (2)
O6i—Sm1—O271.91 (5)O1—C13—O2120.2 (2)
O5—Sm1—O272.00 (5)O1—C13—C14122.54 (19)
O4—Sm1—O2152.38 (5)O2—C13—C14117.24 (19)
O3—Sm1—O2140.97 (5)C13—C14—C15114.8 (2)
O2i—Sm1—O1121.53 (5)C13—C14—H14A108.6
O6i—Sm1—O174.39 (6)C15—C14—H14A108.6
O5—Sm1—O198.12 (5)C13—C14—H14B108.6
O4—Sm1—O1143.28 (6)C15—C14—H14B108.6
O3—Sm1—O1139.62 (5)H14A—C14—H14B107.6
O2—Sm1—O150.24 (4)C14—C15—H15A109.5
O2i—Sm1—N2143.24 (6)C14—C15—H15B109.5
O6i—Sm1—N281.08 (5)H15A—C15—H15B109.5
O5—Sm1—N2138.59 (6)C14—C15—H15C109.5
O4—Sm1—N280.02 (6)H15A—C15—H15C109.5
O3—Sm1—N271.19 (5)H15B—C15—H15C109.5
O2—Sm1—N2124.81 (5)O3—C16—O4121.4 (2)
O1—Sm1—N276.74 (5)O3—C16—C17119.3 (2)
O2i—Sm1—N1150.52 (6)O4—C16—C17119.2 (2)
O6i—Sm1—N1133.27 (6)C16—C17—C18111.1 (2)
O5—Sm1—N177.04 (6)C16—C17—H17A109.4
O4—Sm1—N174.42 (6)C18—C17—H17A109.4
O3—Sm1—N1113.75 (5)C16—C17—H17B109.4
O2—Sm1—N1104.70 (5)C18—C17—H17B109.4
O1—Sm1—N169.73 (5)H17A—C17—H17B108.0
N2—Sm1—N162.50 (6)C17—C18—H18A109.5
O2i—Sm1—Sm1i38.07 (4)C17—C18—H18B109.5
O6i—Sm1—Sm1i69.18 (4)H18A—C18—H18B109.5
O5—Sm1—Sm1i68.86 (4)C17—C18—H18C109.5
O4—Sm1—Sm1i127.66 (4)H18A—C18—H18C109.5
O3—Sm1—Sm1i111.02 (4)H18B—C18—H18C109.5
O2—Sm1—Sm1i35.21 (3)O6—C19—O5126.0 (2)
O1—Sm1—Sm1i84.44 (3)O6—C19—C20117.7 (2)
N2—Sm1—Sm1i148.20 (4)O5—C19—C20116.3 (2)
N1—Sm1—Sm1i133.44 (4)C21—C20—C19114.9 (2)
N1—C1—C2123.7 (3)C21—C20—H20A108.5
N1—C1—H1118.2C19—C20—H20A108.5
C2—C1—H1118.2C21—C20—H20B108.5
C3—C2—C1118.4 (3)C19—C20—H20B108.5
C3—C2—H2120.8H20A—C20—H20B107.5
C1—C2—H2120.8C20—C21—H21A109.5
C2—C3—C4120.1 (2)C20—C21—H21B109.5
C2—C3—H3119.9H21A—C21—H21B109.5
C4—C3—H3119.9C20—C21—H21C109.5
C12—C4—C3116.8 (2)H21A—C21—H21C109.5
C12—C4—C5121.0 (2)H21B—C21—H21C109.5
C3—C4—C5122.2 (2)C1—N1—C12117.4 (2)
C6—C5—C4120.3 (2)C1—N1—Sm1122.88 (16)
C6—C5—H5119.8C12—N1—Sm1119.68 (14)
C4—C5—H5119.8C10—N2—C11117.88 (18)
C5—C6—C7121.1 (2)C10—N2—Sm1120.43 (14)
C5—C6—H6119.4C11—N2—Sm1121.67 (14)
C7—C6—H6119.4C13—O1—Sm193.45 (12)
C8—C7—C11117.8 (2)C13—O2—Sm1i149.14 (14)
C8—C7—C6122.6 (2)C13—O2—Sm194.89 (12)
C11—C7—C6119.6 (2)Sm1i—O2—Sm1106.72 (5)
C9—C8—C7119.5 (2)C16—O3—Sm191.82 (14)
C9—C8—H8120.2C16—O4—Sm193.81 (14)
C7—C8—H8120.2C19—O5—Sm1137.89 (15)
C8—C9—C10119.1 (2)C19—O6—Sm1i137.17 (14)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sm2(C3H5O2)6(C12H8N2)2]
Mr1099.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)9.5740 (2), 18.3182 (5), 12.7307 (3)
β (°) 107.103 (1)
V3)2133.95 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.25 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.508, 0.613
No. of measured, independent and
observed [I > 2σ(I)] reflections
22209, 5133, 4563
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.065, 0.96
No. of reflections5133
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.66

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004), SHELXTL.

Selected bond lengths (Å) top
Sm1—O12.5901 (16)Sm1—O52.4030 (16)
Sm1—O22.5432 (15)Sm1—O6i2.4023 (15)
Sm1—O2i2.3783 (14)Sm1—N12.6528 (19)
Sm1—O32.5078 (19)Sm1—N22.6042 (16)
Sm1—O42.4608 (17)Sm1—Sm1i3.9502 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by Jiangxi Provincial Natural Science Foundation (grant No. 0620018) and Jiangxi University of Science and Technology Doctoral Foundation (grant No. 2003-1).

References

First citationBruker (2004). APEX2 (Version 1.27), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, Y.-Q., Lu, W.-M., Wu, B. & Wang, L.-N. (2001). J. Coord. Chem. 53, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationLu, W.-M., Wu, B. & Wang, L.-N. (2001). Chem. J. Chin. Univ. 22, 535–538.  CAS Google Scholar
First citationLu, W.-Q., Wu, B. & Zheng, X.-M. (2000). J. Chem. Cryst. 30, 777–782.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationWang, P., Song, L.-P., Li, Z.-F. & Han, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct. 220, 469–470.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds