organic compounds
(E)-2-(2,6-Dichlorophenyl)-2-(phenylimino)acetamide
aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: tomura@ims.ac.jp
In the title compound, C14H10Cl2N2O, which is an important synthetic precursor of a human immunodeficiency virus type 1 (HIV-1) inhibitor, the dihedral angle between the 2,6-dichlorophenyl ring and the phenyl ring is 69.4 (1)°. In the the molecules form centrosymmetric dimers via N—H⋯O hydrogen bonds with an R22(8) motif. The dimers are connected by intermolecular C—H⋯O and C—H⋯π interactions.
Related literature
For the starting material, see: Reich et al. (1917). For human immunodeficiency virus type 1 inhibitors, see: Pauwels et al. (1993). For related literature on the crystal structures of α-anilinoacetamide derivatives, see: Peeters et al. (1993); Garg et al. (1993); Opatz & Ferenc (2005). For related literature on C—H⋯O hydrogen bonds, see: Taylor & Kennard (1982); Biradha et al. (1997); Batchelor et al. (2000). For related literature on C—H⋯π interactions, see: Malone et al. (1997); Tomura & Yamashita (2001); Nishio (2004). For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell CAD-4 EXPRESS; data reduction: TEXSAN (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807063891/kp2151sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063891/kp2151Isup2.hkl
The compound (I) was prepared as follows: a mixture of N-(2,6-dichlorobenzylidene)aniline (Reich et al., 1917) (504 mg, 2.0 mmol) and NaCN (110 mg, 2.0 mmol) in dimethyl sulfoxide (20 ml) was stirred for 1 day at 296 K. The reaction mixture was poured into water (100 ml) and the solution was extracted with dichloromethane (100 ml × 3). The organic layer was washed with water and dried over Na2SO4. After the solvent was evaporated in vacuo, dichloromethane (10 ml) was added to the residue. The resulting colourless precipitate was collected to give 198 mg (34% yield) of (I). Physical data for (I): m.p. 510 K; 1H NMR (CDCl3, δ p.p.m.): 5.30–5.65 (br s, 1H), 6.81–7.26 (m, 8H), 7.37–7.47 (br s, 1H); MS (EI): m/z 294 (M++2), 292 (M+), 248. Colourless crystals of (I) suitable for X-ray analysis were grown from a chloroform solution.
All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C) or (N).
The title compound, (I), is an important synthetic precursor of α-anilinophenylaceamide derivatives, which are potent human immunodeficiency virus type 1 (HIV-1) specific reverse transcriptase inhibitors (Pauwels et al., 1993). A search for α-anilinoaceamide structure in the Cambridge Structural Database (Version 5.28; Allen, 2002) revealed three examples (Peeters et al., 1993; Garg et al., 1993; Opatz & Ferenc, 2005) while no structure of an α-phenyliminoaceamide derivative, such as (I), was found. We report here the molecular and crystal structures of the title α-phenyliminoaceamide derivative (I) (Fig. 1).
The compound (I) was synthesized by the reaction of N-(2,6-dichlorobenzylidene)aniline (Reich et al., 1917) with NaCN and crystallizes in the P1 with one molecule in an The molecule has an E-conformation about the C7?N1 bond. The bond lengths and angles are within the normal ranges (Allen et al., 1987). Two benzene rings of (I) are planar [r.m.s. deviations of 0.0047 (C1—C6) and 0.0074 (C8—C13) Å from the least-squares planes] with a dihedral angle between their least-squares planes of 69.4 (1)°. Each benzene ring is close to be orthogonal [86.5 (2) for C1—C6 and 73.9 (1)° for C8—C13] to the plane of the amide group (C14/O1/N2). In the amide group, the intramolecular hydrogen bond between atoms N1 and N2 is observed [2.708 (2) Å].
In the π [3.484 (2) Å for N2—H2B···Cg1(-x, -y, -z + 1), Cg1 is the centroid of the benzene ring (C8—C13)] interactions are observed between the dimers (Tomura & Yamashita, 2001; Nishio, 2004). The C—H···O hydrogen bond in the of (I) is stronger than the typical C—H···O hydrogen bonds in other structures (Taylor & Kennard, 1982; Biradha et al., 1997; Batchelor et al., 2000). The C—H···π interaction corresponds to a geometry of type III (Malone et al., 1997).
the molecules are linked via N—H···O hydrogen bonds [2.935 (2) Å for N2—H2A···O1(-x + 1, -y + 1, -z + 1)] to form a centrosymmetric dimer with a graph-set motif (Bernstein et al., 1995) of R22(8) (Fig. 2 and Table 1). The intermolecular C—H···O [3.260 (2) Å for C3—H3···O1(-x + 1, -y + 1, -z + 2)] and C—H···For the starting material, see: Reich et al. (1917). For human immunodeficiency virus type 1 inhibitors, see: Pauwels et al. (1993). For related literature on the crystal structures of α-anilinoacetamide derivatives, see: Peeters et al. (1993); Garg et al. (1993); Opatz & Ferenc (2005). For related literature on C—H···O hydrogen bonds, see: Taylor & Kennard (1982); Biradha et al. (1997); Batchelor et al. (2000). For related literature on C—H···π interactions, see: Malone et al. (1997); Tomura & Yamashita (2001); Nishio (2004). For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Allen (2002). Cg1 is the centroid of the C8–C13 benzene ring.
Data collection: CAD-4 EXPRESS Software (Enraf–Nonius, 1992); cell
CAD-4 EXPRESS Software; data reduction: TEXSAN (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.C14H10Cl2N2O | Z = 2 |
Mr = 293.14 | F(000) = 300 |
Triclinic, P1 | Dx = 1.416 Mg m−3 |
Hall symbol: -P 1 | Melting point: 510 K |
a = 7.8777 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.1433 (3) Å | Cell parameters from 25 reflections |
c = 10.0217 (4) Å | θ = 15.0–42.6° |
α = 102.170 (3)° | µ = 4.19 mm−1 |
β = 91.795 (3)° | T = 296 K |
γ = 102.145 (2)° | Prism, colourless |
V = 687.66 (4) Å3 | 0.50 × 0.40 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | 2499 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.016 |
Graphite monochromator | θmax = 74.3°, θmin = 4.5° |
ω–2θ scan | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→11 |
Tmin = 0.229, Tmax = 0.818 | l = −12→12 |
3020 measured reflections | 3 standard reflections every 120 min |
2808 independent reflections | intensity decay: 0.8% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0796P)2 + 0.1897P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2808 reflections | Δρmax = 0.37 e Å−3 |
173 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0156 (17) |
C14H10Cl2N2O | γ = 102.145 (2)° |
Mr = 293.14 | V = 687.66 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8777 (2) Å | Cu Kα radiation |
b = 9.1433 (3) Å | µ = 4.19 mm−1 |
c = 10.0217 (4) Å | T = 296 K |
α = 102.170 (3)° | 0.50 × 0.40 × 0.05 mm |
β = 91.795 (3)° |
Enraf–Nonius CAD-4 diffractometer | 2499 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.016 |
Tmin = 0.229, Tmax = 0.818 | 3 standard reflections every 120 min |
3020 measured reflections | intensity decay: 0.8% |
2808 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.37 e Å−3 |
2808 reflections | Δρmin = −0.25 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.15690 (8) | 0.38587 (7) | 0.87469 (7) | 0.0713 (2) | |
Cl2 | 0.62681 (8) | 0.04600 (8) | 0.72009 (7) | 0.0791 (2) | |
O1 | 0.5291 (2) | 0.42558 (17) | 0.65152 (14) | 0.0632 (4) | |
N1 | 0.2306 (2) | 0.07483 (17) | 0.59095 (15) | 0.0472 (4) | |
N2 | 0.3232 (2) | 0.3200 (2) | 0.47621 (16) | 0.0598 (5) | |
H2A | 0.3588 | 0.3906 | 0.4323 | 0.072* | |
H2B | 0.2355 | 0.2462 | 0.4425 | 0.072* | |
C1 | 0.3973 (2) | 0.21737 (18) | 0.81031 (16) | 0.0413 (4) | |
C2 | 0.3294 (2) | 0.3076 (2) | 0.91479 (18) | 0.0476 (4) | |
C3 | 0.3924 (3) | 0.3366 (3) | 1.0501 (2) | 0.0611 (6) | |
H3 | 0.3451 | 0.3986 | 1.1180 | 0.073* | |
C4 | 0.5255 (3) | 0.2723 (3) | 1.0823 (2) | 0.0720 (7) | |
H4 | 0.5683 | 0.2902 | 1.1732 | 0.086* | |
C5 | 0.5971 (3) | 0.1818 (3) | 0.9828 (2) | 0.0690 (6) | |
H5 | 0.6872 | 0.1382 | 1.0061 | 0.083* | |
C6 | 0.5340 (3) | 0.1557 (2) | 0.8470 (2) | 0.0515 (4) | |
C7 | 0.3324 (2) | 0.19374 (19) | 0.66374 (16) | 0.0412 (4) | |
C8 | 0.1608 (2) | −0.0528 (2) | 0.64758 (18) | 0.0471 (4) | |
C9 | 0.1897 (3) | −0.1957 (2) | 0.5867 (2) | 0.0622 (5) | |
H9 | 0.2556 | −0.2065 | 0.5113 | 0.075* | |
C10 | 0.1197 (3) | −0.3220 (3) | 0.6390 (3) | 0.0724 (7) | |
H10 | 0.1420 | −0.4171 | 0.6000 | 0.087* | |
C11 | 0.0181 (3) | −0.3085 (3) | 0.7476 (3) | 0.0695 (6) | |
H11 | −0.0290 | −0.3942 | 0.7815 | 0.083* | |
C12 | −0.0139 (3) | −0.1682 (3) | 0.8058 (3) | 0.0649 (6) | |
H12 | −0.0836 | −0.1594 | 0.8790 | 0.078* | |
C13 | 0.0564 (3) | −0.0396 (2) | 0.7570 (2) | 0.0541 (5) | |
H13 | 0.0340 | 0.0551 | 0.7971 | 0.065* | |
C14 | 0.4032 (2) | 0.3250 (2) | 0.59550 (17) | 0.0449 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0733 (4) | 0.0624 (4) | 0.0828 (4) | 0.0283 (3) | 0.0142 (3) | 0.0118 (3) |
Cl2 | 0.0702 (4) | 0.0934 (5) | 0.0848 (4) | 0.0427 (3) | 0.0105 (3) | 0.0191 (3) |
O1 | 0.0780 (10) | 0.0577 (8) | 0.0474 (7) | −0.0110 (7) | −0.0061 (6) | 0.0245 (6) |
N1 | 0.0523 (8) | 0.0469 (8) | 0.0428 (7) | 0.0070 (6) | 0.0000 (6) | 0.0155 (6) |
N2 | 0.0740 (11) | 0.0567 (9) | 0.0480 (9) | −0.0007 (8) | −0.0090 (8) | 0.0272 (7) |
C1 | 0.0463 (9) | 0.0404 (8) | 0.0378 (8) | 0.0021 (7) | 0.0029 (6) | 0.0173 (6) |
C2 | 0.0520 (10) | 0.0424 (9) | 0.0467 (9) | 0.0018 (7) | 0.0090 (7) | 0.0140 (7) |
C3 | 0.0704 (13) | 0.0610 (12) | 0.0400 (9) | −0.0096 (10) | 0.0083 (9) | 0.0088 (8) |
C4 | 0.0816 (16) | 0.0808 (15) | 0.0419 (10) | −0.0152 (12) | −0.0111 (10) | 0.0235 (10) |
C5 | 0.0646 (13) | 0.0763 (14) | 0.0678 (14) | 0.0035 (11) | −0.0171 (11) | 0.0352 (12) |
C6 | 0.0499 (10) | 0.0551 (10) | 0.0519 (10) | 0.0081 (8) | 0.0004 (8) | 0.0212 (8) |
C7 | 0.0460 (9) | 0.0432 (8) | 0.0376 (8) | 0.0105 (7) | 0.0041 (6) | 0.0153 (6) |
C8 | 0.0473 (9) | 0.0468 (9) | 0.0468 (9) | 0.0041 (7) | −0.0047 (7) | 0.0173 (7) |
C9 | 0.0667 (13) | 0.0526 (11) | 0.0663 (12) | 0.0107 (9) | 0.0070 (10) | 0.0136 (9) |
C10 | 0.0703 (14) | 0.0477 (11) | 0.1013 (19) | 0.0132 (10) | −0.0044 (13) | 0.0231 (11) |
C11 | 0.0565 (12) | 0.0630 (13) | 0.0950 (17) | 0.0009 (10) | −0.0058 (11) | 0.0445 (12) |
C12 | 0.0530 (11) | 0.0709 (14) | 0.0712 (13) | −0.0013 (10) | 0.0054 (10) | 0.0318 (11) |
C13 | 0.0493 (10) | 0.0518 (10) | 0.0596 (11) | 0.0028 (8) | 0.0025 (8) | 0.0175 (8) |
C14 | 0.0550 (10) | 0.0440 (9) | 0.0380 (8) | 0.0095 (7) | 0.0051 (7) | 0.0154 (7) |
Cl1—C2 | 1.737 (2) | C4—H4 | 0.9300 |
Cl2—C6 | 1.728 (2) | C5—C6 | 1.388 (3) |
O1—C14 | 1.228 (2) | C5—H5 | 0.9300 |
N1—C7 | 1.273 (2) | C7—C14 | 1.519 (2) |
N1—C8 | 1.420 (2) | C8—C13 | 1.391 (3) |
N2—C14 | 1.322 (2) | C8—C9 | 1.389 (3) |
N2—H2A | 0.8600 | C9—C10 | 1.385 (3) |
N2—H2B | 0.8600 | C9—H9 | 0.9300 |
C1—C2 | 1.385 (2) | C10—C11 | 1.371 (4) |
C1—C6 | 1.389 (3) | C10—H10 | 0.9300 |
C1—C7 | 1.496 (2) | C11—C12 | 1.371 (4) |
C2—C3 | 1.381 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.367 (4) | C12—C13 | 1.384 (3) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.372 (4) | C13—H13 | 0.9300 |
C7—N1—C8 | 120.81 (14) | N1—C7—C14 | 117.73 (14) |
C14—N2—H2A | 120.0 | C1—C7—C14 | 115.27 (14) |
C14—N2—H2B | 120.0 | C13—C8—C9 | 119.52 (18) |
H2A—N2—H2B | 120.0 | C13—C8—N1 | 121.59 (17) |
C2—C1—C6 | 117.04 (16) | C9—C8—N1 | 118.78 (18) |
C2—C1—C7 | 121.51 (16) | C10—C9—C8 | 119.5 (2) |
C6—C1—C7 | 121.38 (16) | C10—C9—H9 | 120.2 |
C3—C2—C1 | 122.56 (19) | C8—C9—H9 | 120.2 |
C3—C2—Cl1 | 118.54 (17) | C11—C10—C9 | 120.8 (2) |
C1—C2—Cl1 | 118.89 (14) | C11—C10—H10 | 119.6 |
C4—C3—C2 | 118.6 (2) | C9—C10—H10 | 119.6 |
C4—C3—H3 | 120.7 | C12—C11—C10 | 119.7 (2) |
C2—C3—H3 | 120.7 | C12—C11—H11 | 120.2 |
C5—C4—C3 | 121.14 (19) | C10—C11—H11 | 120.2 |
C5—C4—H4 | 119.4 | C11—C12—C13 | 120.8 (2) |
C3—C4—H4 | 119.4 | C11—C12—H12 | 119.6 |
C4—C5—C6 | 119.4 (2) | C13—C12—H12 | 119.6 |
C4—C5—H5 | 120.3 | C12—C13—C8 | 119.6 (2) |
C6—C5—H5 | 120.3 | C12—C13—H13 | 120.2 |
C1—C6—C5 | 121.2 (2) | C8—C13—H13 | 120.2 |
C1—C6—Cl2 | 118.90 (14) | O1—C14—N2 | 124.57 (16) |
C5—C6—Cl2 | 119.94 (18) | O1—C14—C7 | 119.44 (15) |
N1—C7—C1 | 126.95 (15) | N2—C14—C7 | 115.98 (16) |
C6—C1—C2—C3 | −0.1 (3) | C6—C1—C7—N1 | 79.6 (2) |
C7—C1—C2—C3 | −177.07 (16) | C2—C1—C7—C14 | 79.1 (2) |
C6—C1—C2—Cl1 | −179.37 (13) | C6—C1—C7—C14 | −97.79 (19) |
C7—C1—C2—Cl1 | 3.6 (2) | C7—N1—C8—C13 | 60.6 (3) |
C1—C2—C3—C4 | −0.7 (3) | C7—N1—C8—C9 | −123.2 (2) |
Cl1—C2—C3—C4 | 178.54 (15) | C13—C8—C9—C10 | −2.5 (3) |
C2—C3—C4—C5 | 0.6 (3) | N1—C8—C9—C10 | −178.79 (19) |
C3—C4—C5—C6 | 0.4 (3) | C8—C9—C10—C11 | 2.0 (4) |
C2—C1—C6—C5 | 1.1 (3) | C9—C10—C11—C12 | −0.5 (4) |
C7—C1—C6—C5 | 178.08 (17) | C10—C11—C12—C13 | −0.5 (4) |
C2—C1—C6—Cl2 | −178.50 (13) | C11—C12—C13—C8 | 0.0 (3) |
C7—C1—C6—Cl2 | −1.5 (2) | C9—C8—C13—C12 | 1.5 (3) |
C4—C5—C6—C1 | −1.3 (3) | N1—C8—C13—C12 | 177.73 (18) |
C4—C5—C6—Cl2 | 178.32 (17) | N1—C7—C14—O1 | −164.09 (18) |
C8—N1—C7—C1 | 2.0 (3) | C1—C7—C14—O1 | 13.6 (3) |
C8—N1—C7—C14 | 179.41 (16) | N1—C7—C14—N2 | 15.0 (3) |
C2—C1—C7—N1 | −103.5 (2) | C1—C7—C14—N2 | −167.32 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.86 | 2.08 | 2.935 (2) | 172 |
N2—H2B···N1 | 0.86 | 2.37 | 2.708 (2) | 104 |
C3—H3···O1ii | 0.93 | 2.55 | 3.260 (2) | 133 |
N2—H2B···Cg1iii | 0.86 | 2.76 | 3.484 (2) | 143 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H10Cl2N2O |
Mr | 293.14 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.8777 (2), 9.1433 (3), 10.0217 (4) |
α, β, γ (°) | 102.170 (3), 91.795 (3), 102.145 (2) |
V (Å3) | 687.66 (4) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 4.19 |
Crystal size (mm) | 0.50 × 0.40 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.229, 0.818 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3020, 2808, 2499 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.135, 1.05 |
No. of reflections | 2808 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.25 |
Computer programs: CAD-4 EXPRESS Software (Enraf–Nonius, 1992), CAD-4 EXPRESS Software, TEXSAN (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), SHELXL97.
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1i | 0.86 | 2.08 | 2.935 (2) | 172.1 |
N2—H2B···N1 | 0.86 | 2.37 | 2.708 (2) | 103.6 |
C3—H3···O1ii | 0.93 | 2.55 | 3.260 (2) | 133.0 |
N2—H2B···Cg1iii | 0.86 | 2.76 | 3.484 (2) | 143.0 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x, −y, −z+1. |
Acknowledgements
The author thanks the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839–848. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Biradha, K., Nangia, A., Desiraju, G. R., Carrellb, C. J. & Carrell, H. L. (1997). J. Mater. Chem. 7, 1111–1122. CSD CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1992). CAD-4 EXPRESS. Version 5.1. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Garg, S. N., Agarwal, S. K., Fidelis, K., Hossain, M. B. & van der Helm, D. (1993). J. Nat. Prod. 56, 539–544. CSD CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436. CrossRef CAS Web of Science Google Scholar
Nishio, M. (2004). CrystEngComm, 6, 130–158. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Opatz, T. & Ferenc, D. (2005). Eur. J. Org. Chem. pp. 121–126. Google Scholar
Pauwels, R., Andries, K., Debyser, Z., Van Daele, P., Schols, D., Stoffels, P., De Vreese, K., Woestenborghs, R., Vandamme, A. M., Janssen, C. G. M., Anné, J., Cauwenbergh, G., Desmyter, J., Heykants, J., Janssen, M. A. C., De Clercq, E. & Janssen, P. A. J. (1993). Proc. Natl Acad. Sci. USA, 90, 1711–1715. CrossRef CAS PubMed Web of Science Google Scholar
Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 1961–1963. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Reich, S., Salzmann, R. & Kawa, D. (1917). Bull. Soc. Chim. Fr. 21, 217–225. CAS Google Scholar
Rigaku/MSC (2000). TEXSAN. Version 1.11. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070. CSD CrossRef CAS Web of Science Google Scholar
Tomura, M. & Yamashita, Y. (2001). Chem. Lett. pp. 532–533. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), is an important synthetic precursor of α-anilinophenylaceamide derivatives, which are potent human immunodeficiency virus type 1 (HIV-1) specific reverse transcriptase inhibitors (Pauwels et al., 1993). A search for α-anilinoaceamide structure in the Cambridge Structural Database (Version 5.28; Allen, 2002) revealed three examples (Peeters et al., 1993; Garg et al., 1993; Opatz & Ferenc, 2005) while no structure of an α-phenyliminoaceamide derivative, such as (I), was found. We report here the molecular and crystal structures of the title α-phenyliminoaceamide derivative (I) (Fig. 1).
The compound (I) was synthesized by the reaction of N-(2,6-dichlorobenzylidene)aniline (Reich et al., 1917) with NaCN and crystallizes in the P1 space group with one molecule in an asymmetric unit. The molecule has an E-conformation about the C7?N1 bond. The bond lengths and angles are within the normal ranges (Allen et al., 1987). Two benzene rings of (I) are planar [r.m.s. deviations of 0.0047 (C1—C6) and 0.0074 (C8—C13) Å from the least-squares planes] with a dihedral angle between their least-squares planes of 69.4 (1)°. Each benzene ring is close to be orthogonal [86.5 (2) for C1—C6 and 73.9 (1)° for C8—C13] to the plane of the amide group (C14/O1/N2). In the amide group, the intramolecular hydrogen bond between atoms N1 and N2 is observed [2.708 (2) Å].
In the crystal structure, the molecules are linked via N—H···O hydrogen bonds [2.935 (2) Å for N2—H2A···O1(-x + 1, -y + 1, -z + 1)] to form a centrosymmetric dimer with a graph-set motif (Bernstein et al., 1995) of R22(8) (Fig. 2 and Table 1). The intermolecular C—H···O [3.260 (2) Å for C3—H3···O1(-x + 1, -y + 1, -z + 2)] and C—H···π [3.484 (2) Å for N2—H2B···Cg1(-x, -y, -z + 1), Cg1 is the centroid of the benzene ring (C8—C13)] interactions are observed between the dimers (Tomura & Yamashita, 2001; Nishio, 2004). The C—H···O hydrogen bond in the crystal structure of (I) is stronger than the typical C—H···O hydrogen bonds in other structures (Taylor & Kennard, 1982; Biradha et al., 1997; Batchelor et al., 2000). The C—H···π interaction corresponds to a geometry of type III (Malone et al., 1997).