organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2,6-Di­chloro­phen­yl)-2-(phenyl­imino)acetamide

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: tomura@ims.ac.jp

(Received 15 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title compound, C14H10Cl2N2O, which is an important synthetic precursor of a human immunodeficiency virus type 1 (HIV-1) inhibitor, the dihedral angle between the 2,6-dichloro­phenyl ring and the phenyl ring is 69.4 (1)°. In the crystal structure, the mol­ecules form centrosymmetric dimers via N—H⋯O hydrogen bonds with an R22(8) motif. The dimers are connected by inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the starting material, see: Reich et al. (1917[Reich, S., Salzmann, R. & Kawa, D. (1917). Bull. Soc. Chim. Fr. 21, 217-225.]). For human immunodeficiency virus type 1 inhibitors, see: Pauwels et al. (1993[Pauwels, R., Andries, K., Debyser, Z., Van Daele, P., Schols, D., Stoffels, P., De Vreese, K., Woestenborghs, R., Vandamme, A. M., Janssen, C. G. M., Anné, J., Cauwenbergh, G., Desmyter, J., Heykants, J., Janssen, M. A. C., De Clercq, E. & Janssen, P. A. J. (1993). Proc. Natl Acad. Sci. USA, 90, 1711-1715.]). For related literature on the crystal structures of α-anilinoacetamide derivatives, see: Peeters et al. (1993[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1961-1963.]); Garg et al. (1993[Garg, S. N., Agarwal, S. K., Fidelis, K., Hossain, M. B. & van der Helm, D. (1993). J. Nat. Prod. 56, 539-544.]); Opatz & Ferenc (2005[Opatz, T. & Ferenc, D. (2005). Eur. J. Org. Chem. pp. 121-126.]). For related literature on C—H⋯O hydrogen bonds, see: Taylor & Kennard (1982[Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.]); Biradha et al. (1997[Biradha, K., Nangia, A., Desiraju, G. R., Carrellb, C. J. & Carrell, H. L. (1997). J. Mater. Chem. 7, 1111-1122.]); Batchelor et al. (2000[Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839-848.]). For related literature on C—H⋯π inter­actions, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]); Tomura & Yamashita (2001[Tomura, M. & Yamashita, Y. (2001). Chem. Lett. pp. 532-533.]); Nishio (2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O

  • Mr = 293.14

  • Triclinic, [P \overline 1]

  • a = 7.8777 (2) Å

  • b = 9.1433 (3) Å

  • c = 10.0217 (4) Å

  • α = 102.170 (3)°

  • β = 91.795 (3)°

  • γ = 102.145 (2)°

  • V = 687.66 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.19 mm−1

  • T = 296 (1) K

  • 0.50 × 0.40 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.229, Tmax = 0.818

  • 3020 measured reflections

  • 2808 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections frequency: 120 min intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.05

  • 2808 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.08 2.935 (2) 172
N2—H2B⋯N1 0.86 2.37 2.708 (2) 104
C3—H3⋯O1ii 0.93 2.55 3.260 (2) 133
N2—H2BCg1iii 0.86 2.76 3.484 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x, -y, -z+1. Cg1 is the centroid of the C8–C13 benzene ring.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: TEXSAN (Rigaku/MSC, 2000[Rigaku/MSC (2000). TEXSAN. Version 1.11. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is an important synthetic precursor of α-anilinophenylaceamide derivatives, which are potent human immunodeficiency virus type 1 (HIV-1) specific reverse transcriptase inhibitors (Pauwels et al., 1993). A search for α-anilinoaceamide structure in the Cambridge Structural Database (Version 5.28; Allen, 2002) revealed three examples (Peeters et al., 1993; Garg et al., 1993; Opatz & Ferenc, 2005) while no structure of an α-phenyliminoaceamide derivative, such as (I), was found. We report here the molecular and crystal structures of the title α-phenyliminoaceamide derivative (I) (Fig. 1).

The compound (I) was synthesized by the reaction of N-(2,6-dichlorobenzylidene)aniline (Reich et al., 1917) with NaCN and crystallizes in the P1 space group with one molecule in an asymmetric unit. The molecule has an E-conformation about the C7?N1 bond. The bond lengths and angles are within the normal ranges (Allen et al., 1987). Two benzene rings of (I) are planar [r.m.s. deviations of 0.0047 (C1—C6) and 0.0074 (C8—C13) Å from the least-squares planes] with a dihedral angle between their least-squares planes of 69.4 (1)°. Each benzene ring is close to be orthogonal [86.5 (2) for C1—C6 and 73.9 (1)° for C8—C13] to the plane of the amide group (C14/O1/N2). In the amide group, the intramolecular hydrogen bond between atoms N1 and N2 is observed [2.708 (2) Å].

In the crystal structure, the molecules are linked via N—H···O hydrogen bonds [2.935 (2) Å for N2—H2A···O1(-x + 1, -y + 1, -z + 1)] to form a centrosymmetric dimer with a graph-set motif (Bernstein et al., 1995) of R22(8) (Fig. 2 and Table 1). The intermolecular C—H···O [3.260 (2) Å for C3—H3···O1(-x + 1, -y + 1, -z + 2)] and C—H···π [3.484 (2) Å for N2—H2B···Cg1(-x, -y, -z + 1), Cg1 is the centroid of the benzene ring (C8—C13)] interactions are observed between the dimers (Tomura & Yamashita, 2001; Nishio, 2004). The C—H···O hydrogen bond in the crystal structure of (I) is stronger than the typical C—H···O hydrogen bonds in other structures (Taylor & Kennard, 1982; Biradha et al., 1997; Batchelor et al., 2000). The C—H···π interaction corresponds to a geometry of type III (Malone et al., 1997).

Related literature top

For the starting material, see: Reich et al. (1917). For human immunodeficiency virus type 1 inhibitors, see: Pauwels et al. (1993). For related literature on the crystal structures of α-anilinoacetamide derivatives, see: Peeters et al. (1993); Garg et al. (1993); Opatz & Ferenc (2005). For related literature on C—H···O hydrogen bonds, see: Taylor & Kennard (1982); Biradha et al. (1997); Batchelor et al. (2000). For related literature on C—H···π interactions, see: Malone et al. (1997); Tomura & Yamashita (2001); Nishio (2004). For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Allen (2002). Cg1 is the centroid of the C8–C13 benzene ring.

Experimental top

The compound (I) was prepared as follows: a mixture of N-(2,6-dichlorobenzylidene)aniline (Reich et al., 1917) (504 mg, 2.0 mmol) and NaCN (110 mg, 2.0 mmol) in dimethyl sulfoxide (20 ml) was stirred for 1 day at 296 K. The reaction mixture was poured into water (100 ml) and the solution was extracted with dichloromethane (100 ml × 3). The organic layer was washed with water and dried over Na2SO4. After the solvent was evaporated in vacuo, dichloromethane (10 ml) was added to the residue. The resulting colourless precipitate was collected to give 198 mg (34% yield) of (I). Physical data for (I): m.p. 510 K; 1H NMR (CDCl3, δ p.p.m.): 5.30–5.65 (br s, 1H), 6.81–7.26 (m, 8H), 7.37–7.47 (br s, 1H); MS (EI): m/z 294 (M++2), 292 (M+), 248. Colourless crystals of (I) suitable for X-ray analysis were grown from a chloroform solution.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C) or (N).

Structure description top

The title compound, (I), is an important synthetic precursor of α-anilinophenylaceamide derivatives, which are potent human immunodeficiency virus type 1 (HIV-1) specific reverse transcriptase inhibitors (Pauwels et al., 1993). A search for α-anilinoaceamide structure in the Cambridge Structural Database (Version 5.28; Allen, 2002) revealed three examples (Peeters et al., 1993; Garg et al., 1993; Opatz & Ferenc, 2005) while no structure of an α-phenyliminoaceamide derivative, such as (I), was found. We report here the molecular and crystal structures of the title α-phenyliminoaceamide derivative (I) (Fig. 1).

The compound (I) was synthesized by the reaction of N-(2,6-dichlorobenzylidene)aniline (Reich et al., 1917) with NaCN and crystallizes in the P1 space group with one molecule in an asymmetric unit. The molecule has an E-conformation about the C7?N1 bond. The bond lengths and angles are within the normal ranges (Allen et al., 1987). Two benzene rings of (I) are planar [r.m.s. deviations of 0.0047 (C1—C6) and 0.0074 (C8—C13) Å from the least-squares planes] with a dihedral angle between their least-squares planes of 69.4 (1)°. Each benzene ring is close to be orthogonal [86.5 (2) for C1—C6 and 73.9 (1)° for C8—C13] to the plane of the amide group (C14/O1/N2). In the amide group, the intramolecular hydrogen bond between atoms N1 and N2 is observed [2.708 (2) Å].

In the crystal structure, the molecules are linked via N—H···O hydrogen bonds [2.935 (2) Å for N2—H2A···O1(-x + 1, -y + 1, -z + 1)] to form a centrosymmetric dimer with a graph-set motif (Bernstein et al., 1995) of R22(8) (Fig. 2 and Table 1). The intermolecular C—H···O [3.260 (2) Å for C3—H3···O1(-x + 1, -y + 1, -z + 2)] and C—H···π [3.484 (2) Å for N2—H2B···Cg1(-x, -y, -z + 1), Cg1 is the centroid of the benzene ring (C8—C13)] interactions are observed between the dimers (Tomura & Yamashita, 2001; Nishio, 2004). The C—H···O hydrogen bond in the crystal structure of (I) is stronger than the typical C—H···O hydrogen bonds in other structures (Taylor & Kennard, 1982; Biradha et al., 1997; Batchelor et al., 2000). The C—H···π interaction corresponds to a geometry of type III (Malone et al., 1997).

For the starting material, see: Reich et al. (1917). For human immunodeficiency virus type 1 inhibitors, see: Pauwels et al. (1993). For related literature on the crystal structures of α-anilinoacetamide derivatives, see: Peeters et al. (1993); Garg et al. (1993); Opatz & Ferenc (2005). For related literature on C—H···O hydrogen bonds, see: Taylor & Kennard (1982); Biradha et al. (1997); Batchelor et al. (2000). For related literature on C—H···π interactions, see: Malone et al. (1997); Tomura & Yamashita (2001); Nishio (2004). For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Allen (2002). Cg1 is the centroid of the C8–C13 benzene ring.

Computing details top

Data collection: CAD-4 EXPRESS Software (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS Software; data reduction: TEXSAN (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing diagram of (I). Dashed lines indicate intermolecular N—H···O, C—H···O and C—H···π interactions.
(E)-2-(2,6-Dichlorophenyl)-2-(phenylimino)acetamide top
Crystal data top
C14H10Cl2N2OZ = 2
Mr = 293.14F(000) = 300
Triclinic, P1Dx = 1.416 Mg m3
Hall symbol: -P 1Melting point: 510 K
a = 7.8777 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.1433 (3) ÅCell parameters from 25 reflections
c = 10.0217 (4) Åθ = 15.0–42.6°
α = 102.170 (3)°µ = 4.19 mm1
β = 91.795 (3)°T = 296 K
γ = 102.145 (2)°Prism, colourless
V = 687.66 (4) Å30.50 × 0.40 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2499 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.016
Graphite monochromatorθmax = 74.3°, θmin = 4.5°
ω–2θ scanh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.229, Tmax = 0.818l = 1212
3020 measured reflections3 standard reflections every 120 min
2808 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.1897P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.37 e Å3
173 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0156 (17)
Crystal data top
C14H10Cl2N2Oγ = 102.145 (2)°
Mr = 293.14V = 687.66 (4) Å3
Triclinic, P1Z = 2
a = 7.8777 (2) ÅCu Kα radiation
b = 9.1433 (3) ŵ = 4.19 mm1
c = 10.0217 (4) ÅT = 296 K
α = 102.170 (3)°0.50 × 0.40 × 0.05 mm
β = 91.795 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2499 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.229, Tmax = 0.8183 standard reflections every 120 min
3020 measured reflections intensity decay: 0.8%
2808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
2808 reflectionsΔρmin = 0.25 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15690 (8)0.38587 (7)0.87469 (7)0.0713 (2)
Cl20.62681 (8)0.04600 (8)0.72009 (7)0.0791 (2)
O10.5291 (2)0.42558 (17)0.65152 (14)0.0632 (4)
N10.2306 (2)0.07483 (17)0.59095 (15)0.0472 (4)
N20.3232 (2)0.3200 (2)0.47621 (16)0.0598 (5)
H2A0.35880.39060.43230.072*
H2B0.23550.24620.44250.072*
C10.3973 (2)0.21737 (18)0.81031 (16)0.0413 (4)
C20.3294 (2)0.3076 (2)0.91479 (18)0.0476 (4)
C30.3924 (3)0.3366 (3)1.0501 (2)0.0611 (6)
H30.34510.39861.11800.073*
C40.5255 (3)0.2723 (3)1.0823 (2)0.0720 (7)
H40.56830.29021.17320.086*
C50.5971 (3)0.1818 (3)0.9828 (2)0.0690 (6)
H50.68720.13821.00610.083*
C60.5340 (3)0.1557 (2)0.8470 (2)0.0515 (4)
C70.3324 (2)0.19374 (19)0.66374 (16)0.0412 (4)
C80.1608 (2)0.0528 (2)0.64758 (18)0.0471 (4)
C90.1897 (3)0.1957 (2)0.5867 (2)0.0622 (5)
H90.25560.20650.51130.075*
C100.1197 (3)0.3220 (3)0.6390 (3)0.0724 (7)
H100.14200.41710.60000.087*
C110.0181 (3)0.3085 (3)0.7476 (3)0.0695 (6)
H110.02900.39420.78150.083*
C120.0139 (3)0.1682 (3)0.8058 (3)0.0649 (6)
H120.08360.15940.87900.078*
C130.0564 (3)0.0396 (2)0.7570 (2)0.0541 (5)
H130.03400.05510.79710.065*
C140.4032 (2)0.3250 (2)0.59550 (17)0.0449 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0733 (4)0.0624 (4)0.0828 (4)0.0283 (3)0.0142 (3)0.0118 (3)
Cl20.0702 (4)0.0934 (5)0.0848 (4)0.0427 (3)0.0105 (3)0.0191 (3)
O10.0780 (10)0.0577 (8)0.0474 (7)0.0110 (7)0.0061 (6)0.0245 (6)
N10.0523 (8)0.0469 (8)0.0428 (7)0.0070 (6)0.0000 (6)0.0155 (6)
N20.0740 (11)0.0567 (9)0.0480 (9)0.0007 (8)0.0090 (8)0.0272 (7)
C10.0463 (9)0.0404 (8)0.0378 (8)0.0021 (7)0.0029 (6)0.0173 (6)
C20.0520 (10)0.0424 (9)0.0467 (9)0.0018 (7)0.0090 (7)0.0140 (7)
C30.0704 (13)0.0610 (12)0.0400 (9)0.0096 (10)0.0083 (9)0.0088 (8)
C40.0816 (16)0.0808 (15)0.0419 (10)0.0152 (12)0.0111 (10)0.0235 (10)
C50.0646 (13)0.0763 (14)0.0678 (14)0.0035 (11)0.0171 (11)0.0352 (12)
C60.0499 (10)0.0551 (10)0.0519 (10)0.0081 (8)0.0004 (8)0.0212 (8)
C70.0460 (9)0.0432 (8)0.0376 (8)0.0105 (7)0.0041 (6)0.0153 (6)
C80.0473 (9)0.0468 (9)0.0468 (9)0.0041 (7)0.0047 (7)0.0173 (7)
C90.0667 (13)0.0526 (11)0.0663 (12)0.0107 (9)0.0070 (10)0.0136 (9)
C100.0703 (14)0.0477 (11)0.1013 (19)0.0132 (10)0.0044 (13)0.0231 (11)
C110.0565 (12)0.0630 (13)0.0950 (17)0.0009 (10)0.0058 (11)0.0445 (12)
C120.0530 (11)0.0709 (14)0.0712 (13)0.0013 (10)0.0054 (10)0.0318 (11)
C130.0493 (10)0.0518 (10)0.0596 (11)0.0028 (8)0.0025 (8)0.0175 (8)
C140.0550 (10)0.0440 (9)0.0380 (8)0.0095 (7)0.0051 (7)0.0154 (7)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C4—H40.9300
Cl2—C61.728 (2)C5—C61.388 (3)
O1—C141.228 (2)C5—H50.9300
N1—C71.273 (2)C7—C141.519 (2)
N1—C81.420 (2)C8—C131.391 (3)
N2—C141.322 (2)C8—C91.389 (3)
N2—H2A0.8600C9—C101.385 (3)
N2—H2B0.8600C9—H90.9300
C1—C21.385 (2)C10—C111.371 (4)
C1—C61.389 (3)C10—H100.9300
C1—C71.496 (2)C11—C121.371 (4)
C2—C31.381 (3)C11—H110.9300
C3—C41.367 (4)C12—C131.384 (3)
C3—H30.9300C12—H120.9300
C4—C51.372 (4)C13—H130.9300
C7—N1—C8120.81 (14)N1—C7—C14117.73 (14)
C14—N2—H2A120.0C1—C7—C14115.27 (14)
C14—N2—H2B120.0C13—C8—C9119.52 (18)
H2A—N2—H2B120.0C13—C8—N1121.59 (17)
C2—C1—C6117.04 (16)C9—C8—N1118.78 (18)
C2—C1—C7121.51 (16)C10—C9—C8119.5 (2)
C6—C1—C7121.38 (16)C10—C9—H9120.2
C3—C2—C1122.56 (19)C8—C9—H9120.2
C3—C2—Cl1118.54 (17)C11—C10—C9120.8 (2)
C1—C2—Cl1118.89 (14)C11—C10—H10119.6
C4—C3—C2118.6 (2)C9—C10—H10119.6
C4—C3—H3120.7C12—C11—C10119.7 (2)
C2—C3—H3120.7C12—C11—H11120.2
C5—C4—C3121.14 (19)C10—C11—H11120.2
C5—C4—H4119.4C11—C12—C13120.8 (2)
C3—C4—H4119.4C11—C12—H12119.6
C4—C5—C6119.4 (2)C13—C12—H12119.6
C4—C5—H5120.3C12—C13—C8119.6 (2)
C6—C5—H5120.3C12—C13—H13120.2
C1—C6—C5121.2 (2)C8—C13—H13120.2
C1—C6—Cl2118.90 (14)O1—C14—N2124.57 (16)
C5—C6—Cl2119.94 (18)O1—C14—C7119.44 (15)
N1—C7—C1126.95 (15)N2—C14—C7115.98 (16)
C6—C1—C2—C30.1 (3)C6—C1—C7—N179.6 (2)
C7—C1—C2—C3177.07 (16)C2—C1—C7—C1479.1 (2)
C6—C1—C2—Cl1179.37 (13)C6—C1—C7—C1497.79 (19)
C7—C1—C2—Cl13.6 (2)C7—N1—C8—C1360.6 (3)
C1—C2—C3—C40.7 (3)C7—N1—C8—C9123.2 (2)
Cl1—C2—C3—C4178.54 (15)C13—C8—C9—C102.5 (3)
C2—C3—C4—C50.6 (3)N1—C8—C9—C10178.79 (19)
C3—C4—C5—C60.4 (3)C8—C9—C10—C112.0 (4)
C2—C1—C6—C51.1 (3)C9—C10—C11—C120.5 (4)
C7—C1—C6—C5178.08 (17)C10—C11—C12—C130.5 (4)
C2—C1—C6—Cl2178.50 (13)C11—C12—C13—C80.0 (3)
C7—C1—C6—Cl21.5 (2)C9—C8—C13—C121.5 (3)
C4—C5—C6—C11.3 (3)N1—C8—C13—C12177.73 (18)
C4—C5—C6—Cl2178.32 (17)N1—C7—C14—O1164.09 (18)
C8—N1—C7—C12.0 (3)C1—C7—C14—O113.6 (3)
C8—N1—C7—C14179.41 (16)N1—C7—C14—N215.0 (3)
C2—C1—C7—N1103.5 (2)C1—C7—C14—N2167.32 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.082.935 (2)172
N2—H2B···N10.862.372.708 (2)104
C3—H3···O1ii0.932.553.260 (2)133
N2—H2B···Cg1iii0.862.763.484 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H10Cl2N2O
Mr293.14
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8777 (2), 9.1433 (3), 10.0217 (4)
α, β, γ (°)102.170 (3), 91.795 (3), 102.145 (2)
V3)687.66 (4)
Z2
Radiation typeCu Kα
µ (mm1)4.19
Crystal size (mm)0.50 × 0.40 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.229, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
3020, 2808, 2499
Rint0.016
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.05
No. of reflections2808
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: CAD-4 EXPRESS Software (Enraf–Nonius, 1992), CAD-4 EXPRESS Software, TEXSAN (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.082.935 (2)172.1
N2—H2B···N10.862.372.708 (2)103.6
C3—H3···O1ii0.932.553.260 (2)133.0
N2—H2B···Cg1iii0.862.763.484 (2)143.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z+1.
 

Acknowledgements

The author thanks the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K., Nangia, A., Desiraju, G. R., Carrellb, C. J. & Carrell, H. L. (1997). J. Mater. Chem. 7, 1111–1122.  CSD CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Version 5.1. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGarg, S. N., Agarwal, S. K., Fidelis, K., Hossain, M. B. & van der Helm, D. (1993). J. Nat. Prod. 56, 539–544.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOpatz, T. & Ferenc, D. (2005). Eur. J. Org. Chem. pp. 121–126.  Google Scholar
First citationPauwels, R., Andries, K., Debyser, Z., Van Daele, P., Schols, D., Stoffels, P., De Vreese, K., Woestenborghs, R., Vandamme, A. M., Janssen, C. G. M., Anné, J., Cauwenbergh, G., Desmyter, J., Heykants, J., Janssen, M. A. C., De Clercq, E. & Janssen, P. A. J. (1993). Proc. Natl Acad. Sci. USA, 90, 1711–1715.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1961–1963.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReich, S., Salzmann, R. & Kawa, D. (1917). Bull. Soc. Chim. Fr. 21, 217–225.  CAS Google Scholar
First citationRigaku/MSC (2000). TEXSAN. Version 1.11. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070.  CSD CrossRef CAS Web of Science Google Scholar
First citationTomura, M. & Yamashita, Y. (2001). Chem. Lett. pp. 532–533.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds