metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-4-amino-3,5-bis­­(hy­droxy­meth­yl)-1,2,4-triazole]bis­{bis­­[4-amino-3,5-bis­­(hy­droxy­meth­yl)-1,2,4-triazole]nickel(II)} tetra­nitrate methanol disolvate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: dougroup@163.com

(Received 13 November 2007; accepted 28 November 2007; online 6 December 2007)

The title complex, [Ni2(C4H8N4O2)6](NO3)4·2CH4O, contains a centrosymmetric binuclear nickel(II) complex bridged by a pair of 4-amino-3,5-bis­(hydroxy­meth­yl)-1,2,4-triazole ligands. The separation between the NiII atoms is 3.962 (1) Å. The Ni atoms are in a slightly distorted octa­hedral coordination. Inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds connect the ligands, solvent mol­ecules and nitrate ions.

Related literature

For the synthesis of the ligand see: Adamek (1960[Adamek, M. (1960). Collect. Czech Chem. Commun. 25, 1694-1697.]). For related literature, see: Feiters (1990[Feiters, M. C. (1990). Comments Inorg. Chem. 11, 131-174.]); Vrevgdenhil et al. (1987[Vrevgdenhil, W., Haasnoot, J. G. & Reedijk, J. (1987). Inorg. Chim. Acta, 129, 205-216.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C4H8N4O2)6](NO3)4·2CH4O

  • Mr = 1294.41

  • Monoclinic, P 21 /n

  • a = 12.5126 (17) Å

  • b = 13.2808 (18) Å

  • c = 16.153 (2) Å

  • β = 92.699 (2)°

  • V = 2681.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 298 (2) K

  • 0.21 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.848, Tmax = 0.902

  • 12772 measured reflections

  • 4719 independent reflections

  • 2751 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.188

  • S = 0.91

  • 4719 reflections

  • 366 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N9 2.037 (4)
Ni1—N1 2.055 (4)
Ni1—N5 2.068 (4)
Ni1—N6i 2.073 (5)
Ni1—O5 2.119 (4)
Ni1—O3 2.136 (4)
N9—Ni1—N1 104.95 (18)
N9—Ni1—N5 156.10 (19)
N1—Ni1—N5 92.46 (17)
N9—Ni1—N6i 93.72 (17)
N1—Ni1—N6i 91.35 (18)
N5—Ni1—N6i 102.25 (17)
N9—Ni1—O5 77.02 (17)
N1—Ni1—O5 177.81 (17)
N5—Ni1—O5 85.92 (15)
N6i—Ni1—O5 87.57 (16)
N9—Ni1—O3 85.24 (16)
N1—Ni1—O3 90.46 (16)
N5—Ni1—O3 78.26 (16)
N6i—Ni1—O3 178.09 (16)
O5—Ni1—O3 90.64 (15)
Symmetry code: (i) -x+2, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O8ii 0.86 2.29 3.094 (8) 156
N8—H8A⋯O6iii 0.86 2.51 3.066 (9) 123
N8—H8B⋯O13iii 0.86 2.54 3.186 (8) 132
N12—H12B⋯O11iv 0.86 2.25 3.027 (9) 151
O2—H2⋯O12v 0.82 2.36 2.926 (10) 127
O2—H2⋯O5i 0.82 2.40 3.045 (6) 136
O4—H4⋯O9vi 0.82 1.90 2.702 (9) 166
O5—H5⋯N2i 0.82 2.00 2.817 (6) 172
O13—H13⋯O1iii 0.82 2.07 2.834 (7) 155
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) x+1, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bridging systems based on the 1,2,4,-triazole ring are interesting due to their similarity to 1,3-imidazolate found in superoxide dismutase (Feiters, 1990). So far some polynuclear nicker(II)co-ordination compounds have been descrided with the ligand H2ahmt [4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole], such as Ni4(NCS)4(Hahmt)4(H2O)4, Ni8(NCS)8(ahmt)(Hahmt)6(H2ahmt)4(H2O)12 (Vrevgdenhil et al., 1987). As an extension of this work on the structural characterization of 4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole derivatives, we have synthesized the title compound (I) and determined its crystal structure. The binuclear complex has a centre of symmetry and two Ni atoms are surrounded by four H2ahmt ligands (Fig. 1, Table1). There are three distinctive coordination modes of H2ahmt to the metal: a) the ligand acts as a tridentate ligand through the hydroxymethyl O atom and a bridging µ-N(5) andµ-N(6) coordination mode between two Ni atoms, b) as a monodentate ligand, and c) as a bidentate ligand. The finite hydrogen-bonded assembly (Fig. 2, Table 2) displays hydrogen bonds N—H···O, O—H···O and O—H···N connecting complex cations, anions, and solvent molecules.

Related literature top

For the synthesis of the ligand see: Adamek (1960) For related literature, see: Feiters (1990); Vrevgdenhil et al. (1987).

Experimental top

NiCl2-6H2O, 4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole, and ammonia were reacted in 1:2:2 molar ratio in the mixed solution of CH3OH and H2O (in vol. ratio 2:1) under solvothermal condition at 423 K. After heating the solution for five days and cooling down to room temperature crystals were obtained.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.96(pyridine), C—H 0.97 (methylene) Å [Uiso(H) = 1.2Ueq(C)],N—H 0.86 (amino)Å [Uiso(H) = 1.2Ueq(N)], and O—H 0.82 Å (hydroxyl) [Uiso(H) = 1.5Ueq(O)]

Structure description top

Bridging systems based on the 1,2,4,-triazole ring are interesting due to their similarity to 1,3-imidazolate found in superoxide dismutase (Feiters, 1990). So far some polynuclear nicker(II)co-ordination compounds have been descrided with the ligand H2ahmt [4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole], such as Ni4(NCS)4(Hahmt)4(H2O)4, Ni8(NCS)8(ahmt)(Hahmt)6(H2ahmt)4(H2O)12 (Vrevgdenhil et al., 1987). As an extension of this work on the structural characterization of 4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole derivatives, we have synthesized the title compound (I) and determined its crystal structure. The binuclear complex has a centre of symmetry and two Ni atoms are surrounded by four H2ahmt ligands (Fig. 1, Table1). There are three distinctive coordination modes of H2ahmt to the metal: a) the ligand acts as a tridentate ligand through the hydroxymethyl O atom and a bridging µ-N(5) andµ-N(6) coordination mode between two Ni atoms, b) as a monodentate ligand, and c) as a bidentate ligand. The finite hydrogen-bonded assembly (Fig. 2, Table 2) displays hydrogen bonds N—H···O, O—H···O and O—H···N connecting complex cations, anions, and solvent molecules.

For the synthesis of the ligand see: Adamek (1960) For related literature, see: Feiters (1990); Vrevgdenhil et al. (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing with hydrogen bonds shown as dashed lines.
Bis[µ-4-amino-3,5-bis(hydroxymethyl)-1,2,4-triazole]bis{bis[4-amino-3,5- bis(hydroxymethyl)-1,2,4-triazole]nickel(II)} tetranitrate methanol disolvate top
Crystal data top
[Ni2(C4H8N4O2)6](NO3)4·2CH4OF(000) = 1344
Mr = 1294.41Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2129 reflections
a = 12.5126 (17) Åθ = 2.5–25.2°
b = 13.2808 (18) ŵ = 0.81 mm1
c = 16.153 (2) ÅT = 298 K
β = 92.699 (2)°Block, green
V = 2681.3 (7) Å30.21 × 0.18 × 0.13 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
4719 independent reflections
Radiation source: fine-focus sealed tube2751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.848, Tmax = 0.902k = 1515
12772 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.1128P)2]
where P = (Fo2 + 2Fc2)/3
4719 reflections(Δ/σ)max = 0.001
366 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Ni2(C4H8N4O2)6](NO3)4·2CH4OV = 2681.3 (7) Å3
Mr = 1294.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.5126 (17) ŵ = 0.81 mm1
b = 13.2808 (18) ÅT = 298 K
c = 16.153 (2) Å0.21 × 0.18 × 0.13 mm
β = 92.699 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2751 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.902Rint = 0.063
12772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 0.91Δρmax = 1.19 e Å3
4719 reflectionsΔρmin = 1.04 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.90189 (5)0.09542 (5)0.94051 (4)0.0325 (2)
N11.0196 (3)0.1751 (3)0.8847 (3)0.0367 (11)
N21.1256 (4)0.1555 (3)0.9116 (3)0.0395 (11)
N31.1235 (4)0.2706 (4)0.8165 (3)0.0435 (12)
N41.1555 (4)0.3392 (5)0.7575 (4)0.0728 (19)
H4A1.10850.36770.72470.087*
H4B1.22220.35310.75380.087*
N50.9656 (3)0.0413 (3)0.9065 (3)0.0337 (10)
N61.0247 (4)0.1188 (3)0.9433 (3)0.0358 (11)
N70.9660 (4)0.1658 (3)0.8205 (3)0.0421 (12)
N80.9454 (5)0.2235 (4)0.7493 (3)0.0707 (18)
H8A0.90700.19910.70850.085*
H8B0.97110.28330.74620.085*
N90.7838 (4)0.1977 (3)0.9584 (3)0.0390 (11)
N100.7583 (4)0.2951 (3)0.9320 (3)0.0411 (12)
N110.6360 (4)0.2398 (4)1.0129 (3)0.0426 (12)
N120.5476 (4)0.2333 (4)1.0626 (3)0.0584 (16)
H12A0.53790.18001.09160.070*
H12B0.50300.28241.06410.070*
N130.3441 (8)0.5295 (7)0.7903 (6)0.1035 (16)
N140.7629 (7)0.1956 (8)0.6076 (6)0.098 (3)
O10.8962 (4)0.3815 (3)0.8150 (3)0.0641 (13)
H10.85930.37130.85470.096*
O21.3471 (4)0.1683 (4)0.9440 (3)0.0683 (14)
H21.29910.14900.97300.103*
O30.8214 (3)0.0701 (3)0.8228 (2)0.0417 (10)
H30.75700.06210.82740.062*
O41.1786 (4)0.2835 (4)0.8582 (3)0.0828 (17)
H41.19770.33930.84300.124*
O50.7851 (3)0.0094 (3)0.9998 (2)0.0406 (9)
H50.80480.04021.02670.061*
O60.5163 (5)0.3947 (4)0.9096 (4)0.1035 (16)
H60.50030.44320.88010.155*
O70.4045 (6)0.5941 (5)0.8164 (5)0.125 (3)
O80.3724 (5)0.4514 (5)0.7620 (5)0.115 (3)
O90.2502 (7)0.5485 (6)0.7845 (6)0.159 (4)
O100.7076 (6)0.1478 (7)0.6485 (5)0.144 (3)
O110.8346 (7)0.1599 (6)0.5698 (6)0.157 (4)
O120.7564 (6)0.2863 (8)0.6035 (5)0.134 (3)
O130.6140 (4)0.0487 (4)0.7942 (4)0.0797 (16)
H130.60440.01390.75260.120*
C10.9259 (5)0.2882 (5)0.7800 (4)0.0494 (16)
H1A0.94260.29810.72260.059*
H1B0.86630.24150.78130.059*
C21.0214 (5)0.2441 (4)0.8270 (4)0.0400 (14)
C31.1843 (4)0.2153 (4)0.8701 (4)0.0389 (13)
C41.3038 (5)0.2228 (5)0.8783 (4)0.0545 (17)
H4C1.33360.19880.82760.065*
H4D1.32380.29290.88530.065*
C50.8627 (5)0.0106 (5)0.7768 (4)0.0461 (15)
H5A0.90390.01510.73200.055*
H5B0.80460.05130.75300.055*
C60.9310 (5)0.0715 (4)0.8334 (3)0.0372 (13)
C71.0245 (5)0.1936 (4)0.8897 (4)0.0407 (14)
C81.0773 (6)0.2919 (4)0.8967 (4)0.0530 (17)
H8C1.08830.31060.95450.064*
H8D1.03340.34310.86900.064*
C90.7120 (5)0.0662 (4)1.0460 (4)0.0446 (15)
H9A0.73650.07081.10370.054*
H9B0.64150.03561.04270.054*
C100.7096 (4)0.1669 (4)1.0066 (3)0.0367 (13)
C110.6685 (5)0.3183 (4)0.9657 (4)0.0410 (14)
C120.6129 (6)0.4159 (5)0.9566 (5)0.063 (2)
H12C0.59760.44331.01040.076*
H12D0.65620.46380.92770.076*
C130.5390 (7)0.0235 (7)0.8515 (6)0.093 (3)
H13A0.56490.03240.88430.140*
H13B0.47280.00540.82280.140*
H13C0.52750.08010.88690.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0297 (4)0.0320 (4)0.0364 (4)0.0031 (3)0.0070 (3)0.0008 (3)
N10.030 (3)0.037 (3)0.044 (3)0.002 (2)0.008 (2)0.005 (2)
N20.031 (3)0.042 (3)0.046 (3)0.002 (2)0.008 (2)0.008 (2)
N30.039 (3)0.045 (3)0.047 (3)0.006 (2)0.008 (2)0.012 (2)
N40.044 (3)0.089 (5)0.086 (4)0.015 (3)0.001 (3)0.052 (4)
N50.031 (3)0.034 (2)0.037 (3)0.004 (2)0.005 (2)0.000 (2)
N60.038 (3)0.029 (2)0.042 (3)0.007 (2)0.012 (2)0.002 (2)
N70.049 (3)0.039 (3)0.039 (3)0.000 (2)0.003 (2)0.009 (2)
N80.104 (5)0.057 (4)0.049 (4)0.009 (4)0.016 (3)0.020 (3)
N90.037 (3)0.037 (3)0.043 (3)0.009 (2)0.008 (2)0.003 (2)
N100.041 (3)0.037 (3)0.046 (3)0.010 (2)0.007 (2)0.002 (2)
N110.037 (3)0.045 (3)0.046 (3)0.009 (2)0.007 (2)0.003 (2)
N120.042 (3)0.066 (4)0.070 (4)0.022 (3)0.030 (3)0.018 (3)
N130.081 (4)0.088 (3)0.141 (5)0.008 (3)0.005 (3)0.001 (3)
N140.071 (6)0.107 (7)0.117 (7)0.008 (6)0.013 (5)0.029 (6)
O10.067 (3)0.056 (3)0.071 (3)0.015 (2)0.021 (3)0.020 (2)
O20.042 (3)0.073 (3)0.089 (4)0.009 (2)0.002 (3)0.023 (3)
O30.037 (2)0.042 (2)0.046 (2)0.0036 (18)0.0040 (19)0.0000 (18)
O40.088 (4)0.062 (3)0.100 (4)0.029 (3)0.026 (3)0.010 (3)
O50.040 (2)0.035 (2)0.049 (2)0.0061 (18)0.0154 (18)0.0010 (17)
O60.081 (4)0.088 (3)0.141 (5)0.008 (3)0.005 (3)0.001 (3)
O70.115 (6)0.117 (5)0.145 (6)0.035 (5)0.044 (5)0.058 (5)
O80.085 (4)0.067 (4)0.198 (7)0.004 (3)0.057 (5)0.030 (4)
O90.106 (6)0.126 (6)0.242 (10)0.038 (5)0.014 (6)0.079 (6)
O100.108 (6)0.181 (8)0.147 (7)0.009 (6)0.051 (5)0.045 (6)
O110.118 (6)0.113 (6)0.248 (10)0.012 (5)0.098 (7)0.013 (6)
O120.115 (6)0.147 (7)0.142 (7)0.037 (6)0.014 (5)0.024 (6)
O130.061 (3)0.083 (4)0.097 (4)0.012 (3)0.023 (3)0.016 (3)
C10.048 (4)0.050 (4)0.050 (4)0.004 (3)0.006 (3)0.012 (3)
C20.040 (4)0.038 (3)0.042 (3)0.004 (3)0.004 (3)0.004 (3)
C30.032 (3)0.042 (3)0.044 (3)0.005 (3)0.009 (3)0.005 (3)
C40.042 (4)0.057 (4)0.065 (5)0.013 (3)0.002 (3)0.013 (3)
C50.046 (4)0.053 (4)0.039 (3)0.012 (3)0.002 (3)0.007 (3)
C60.038 (3)0.039 (3)0.035 (3)0.003 (3)0.004 (3)0.002 (2)
C70.043 (4)0.037 (3)0.042 (4)0.003 (3)0.009 (3)0.003 (3)
C80.067 (5)0.037 (3)0.054 (4)0.005 (3)0.003 (3)0.000 (3)
C90.041 (4)0.045 (3)0.049 (4)0.007 (3)0.016 (3)0.002 (3)
C100.029 (3)0.038 (3)0.043 (3)0.004 (3)0.006 (3)0.001 (3)
C110.038 (3)0.042 (3)0.043 (3)0.007 (3)0.004 (3)0.001 (3)
C120.066 (5)0.052 (4)0.074 (5)0.027 (4)0.012 (4)0.007 (4)
C130.082 (6)0.102 (7)0.100 (7)0.041 (5)0.035 (5)0.024 (5)
Geometric parameters (Å, º) top
Ni1—N92.037 (4)N14—O121.209 (10)
Ni1—N12.055 (4)O1—C11.419 (7)
Ni1—N52.068 (4)O1—H10.8200
Ni1—N6i2.073 (5)O2—C41.374 (7)
Ni1—O52.119 (4)O2—H20.8200
Ni1—O32.136 (4)O3—C51.415 (6)
N1—C21.308 (7)O3—H30.8200
N1—N21.402 (6)O4—C81.443 (8)
N2—C31.291 (7)O4—H40.8200
N3—C21.343 (7)O5—C91.424 (6)
N3—C31.344 (7)O5—H50.8200
N3—N41.392 (6)O6—C121.424 (9)
N4—H4A0.8600O6—H60.8200
N4—H4B0.8600O13—C131.389 (8)
N5—C61.302 (7)O13—H130.8200
N5—N61.385 (6)C1—C21.505 (8)
N6—C71.318 (7)C1—H1A0.9700
N6—Ni1i2.073 (5)C1—H1B0.9700
N7—C61.347 (7)C3—C41.498 (8)
N7—C71.359 (7)C4—H4C0.9700
N7—N81.395 (6)C4—H4D0.9700
N8—H8A0.8600C5—C61.465 (8)
N8—H8B0.8600C5—H5A0.9700
N9—C101.305 (7)C5—H5B0.9700
N9—N101.395 (6)C7—C81.465 (8)
N10—C111.308 (7)C8—H8C0.9700
N11—C101.343 (7)C8—H8D0.9700
N11—C111.363 (7)C9—C101.481 (8)
N11—N121.400 (6)C9—H9A0.9700
N12—H12A0.8600C9—H9B0.9700
N12—H12B0.8600C11—C121.475 (8)
N13—O81.194 (9)C12—H12C0.9700
N13—O91.202 (10)C12—H12D0.9700
N13—O71.207 (10)C13—H13A0.9600
N14—O101.167 (9)C13—H13B0.9600
N14—O111.205 (10)C13—H13C0.9600
N9—Ni1—N1104.95 (18)C12—O6—H6109.5
N9—Ni1—N5156.10 (19)C13—O13—H13109.5
N1—Ni1—N592.46 (17)O1—C1—C2110.8 (5)
N9—Ni1—N6i93.72 (17)O1—C1—H1A109.5
N1—Ni1—N6i91.35 (18)C2—C1—H1A109.5
N5—Ni1—N6i102.25 (17)O1—C1—H1B109.5
N9—Ni1—O577.02 (17)C2—C1—H1B109.5
N1—Ni1—O5177.81 (17)H1A—C1—H1B108.1
N5—Ni1—O585.92 (15)N1—C2—N3108.8 (5)
N6i—Ni1—O587.57 (16)N1—C2—C1126.3 (5)
N9—Ni1—O385.24 (16)N3—C2—C1124.9 (5)
N1—Ni1—O390.46 (16)N2—C3—N3110.7 (5)
N5—Ni1—O378.26 (16)N2—C3—C4125.8 (5)
N6i—Ni1—O3178.09 (16)N3—C3—C4123.6 (5)
O5—Ni1—O390.64 (15)O2—C4—C3112.9 (5)
C2—N1—N2107.6 (4)O2—C4—H4C109.0
C2—N1—Ni1135.3 (4)C3—C4—H4C109.0
N2—N1—Ni1117.1 (3)O2—C4—H4D109.0
C3—N2—N1106.1 (4)C3—C4—H4D109.0
C2—N3—C3106.8 (5)H4C—C4—H4D107.8
C2—N3—N4124.3 (5)O3—C5—C6107.9 (5)
C3—N3—N4128.8 (5)O3—C5—H5A110.1
N3—N4—H4A120.0C6—C5—H5A110.1
N3—N4—H4B120.0O3—C5—H5B110.1
H4A—N4—H4B120.0C6—C5—H5B110.1
C6—N5—N6108.0 (4)H5A—C5—H5B108.4
C6—N5—Ni1113.3 (4)N5—C6—N7109.3 (5)
N6—N5—Ni1138.0 (3)N5—C6—C5123.8 (5)
C7—N6—N5107.1 (5)N7—C6—C5127.0 (5)
C7—N6—Ni1i134.0 (4)N6—C7—N7108.7 (5)
N5—N6—Ni1i118.9 (3)N6—C7—C8129.4 (6)
C6—N7—C7107.0 (5)N7—C7—C8121.9 (5)
C6—N7—N8126.1 (5)O4—C8—C7107.5 (5)
C7—N7—N8126.9 (5)O4—C8—H8C110.2
N7—N8—H8A120.0C7—C8—H8C110.2
N7—N8—H8B120.0O4—C8—H8D110.2
H8A—N8—H8B120.0C7—C8—H8D110.2
C10—N9—N10108.3 (4)H8C—C8—H8D108.5
C10—N9—Ni1114.6 (4)O5—C9—C10104.7 (4)
N10—N9—Ni1137.1 (4)O5—C9—H9A110.8
C11—N10—N9106.2 (5)C10—C9—H9A110.8
C10—N11—C11106.6 (5)O5—C9—H9B110.8
C10—N11—N12124.1 (5)C10—C9—H9B110.8
C11—N11—N12129.2 (5)H9A—C9—H9B108.9
N11—N12—H12A120.0N9—C10—N11109.2 (5)
N11—N12—H12B120.0N9—C10—C9122.6 (5)
H12A—N12—H12B120.0N11—C10—C9128.3 (5)
O8—N13—O9117.3 (10)N10—C11—N11109.7 (5)
O8—N13—O7124.0 (10)N10—C11—C12125.1 (6)
O9—N13—O7118.2 (10)N11—C11—C12125.1 (5)
O10—N14—O11123.3 (11)O6—C12—C11105.4 (6)
O10—N14—O12122.2 (11)O6—C12—H12C110.7
O11—N14—O12114.5 (10)C11—C12—H12C110.7
C1—O1—H1109.5O6—C12—H12D110.7
C4—O2—H2109.5C11—C12—H12D110.7
C5—O3—Ni1114.7 (3)H12C—C12—H12D108.8
C5—O3—H3109.5O13—C13—H13A109.5
Ni1—O3—H3111.3O13—C13—H13B109.5
C8—O4—H4109.5H13A—C13—H13B109.5
C9—O5—Ni1115.1 (3)O13—C13—H13C109.5
C9—O5—H5109.4H13A—C13—H13C109.5
Ni1—O5—H5118.4H13B—C13—H13C109.5
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O8ii0.862.293.094 (8)156
N8—H8A···O6iii0.862.513.066 (9)123
N8—H8B···O13iii0.862.543.186 (8)132
N12—H12B···O11iv0.862.253.027 (9)151
O2—H2···O12v0.822.362.926 (10)127
O2—H2···O5i0.822.403.045 (6)136
O4—H4···O9vi0.821.902.702 (9)166
O5—H5···N2i0.822.002.817 (6)172
O13—H13···O1iii0.822.072.834 (7)155
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni2(C4H8N4O2)6](NO3)4·2CH4O
Mr1294.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.5126 (17), 13.2808 (18), 16.153 (2)
β (°) 92.699 (2)
V3)2681.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.21 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.848, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
12772, 4719, 2751
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.188, 0.91
No. of reflections4719
No. of parameters366
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 1.04

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Ni1—N92.037 (4)Ni1—O52.119 (4)
Ni1—N12.055 (4)Ni1—O32.136 (4)
Ni1—N52.068 (4)N6—Ni1i2.073 (5)
Ni1—N6i2.073 (5)
N9—Ni1—N1104.95 (18)N5—Ni1—O585.92 (15)
N9—Ni1—N5156.10 (19)N6i—Ni1—O587.57 (16)
N1—Ni1—N592.46 (17)N9—Ni1—O385.24 (16)
N9—Ni1—N6i93.72 (17)N1—Ni1—O390.46 (16)
N1—Ni1—N6i91.35 (18)N5—Ni1—O378.26 (16)
N5—Ni1—N6i102.25 (17)N6i—Ni1—O3178.09 (16)
N9—Ni1—O577.02 (17)O5—Ni1—O390.64 (15)
N1—Ni1—O5177.81 (17)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O8ii0.862.293.094 (8)156.4
N8—H8A···O6iii0.862.513.066 (9)123.4
N8—H8B···O13iii0.862.543.186 (8)132.3
N12—H12B···O11iv0.862.253.027 (9)150.5
O2—H2···O12v0.822.362.926 (10)126.8
O2—H2···O5i0.822.403.045 (6)135.9
O4—H4···O9vi0.821.902.702 (9)166.3
O5—H5···N2i0.822.002.817 (6)171.7
O13—H13···O1iii0.822.072.834 (7)155.3
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Project No. 20371025).

References

First citationAdamek, M. (1960). Collect. Czech Chem. Commun. 25, 1694–1697.  CAS Google Scholar
First citationFeiters, M. C. (1990). Comments Inorg. Chem. 11, 131–174.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVrevgdenhil, W., Haasnoot, J. G. & Reedijk, J. (1987). Inorg. Chim. Acta, 129, 205–216.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds