metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­pyridine-κN1)bis­­(benzoato-κO)cobalt(II)

aInstitute of Coordination Catalysis, Yichun University, Yichun, Jiangxi, 336000, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China, and cSchool of Chemistry and Materials Engineering, Huangshi Institute of Technology, Huangshi, 435003, People's Republic of China
*Correspondence e-mail: zhong_dichang@yahoo.com.cn

(Received 13 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title compound, [Co(C7H5O2)2(C5H6N2)2], the CoII atom is hexa­coordinated by four O atoms from two benzoate anions, and two N atoms from two 2-amino­pyridine mol­ecules, resulting in a distorted octa­hedral geometry. Both benzoate anions act as bidentate ligands and both 2-amino­pyridine mol­ecules are coordinated to the metal through their pyridyl N atoms. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds, C—H⋯π, and ππ stacking inter­actions involving benzoate anions and 2-amino­pyridine mol­ecules.

Related literature

For related literature, see: Benbellat et al. (2006[Benbellat, N., Gavrilenko, K.-S., Gal, Y.-L., Cador, O., Golhen, S., Guoasmia, A., Fabre, J.-M. & Ouahab, L. (2006). Inorg. Chem. 45, 10440-10442.]); Brechin et al. (2000[Brechin, E.-K., Graham, A., Parkin, A., Parsons, S., Seddon, A.-M. & Winpenny, R.-E.-P. (2000). J. Chem. Soc. Dalton Trans. pp. 3242-3252.]); Dirnitrou et al. (1995[Dirnitrou, K., Sun, J.-S., Folting, K. & Christou, G. (1995). Inorg. Chem. 34, 4160-4166.]); Kozlevčar et al. (2001[Kozlevčar, B., Lah, N., Žlindra, D., Leban, I. & šegedin, P. (2001). Acta Chim. Slov. 48, 363-374.]); Zhu, Shao et al. (2003[Zhu, H.-L., Shao, S.-C., Ma, J.-L., Qiu, X.-Y., Sun, L. & Yang, S. (2003). Acta Cryst. E59, m843-m844.]); Zhu, Usman et al. (2003[Zhu, H.-L., Usman, A., Fun, H.-K. & Wang, X.-J. (2003). Acta Cryst. C59, m218-m220.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H5O2)2(C5H6N2)2]

  • Mr = 489.39

  • Monoclinic, P 21 /n

  • a = 9.0230 (9) Å

  • b = 11.3787 (12) Å

  • c = 22.451 (2) Å

  • β = 96.7650 (10)°

  • V = 2288.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 (2) K

  • 0.36 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 0.835

  • 19674 measured reflections

  • 5288 independent reflections

  • 4198 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 5288 reflections

  • 298 parameters

  • 357 restraints

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O4 2.0364 (15)
Co1—N3 2.1033 (16)
Co1—N1 2.1050 (16)
Co1—O1 2.1426 (18)
Co1—O2 2.2340 (17)
Co1—O3 2.4016 (17)
O4—Co1—N3 102.55 (6)
O4—Co1—N1 100.77 (7)
N3—Co1—N1 99.40 (6)
N3—Co1—O1 95.25 (7)
N1—Co1—O1 100.34 (6)
O4—Co1—O2 93.20 (7)
N3—Co1—O2 99.72 (7)
N1—Co1—O2 153.21 (7)
O1—Co1—O2 59.31 (6)
O4—Co1—O3 57.88 (5)
N3—Co1—O3 160.43 (6)
N1—Co1—O3 85.79 (6)
O1—Co1—O3 102.40 (6)
O2—Co1—O3 82.44 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 2.03 2.866 (2) 163
N2—H2B⋯O3i 0.86 2.07 2.891 (2) 158
N4—H4A⋯O4 0.86 1.99 2.810 (2) 160
N4—H4B⋯O2ii 0.86 2.14 2.980 (2) 167
C13—H13⋯Cg1iii 0.93 2.95 3.719 (3) 141
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) −x, 1 − y, −z. Cg1 is the centroid of the N1/C20–C24 ring.

Table 3
ππ Interactions (Å, °)

ππ Contacts CgCg αa βb Cg⋯Plane
Cg(N3→C19)⋯Cg(C2→C7)iv 3.7145 (16) 6.3 16.0 3.535
Cg(C2→C7)⋯Cg(N3→C19)v 3.7145 (16) 6.3 17.9 3.570
Notes: αa = angle between planes of two aromatic rings. βb = angle between CgCg line and normal to the plane of the first aromatic ring. Symmetry codes: (iv) −1 + x, y, z; (v) 1 + x, y, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years the study of crystal structures and properties of cobalt complexes based on carboxyl ligand, owing to their novel geometries and magnetic behaviours, have attracted chemists (Tan et al., 2003; Zheng et al., 2004; Wang et al., 2004; Shi et al., 2004) to explore their use. The structures of the mixed ligand complexes containing benzoate as the most simple aromatic carboxyl compoud with well antibacterial activity and 2-aminopyridine reported by (Kozlevčar et al., 2001; Zhu, Usman et al., 2003; Zhu, Shao et al., 2004). Herein, we report the synthesis and crystal structure of mixed ligands cobalt(II) complex.

The stucture of the title compound (I) is isostructural with the nickel (I) complex (Zhu, Shao et al., 2003) with the CoII atom hexa-coordinated by four O atoms of two benzoato anions, and two independent pyridine N atoms from two 2-aminopyridine molecules in distorted octahedral geometry (Fig. 1). The Co—N bond lengths of 2.1030 (14) Å and 2.1054 (14) Å, the Co—O distances ranging from 2.0363 (13) to 2.4016 (15) Å, are in the normal range. The close carboxylato distances O1—C8 and O2—C8, 1.260 (2) Å and 1.250 (2) Å, O3—C1 and O4—C1, 1.241 (2) Å and 1.274 (2) Å reveal the bidentate benzoato function. The molecules are held together by intramolecular and intermolecular hydrogen bonds, C—H···π and ππ stacking interactions generating three-dimensional supramolecular network.The amide N2 and N4 donate H atoms to the carboxyl O atoms O1and O4 in intramolecular N2—H2A···O1 and N4—H4A···O4 hydrogen bonds. The N2 and N4 also donate H atoms to O2 and O3 to form intermolecular N2—H2B···O2 and N4—H4B···O3 hydrogen bonds. Intermolecular C—H···π interation is pronounced in this crystal structure involving methyl group C13 of the benzoato and the pyridyl rings N1C24, with the distance 2.95 Å between the methyl hydrogen and the centroid of the nearest aromatic ring. In addition, ππ stacking interactions are also observed; the distance between centroids of the pyridyl ring N3C19 and the aromatic ring C2C7 is 3.7145 (16) Å (Table 1, Fig. 2).

Related literature top

For related literature, see: Benbellat et al. (2006); Brechin et al. (2000); Dirnitrou et al. (1995); Kozlevčar et al. (2001); Zhu, Shao et al. (2003); Zhu, Usman et al. (2003).

Experimental top

The reagents available commercially were used without further purification. Co(NO3)2.6H2O (0.5 mmol), benzoate sodium (1 mmol) and 2-aminopyridine (1 mmol) were mixed in solution containing 8 ml of ethanol and 8 ml of water. After stirring 1.5 h, the mixture was placed in 25 ml Teflon-lined reactor and heated at 383 K in an oven for 7 days. The resulting solution was filtered and the filtrate was allowed to stay at ambience temperature. Well shaped purple crystals suitable for X-rays diffraction were obtained after two weeks. Yield: 78%.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H, C—H distances of 0.86 Å, 0.93 Å and with Uiso(H) = 1.2Ueq(C or N).

Structure description top

In recent years the study of crystal structures and properties of cobalt complexes based on carboxyl ligand, owing to their novel geometries and magnetic behaviours, have attracted chemists (Tan et al., 2003; Zheng et al., 2004; Wang et al., 2004; Shi et al., 2004) to explore their use. The structures of the mixed ligand complexes containing benzoate as the most simple aromatic carboxyl compoud with well antibacterial activity and 2-aminopyridine reported by (Kozlevčar et al., 2001; Zhu, Usman et al., 2003; Zhu, Shao et al., 2004). Herein, we report the synthesis and crystal structure of mixed ligands cobalt(II) complex.

The stucture of the title compound (I) is isostructural with the nickel (I) complex (Zhu, Shao et al., 2003) with the CoII atom hexa-coordinated by four O atoms of two benzoato anions, and two independent pyridine N atoms from two 2-aminopyridine molecules in distorted octahedral geometry (Fig. 1). The Co—N bond lengths of 2.1030 (14) Å and 2.1054 (14) Å, the Co—O distances ranging from 2.0363 (13) to 2.4016 (15) Å, are in the normal range. The close carboxylato distances O1—C8 and O2—C8, 1.260 (2) Å and 1.250 (2) Å, O3—C1 and O4—C1, 1.241 (2) Å and 1.274 (2) Å reveal the bidentate benzoato function. The molecules are held together by intramolecular and intermolecular hydrogen bonds, C—H···π and ππ stacking interactions generating three-dimensional supramolecular network.The amide N2 and N4 donate H atoms to the carboxyl O atoms O1and O4 in intramolecular N2—H2A···O1 and N4—H4A···O4 hydrogen bonds. The N2 and N4 also donate H atoms to O2 and O3 to form intermolecular N2—H2B···O2 and N4—H4B···O3 hydrogen bonds. Intermolecular C—H···π interation is pronounced in this crystal structure involving methyl group C13 of the benzoato and the pyridyl rings N1C24, with the distance 2.95 Å between the methyl hydrogen and the centroid of the nearest aromatic ring. In addition, ππ stacking interactions are also observed; the distance between centroids of the pyridyl ring N3C19 and the aromatic ring C2C7 is 3.7145 (16) Å (Table 1, Fig. 2).

For related literature, see: Benbellat et al. (2006); Brechin et al. (2000); Dirnitrou et al. (1995); Kozlevčar et al. (2001); Zhu, Shao et al. (2003); Zhu, Usman et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I) with the 30% probability displacement ellipsoids and the atom-labeling scheme.
[Figure 2] Fig. 2. Three-dimensional supramolecular network constructed by hydrogen bonding (dashed lines) and C—H···π, π-π interactions.
Bis(2-aminopyridine-κN1)bis(benzoato-κO)cobalt(II) top
Crystal data top
[Co(C7H5O2)2(C5H6N2)2]F(000) = 1012
Mr = 489.39Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7256 reflections
a = 9.0230 (9) Åθ = 2.4–27.2°
b = 11.3787 (12) ŵ = 0.79 mm1
c = 22.451 (2) ÅT = 296 K
β = 96.765 (1)°Block, purple
V = 2288.9 (4) Å30.36 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5288 independent reflections
Radiation source: fine-focus sealed tube4198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.770, Tmax = 0.835k = 1414
19674 measured reflectionsl = 2925
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.6259P]
where P = (Fo2 + 2Fc2)/3
5288 reflections(Δ/σ)max = 0.050
298 parametersΔρmax = 0.32 e Å3
357 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Co(C7H5O2)2(C5H6N2)2]V = 2288.9 (4) Å3
Mr = 489.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0230 (9) ŵ = 0.79 mm1
b = 11.3787 (12) ÅT = 296 K
c = 22.451 (2) Å0.36 × 0.28 × 0.22 mm
β = 96.765 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5288 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4198 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.835Rint = 0.027
19674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034357 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
5288 reflectionsΔρmin = 0.27 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.29899 (3)0.42895 (2)0.123207 (11)0.04251 (10)
N10.37446 (18)0.31734 (14)0.05834 (7)0.0434 (4)
N20.3314 (2)0.44408 (15)0.02241 (8)0.0520 (4)
H2A0.27730.48690.00190.062*
H2B0.34390.46400.05840.062*
N30.11106 (18)0.33308 (14)0.14242 (7)0.0429 (4)
N40.2282 (2)0.2407 (2)0.22706 (9)0.0745 (6)
H4A0.31080.27360.22080.089*
H4B0.22540.19490.25740.089*
O10.1750 (2)0.55468 (13)0.06636 (7)0.0651 (5)
O20.2427 (2)0.60479 (15)0.15868 (8)0.0698 (5)
O30.54634 (19)0.51020 (15)0.13357 (6)0.0602 (4)
O40.45109 (17)0.39318 (15)0.19532 (6)0.0566 (4)
C10.5594 (2)0.45573 (18)0.18175 (9)0.0444 (4)
C20.6981 (2)0.4610 (2)0.22510 (10)0.0504 (5)
C30.7083 (3)0.3990 (3)0.27797 (11)0.0690 (7)
H30.62840.35390.28750.083*
C40.8401 (4)0.4045 (3)0.31715 (15)0.0957 (10)
H40.84830.36370.35330.115*
C50.9565 (4)0.4697 (4)0.30237 (19)0.1039 (11)
H51.04460.47160.32840.125*
C60.9476 (3)0.5316 (4)0.2510 (2)0.1015 (11)
H61.02830.57650.24210.122*
C70.8173 (3)0.5283 (3)0.21134 (14)0.0760 (7)
H70.81020.57100.17580.091*
C80.1784 (2)0.62950 (18)0.10788 (10)0.0520 (5)
C90.1044 (2)0.74580 (18)0.09538 (10)0.0499 (5)
C100.1555 (3)0.8438 (2)0.12792 (12)0.0667 (6)
H100.23640.83730.15750.080*
C110.0872 (4)0.9512 (2)0.11675 (15)0.0842 (8)
H110.12361.01730.13810.101*
C120.0346 (4)0.9607 (3)0.07410 (16)0.0886 (9)
H120.08131.03310.06700.106*
C130.0872 (4)0.8644 (3)0.04219 (15)0.0880 (8)
H130.17060.87090.01380.106*
C140.0171 (3)0.7572 (2)0.05190 (12)0.0696 (7)
H140.05150.69230.02920.084*
C150.0147 (2)0.3464 (2)0.10357 (10)0.0529 (5)
H150.01060.39560.07070.063*
C160.1465 (3)0.2924 (2)0.10970 (12)0.0634 (6)
H160.22950.30330.08150.076*
C170.1537 (3)0.2207 (2)0.15906 (12)0.0643 (6)
H170.24260.18340.16480.077*
C180.0309 (3)0.2052 (2)0.19887 (11)0.0594 (6)
H180.03530.15780.23240.071*
C190.1036 (2)0.26105 (18)0.18948 (9)0.0479 (5)
C200.3961 (2)0.34636 (17)0.00178 (8)0.0426 (4)
C210.4848 (3)0.27532 (19)0.03144 (10)0.0532 (5)
H210.50280.29800.06970.064*
C220.5438 (3)0.1739 (2)0.00744 (11)0.0610 (6)
H220.60250.12680.02910.073*
C230.5157 (3)0.1407 (2)0.05002 (11)0.0614 (6)
H230.55250.07040.06690.074*
C240.4331 (3)0.21426 (19)0.08048 (10)0.0548 (5)
H240.41560.19260.11900.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04193 (16)0.05067 (17)0.03496 (15)0.00377 (11)0.00463 (10)0.00284 (11)
N10.0453 (9)0.0461 (9)0.0388 (8)0.0058 (7)0.0051 (7)0.0010 (7)
N20.0644 (11)0.0542 (10)0.0393 (9)0.0026 (8)0.0141 (8)0.0041 (7)
N30.0430 (9)0.0459 (9)0.0404 (8)0.0037 (7)0.0080 (7)0.0016 (7)
N40.0630 (13)0.0910 (16)0.0676 (13)0.0130 (11)0.0000 (10)0.0383 (12)
O10.0964 (13)0.0450 (8)0.0594 (10)0.0035 (8)0.0324 (9)0.0087 (7)
O20.0713 (11)0.0598 (10)0.0745 (11)0.0096 (8)0.0071 (9)0.0133 (9)
O30.0701 (10)0.0665 (10)0.0455 (8)0.0001 (8)0.0132 (7)0.0081 (7)
O40.0462 (8)0.0740 (10)0.0483 (8)0.0136 (7)0.0003 (6)0.0080 (7)
C10.0448 (11)0.0493 (10)0.0399 (10)0.0008 (8)0.0088 (8)0.0041 (8)
C20.0403 (10)0.0578 (12)0.0537 (12)0.0024 (9)0.0082 (9)0.0181 (10)
C30.0601 (14)0.0847 (16)0.0591 (14)0.0156 (12)0.0058 (11)0.0075 (12)
C40.083 (2)0.119 (2)0.0781 (18)0.0320 (18)0.0214 (16)0.0218 (17)
C50.0558 (17)0.136 (3)0.113 (2)0.0282 (18)0.0207 (17)0.062 (2)
C60.0519 (15)0.125 (2)0.128 (3)0.0153 (16)0.0137 (17)0.060 (2)
C70.0550 (14)0.0890 (17)0.0862 (17)0.0142 (13)0.0174 (13)0.0327 (15)
C80.0520 (12)0.0452 (11)0.0625 (13)0.0078 (9)0.0225 (10)0.0096 (10)
C90.0507 (12)0.0462 (10)0.0556 (12)0.0041 (9)0.0179 (9)0.0073 (9)
C100.0746 (16)0.0515 (12)0.0732 (15)0.0025 (11)0.0052 (12)0.0129 (11)
C110.108 (2)0.0492 (13)0.097 (2)0.0020 (14)0.0172 (18)0.0177 (13)
C120.098 (2)0.0639 (16)0.106 (2)0.0221 (15)0.0193 (18)0.0063 (16)
C130.0807 (19)0.0802 (19)0.100 (2)0.0087 (15)0.0046 (16)0.0101 (16)
C140.0707 (16)0.0606 (14)0.0754 (16)0.0063 (12)0.0003 (13)0.0067 (12)
C150.0504 (12)0.0540 (12)0.0530 (12)0.0063 (9)0.0013 (9)0.0007 (10)
C160.0467 (12)0.0608 (13)0.0809 (16)0.0081 (10)0.0001 (11)0.0041 (12)
C170.0498 (13)0.0555 (13)0.0900 (17)0.0121 (10)0.0191 (12)0.0067 (12)
C180.0655 (14)0.0483 (11)0.0686 (14)0.0083 (10)0.0257 (12)0.0039 (10)
C190.0511 (11)0.0451 (10)0.0495 (11)0.0017 (9)0.0146 (9)0.0001 (9)
C200.0412 (10)0.0454 (10)0.0412 (9)0.0104 (8)0.0050 (8)0.0040 (8)
C210.0579 (13)0.0544 (12)0.0493 (11)0.0079 (10)0.0151 (9)0.0079 (9)
C220.0602 (14)0.0558 (13)0.0685 (14)0.0024 (10)0.0141 (11)0.0156 (11)
C230.0654 (14)0.0489 (12)0.0683 (14)0.0016 (10)0.0015 (11)0.0004 (11)
C240.0614 (13)0.0525 (12)0.0503 (12)0.0043 (10)0.0058 (10)0.0039 (10)
Geometric parameters (Å, º) top
Co1—O42.0364 (15)C6—H60.9300
Co1—N32.1033 (16)C7—H70.9300
Co1—N12.1050 (16)C8—C91.494 (3)
Co1—O12.1426 (18)C9—C101.383 (3)
Co1—O22.2340 (17)C9—C141.386 (3)
Co1—O32.4016 (17)C10—C111.378 (4)
N1—C201.348 (2)C10—H100.9300
N1—C241.357 (3)C11—C121.374 (4)
N2—C201.341 (3)C11—H110.9300
N2—H2A0.8600C12—C131.364 (5)
N2—H2B0.8600C12—H120.9300
N3—C191.345 (3)C13—C141.379 (4)
N3—C151.356 (3)C13—H130.9300
N4—C191.344 (3)C14—H140.9300
N4—H4A0.8600C15—C161.360 (3)
N4—H4B0.8600C15—H150.9300
O1—C81.260 (3)C16—C171.384 (4)
O2—C81.249 (3)C16—H160.9300
O3—C11.240 (2)C17—C181.350 (4)
O4—C11.274 (2)C17—H170.9300
C1—C21.493 (3)C18—C191.408 (3)
C2—C31.375 (3)C18—H180.9300
C2—C71.385 (3)C20—C211.411 (3)
C3—C41.395 (4)C21—C221.355 (3)
C3—H30.9300C21—H210.9300
C4—C51.359 (6)C22—C231.396 (3)
C4—H40.9300C22—H220.9300
C5—C61.345 (5)C23—C241.358 (3)
C5—H50.9300C23—H230.9300
C6—C71.389 (4)C24—H240.9300
O4—Co1—N3102.55 (6)O2—C8—O1119.5 (2)
O4—Co1—N1100.77 (7)O2—C8—C9121.34 (19)
N3—Co1—N199.40 (6)O1—C8—C9119.2 (2)
O4—Co1—O1149.63 (7)C10—C9—C14118.9 (2)
N3—Co1—O195.25 (7)C10—C9—C8120.1 (2)
N1—Co1—O1100.34 (6)C14—C9—C8121.0 (2)
O4—Co1—O293.20 (7)C11—C10—C9120.3 (3)
N3—Co1—O299.72 (7)C11—C10—H10119.8
N1—Co1—O2153.21 (7)C9—C10—H10119.8
O1—Co1—O259.31 (6)C12—C11—C10120.1 (3)
O4—Co1—O357.88 (5)C12—C11—H11120.0
N3—Co1—O3160.43 (6)C10—C11—H11120.0
N1—Co1—O385.79 (6)C13—C12—C11120.2 (3)
O1—Co1—O3102.40 (6)C13—C12—H12119.9
O2—Co1—O382.44 (6)C11—C12—H12119.9
C20—N1—C24117.60 (18)C12—C13—C14120.2 (3)
C20—N1—Co1126.75 (13)C12—C13—H13119.9
C24—N1—Co1114.33 (13)C14—C13—H13119.9
C20—N2—H2A120.0C13—C14—C9120.3 (3)
C20—N2—H2B120.0C13—C14—H14119.8
H2A—N2—H2B120.0C9—C14—H14119.8
C19—N3—C15117.26 (17)N3—C15—C16124.0 (2)
C19—N3—Co1126.38 (14)N3—C15—H15118.0
C15—N3—Co1116.35 (13)C16—C15—H15118.0
C19—N4—H4A120.0C15—C16—C17118.2 (2)
C19—N4—H4B120.0C15—C16—H16120.9
H4A—N4—H4B120.0C17—C16—H16120.9
C8—O1—Co192.57 (15)C18—C17—C16119.7 (2)
C8—O2—Co188.66 (13)C18—C17—H17120.2
C1—O3—Co183.32 (13)C16—C17—H17120.2
C1—O4—Co199.33 (12)C17—C18—C19119.8 (2)
O3—C1—O4119.41 (19)C17—C18—H18120.1
O3—C1—C2122.31 (19)C19—C18—H18120.1
O4—C1—C2118.28 (18)N4—C19—N3118.84 (18)
C3—C2—C7120.1 (2)N4—C19—C18120.1 (2)
C3—C2—C1120.5 (2)N3—C19—C18121.1 (2)
C7—C2—C1119.4 (2)N2—C20—N1118.69 (18)
C2—C3—C4119.1 (3)N2—C20—C21120.54 (18)
C2—C3—H3120.4N1—C20—C21120.77 (19)
C4—C3—H3120.4C22—C21—C20119.9 (2)
C5—C4—C3119.8 (4)C22—C21—H21120.1
C5—C4—H4120.1C20—C21—H21120.1
C3—C4—H4120.1C21—C22—C23119.5 (2)
C4—C5—C6121.7 (3)C21—C22—H22120.3
C4—C5—H5119.1C23—C22—H22120.3
C6—C5—H5119.2C24—C23—C22118.0 (2)
C5—C6—C7119.7 (3)C24—C23—H23121.0
C5—C6—H6120.1C22—C23—H23121.0
C7—C6—H6120.1C23—C24—N1124.2 (2)
C2—C7—C6119.5 (3)C23—C24—H24117.9
C2—C7—H7120.2N1—C24—H24117.9
C6—C7—H7120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.032.866 (2)163
N2—H2B···O3i0.862.072.891 (2)158
N4—H4A···O40.861.992.810 (2)160
N4—H4B···O2ii0.862.142.980 (2)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H5O2)2(C5H6N2)2]
Mr489.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.0230 (9), 11.3787 (12), 22.451 (2)
β (°) 96.765 (1)
V3)2288.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.36 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.770, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
19674, 5288, 4198
Rint0.027
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections5288
No. of parameters298
No. of restraints357
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Co1—O42.0364 (15)Co1—O32.4016 (17)
Co1—N32.1033 (16)O1—C81.260 (3)
Co1—N12.1050 (16)O2—C81.249 (3)
Co1—O12.1426 (18)O3—C11.240 (2)
Co1—O22.2340 (17)O4—C11.274 (2)
O4—Co1—N3102.55 (6)N1—Co1—O2153.21 (7)
O4—Co1—N1100.77 (7)O1—Co1—O259.31 (6)
N3—Co1—N199.40 (6)O4—Co1—O357.88 (5)
N3—Co1—O195.25 (7)N3—Co1—O3160.43 (6)
N1—Co1—O1100.34 (6)N1—Co1—O385.79 (6)
O4—Co1—O293.20 (7)O1—Co1—O3102.40 (6)
N3—Co1—O299.72 (7)O2—Co1—O382.44 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.032.866 (2)163
N2—H2B···O3i0.862.072.891 (2)158
N4—H4A···O40.861.992.810 (2)160
N4—H4B···O2ii0.862.142.980 (2)167
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2.
C-H···π interactions (Å, °) top
C—H···CgaH···CgC···CgγbC—H···Cg
C13—H13···Cg(N1C24)iii2.953.719 (3)6.07141
Notes: Cga = centre of gravity of the six-membered ring. γb = angle defined by a line connecting centre of gravity of the six-membered ring with H atom and the normal to the six-membered ring. Symmetry code: (iii) -x, 1 - y, -z.
ππ interactions (Å, °) top
ππ contactsCg···Cgαa(βbCg···Plane
Cg(N3C19)···Cg(C2C7)iv3.7145 (16)6.3016.023.535
Cg(C2C7)···Cg(N3C19)v3.7145 (16)6.3017.873.570
Notes: αa = angle between planes of two aromatic rings. βb = angle between Cg···Cg line and normal to the plane of the first aromatic ring. Symmetry codes: (iv) -1 + x, y, z; (v) 1 + x, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 20361002 and 30460153), 973 Plan of China (2007CB516805).

References

First citationBenbellat, N., Gavrilenko, K.-S., Gal, Y.-L., Cador, O., Golhen, S., Guoasmia, A., Fabre, J.-M. & Ouahab, L. (2006). Inorg. Chem. 45, 10440–10442.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrechin, E.-K., Graham, A., Parkin, A., Parsons, S., Seddon, A.-M. & Winpenny, R.-E.-P. (2000). J. Chem. Soc. Dalton Trans. pp. 3242–3252.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDirnitrou, K., Sun, J.-S., Folting, K. & Christou, G. (1995). Inorg. Chem. 34, 4160–4166.  Google Scholar
First citationKozlevčar, B., Lah, N., Žlindra, D., Leban, I. & šegedin, P. (2001). Acta Chim. Slov. 48, 363–374.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhu, H.-L., Shao, S.-C., Ma, J.-L., Qiu, X.-Y., Sun, L. & Yang, S. (2003). Acta Cryst. E59, m843–m844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Usman, A., Fun, H.-K. & Wang, X.-J. (2003). Acta Cryst. C59, m218–m220.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds