metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­samarium(III)]-di-μ-isonicotinato-κ4O:O′] chloride]

aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China, and bGraduate School of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
*Correspondence e-mail: gcguo@fjirsm.ac.cn

(Received 23 August 2007; accepted 12 November 2007; online 6 December 2007)

In the structure of the title compound, {[Sm(C6H4NO2)2(H2O)4]Cl}n, the unique SmIII atom lies on a crystallographic twofold axis and is eight-coordinated by four O atoms from four isonicotinate ligands and four water mol­ecules in a slightly distorted square-anti­prismatic coodination environment. The SmIII atoms are bridged by two carboxyl­ate groups of two isonicotinate ligands, forming an extended chain along the c-axis direction. These chains are cross-linked through hydrogen bonds, forming a three-dimensional framework, with channels which accommodate the chloride anions.

Related literature

For related literature, see: Cai et al. (2003[Cai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. & Huang, J.-S. (2003). Acta Cryst. E59, m249-m251.]); Cui et al. (1999[Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. 4, 281-282.]); Kay et al. (1972[Kay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818-2827.]); Ma et al. (1996[Ma, J. F., Hu, N. H. & Ni, J. Z. (1996). Polyhedron, 15, 1797-1799.], 1999[Ma, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837-5840.]); Mao et al. (1998[Mao, J. G., Zhang, H. J., Ni, J. Z., Wang, S. B. & Mak, T. C. W. (1998). J. Chem. Cryst. 17, 3999-4009.]); Starynowicz (1991[Starynowicz, P. (1991). Acta Cryst. C47, 294-297.], 1993[Starynowicz, P. (1993). Acta Cryst. C49, 1895-1897.]); Zeng et al. (2000[Zeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325-e326.]); Zhang et al. (1999[Zhang, X., Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 1111-1112.]).

[Scheme 1]

Experimental

Crystal data
  • [Sm(C6H4NO2)2(H2O)4]Cl

  • Mr = 502.07

  • Orthorhombic, P b c n

  • a = 8.9713 (4) Å

  • b = 19.6698 (9) Å

  • c = 10.1459 (5) Å

  • V = 1790.38 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.47 mm−1

  • T = 293 (2) K

  • 0.50 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, German.]) Tmin = 0.216, Tmax = 0.500

  • 5176 measured reflections

  • 1572 independent reflections

  • 1326 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 0.98

  • 1572 reflections

  • 127 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N1i 0.821 (6) 1.895 (7) 2.711 (3) 173 (2)
O1W—H1WB⋯Cl1 0.820 (7) 2.411 (8) 3.2267 (18) 173 (2)
O2W—H2WA⋯Cl1ii 0.819 (6) 2.233 (6) 3.0465 (16) 172.3 (8)
O2W—H2WB⋯O1Wiii 0.817 (6) 2.065 (7) 2.873 (2) 169.8 (12)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x, -y+1, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Siemens X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT and SHELXTL. Siemens X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1995[Siemens (1995). SHELXTL. Version 5. Siemens X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much attention has been devoted to the research on lanthanide metal polynuclear compounds because of their magnetic and luminescent properties. Most of these types of compounds were synthesized by the reaction of rare-earth metal ions with bi- or multi-dentate ligands such as nicotinic acid (Starynowicz, 1993; Starynowicz, 1991; Kay et al., 1972; Ma et al., 1996), isonicotinic acid (Ma et al., 1999; Zeng et al., 2000) and isonicotinic acid N-oxide (Mao et al., 1998). In the course of our research in this area, our extended group has reported several such compounds with different bridging ligands (Zhang et al., 1999; Cui et al., 1999; Cai et al., 2003). Herein, we report the synthesis and crystal structure of a new samarium complex with isonicotinic ligand namely {[Sm(C6H4NO2)2(H2O)4]Cl}n.

The structure of the title compound, contains an extended [Sm(C6H4NO2)2(H2O)4]+ cationic chains and Cl- anions. The SmIII ion is eight-coordinated by four O atoms belonging to four different isonicotinic ligands (Sm—O, average 2.363 (2) Å) and four water molecules (Sm—O, average 2.489 (2) Å) (Fig. 1). The coordination geometry of the SmIII cation is best described in terms of its position at the center of a slightly distorted square antiprism. One of the square faces is comprised by O1, O1A, O2W and O2WA atoms with a mean deviation of 0.272 Å and the other one is defined by atoms O2, O2A, O1W and O1WA atoms with a mean deviation of 0.506 Å. The Sm atoms are bridged each other by two syn-syn µ-O,O'-carboxylate groups of isonicotinic ligands to form an extended chain along the c axis. This geometry is similar to that found in [{Eu(L)2(H2O)4}]n.nH2O (L = isonicotinic acid N-oxide) (Mao et al., 1998) and [La(C6H4NO2)2(H2O)4](NO3) (Cai et al., 2003), but differs from those found in Ln(isonicotinate)3(H2O)2 (Ln = Ce, Pr, Nd, Sm, Eu, Tb) (Ma et al., 1999) in which the LnIII atoms are bridged by four syn-syn µ-O,O'-carboxylate groups of isonicotinic ligands (Ln = Ce, Pr, Nd) or coordinated by both two syn-syn µ-O,O'-carboxySmte groups and chelating carboxylate groups of isonicotinic ligands (Ln = Sm, Eu, Tb). To the best of our knowledge, the arrangement in present complex is rare in the lanthanide analogs.

The inter-chain hydrogen bonds, which are created by the uncoordinated nitrogen atoms of isonicotinic ligands and coordinated water molecules between neighboring chains link the cationic chains into a three-dimensional network with channels along the c axis in which the chloride anions are located, as shown in Fig. 2. The other intermolecular hydrogen bonds are formed by the chloride anions and coordinated water molecules (see hydrogen bond geometry table).

Related literature top

For related literature, see: Cai et al. (2003); Cui et al. (1999); Kay et al. (1972); Ma et al. (1996, 1999); Mao et al. (1998); Starynowicz (1991, 1993); Zeng et al. (2000); Zhang et al. (1999).

Experimental top

The title complex was prepared by mixing a 1:1 molar ratio of SmCl3.6(H2O) (37 mg, 0.1 mmol) and C5H4NCOOH (12 mg, 0.1 mmol) in 10 ml mixed solvent of H2O/EtOH (v:v = 1:1). The pH value of the solution was adjusted to 5.8 with NH3. H2O. The reaction mixture was filtered and colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions, with Uiso(H) =1.5Ueq(O). H atoms bonded to C atoms were placed in calclulated positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Much attention has been devoted to the research on lanthanide metal polynuclear compounds because of their magnetic and luminescent properties. Most of these types of compounds were synthesized by the reaction of rare-earth metal ions with bi- or multi-dentate ligands such as nicotinic acid (Starynowicz, 1993; Starynowicz, 1991; Kay et al., 1972; Ma et al., 1996), isonicotinic acid (Ma et al., 1999; Zeng et al., 2000) and isonicotinic acid N-oxide (Mao et al., 1998). In the course of our research in this area, our extended group has reported several such compounds with different bridging ligands (Zhang et al., 1999; Cui et al., 1999; Cai et al., 2003). Herein, we report the synthesis and crystal structure of a new samarium complex with isonicotinic ligand namely {[Sm(C6H4NO2)2(H2O)4]Cl}n.

The structure of the title compound, contains an extended [Sm(C6H4NO2)2(H2O)4]+ cationic chains and Cl- anions. The SmIII ion is eight-coordinated by four O atoms belonging to four different isonicotinic ligands (Sm—O, average 2.363 (2) Å) and four water molecules (Sm—O, average 2.489 (2) Å) (Fig. 1). The coordination geometry of the SmIII cation is best described in terms of its position at the center of a slightly distorted square antiprism. One of the square faces is comprised by O1, O1A, O2W and O2WA atoms with a mean deviation of 0.272 Å and the other one is defined by atoms O2, O2A, O1W and O1WA atoms with a mean deviation of 0.506 Å. The Sm atoms are bridged each other by two syn-syn µ-O,O'-carboxylate groups of isonicotinic ligands to form an extended chain along the c axis. This geometry is similar to that found in [{Eu(L)2(H2O)4}]n.nH2O (L = isonicotinic acid N-oxide) (Mao et al., 1998) and [La(C6H4NO2)2(H2O)4](NO3) (Cai et al., 2003), but differs from those found in Ln(isonicotinate)3(H2O)2 (Ln = Ce, Pr, Nd, Sm, Eu, Tb) (Ma et al., 1999) in which the LnIII atoms are bridged by four syn-syn µ-O,O'-carboxylate groups of isonicotinic ligands (Ln = Ce, Pr, Nd) or coordinated by both two syn-syn µ-O,O'-carboxySmte groups and chelating carboxylate groups of isonicotinic ligands (Ln = Sm, Eu, Tb). To the best of our knowledge, the arrangement in present complex is rare in the lanthanide analogs.

The inter-chain hydrogen bonds, which are created by the uncoordinated nitrogen atoms of isonicotinic ligands and coordinated water molecules between neighboring chains link the cationic chains into a three-dimensional network with channels along the c axis in which the chloride anions are located, as shown in Fig. 2. The other intermolecular hydrogen bonds are formed by the chloride anions and coordinated water molecules (see hydrogen bond geometry table).

For related literature, see: Cai et al. (2003); Cui et al. (1999); Kay et al. (1972); Ma et al. (1996, 1999); Mao et al. (1998); Starynowicz (1991, 1993); Zeng et al. (2000); Zhang et al. (1999).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1995); program(s) used to refine structure: SHELXTL (Siemens, 1995); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXTL (Siemens, 1995).

Figures top
[Figure 1] Fig. 1. View of part of the one-dimensional cationic chain of the title compound. The Cl anions are not shown. Displacement ellipsoids are shown at the 30% probability level {symmetry code: (A) 1 - x,y,0.5 - z].
[Figure 2] Fig. 2. Packing of the title compound. Dashed lines represent the donor-acceptor relatioships of the hydrogen bonds but H atoms are not shown.
catena-Poly[[[tetraaquasamarium(III)]-di-µ-isoniconitinato-κ4O:O'] chloride] top
Crystal data top
[Sm(C6H4NO2)2(H2O)4]ClDx = 1.863 Mg m3
Mr = 502.07Melting point: not measured K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3359 reflections
a = 8.9713 (4) Åθ = 2.1–25.1°
b = 19.6698 (9) ŵ = 3.47 mm1
c = 10.1459 (5) ÅT = 293 K
V = 1790.38 (14) Å3Block, green
Z = 40.50 × 0.20 × 0.20 mm
F(000) = 980
Data collection top
Siemens SMART CCD
diffractometer
1572 independent reflections
Radiation source: fine-focus sealed tube1326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.216, Tmax = 0.500k = 2311
5176 measured reflectionsl = 1012
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0464P)2 + 4.3692P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
1572 reflectionsΔρmax = 0.79 e Å3
127 parametersΔρmin = 0.84 e Å3
6 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0199 (3)
Crystal data top
[Sm(C6H4NO2)2(H2O)4]ClV = 1790.38 (14) Å3
Mr = 502.07Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 8.9713 (4) ŵ = 3.47 mm1
b = 19.6698 (9) ÅT = 293 K
c = 10.1459 (5) Å0.50 × 0.20 × 0.20 mm
Data collection top
Siemens SMART CCD
diffractometer
1572 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1326 reflections with I > 2σ(I)
Tmin = 0.216, Tmax = 0.500Rint = 0.031
5176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0266 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.79 e Å3
1572 reflectionsΔρmin = 0.84 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm10.00000.488380 (7)0.25000.02081 (5)
Cl10.50000.55724 (6)0.25000.0505 (3)
O1W0.24788 (18)0.44913 (8)0.16326 (16)0.0356 (4)
O10.10167 (18)0.43193 (8)0.60241 (16)0.0345 (4)
O20.0437 (2)0.39771 (8)0.39964 (16)0.0366 (4)
O2W0.19848 (17)0.54040 (10)0.11577 (15)0.0394 (5)
N10.1463 (3)0.17887 (11)0.6303 (2)0.0474 (6)
C10.1948 (3)0.22974 (14)0.7048 (3)0.0468 (7)
H1A0.24480.21910.78240.056*
C50.0741 (4)0.19498 (12)0.5206 (3)0.0472 (8)
H2A0.03870.15990.46760.057*
C40.0487 (3)0.26104 (12)0.4810 (2)0.0359 (6)
H3A0.00400.27010.40400.043*
C20.1755 (3)0.29747 (13)0.6739 (2)0.0368 (7)
H4A0.21060.33140.72970.044*
C30.1028 (2)0.31367 (11)0.5579 (2)0.0260 (5)
C60.0799 (3)0.38691 (10)0.5173 (2)0.0266 (5)
H2WA0.2831 (6)0.5451 (13)0.1446 (8)0.039 (7)*
H1WA0.2846 (14)0.4110 (2)0.159 (2)0.053 (8)*
H1WB0.3149 (9)0.4764 (3)0.178 (3)0.077 (11)*
H2WB0.2009 (14)0.5434 (16)0.0355 (5)0.066 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.02907 (9)0.01576 (9)0.01760 (9)0.0000.00088 (6)0.000
Cl10.0344 (5)0.0528 (6)0.0644 (6)0.0000.0134 (4)0.000
O1W0.0404 (8)0.0241 (7)0.0422 (8)0.0090 (7)0.0000 (8)0.0053 (7)
O10.0422 (8)0.0235 (7)0.0379 (8)0.0010 (7)0.0021 (8)0.0083 (7)
O20.0557 (9)0.0238 (7)0.0304 (8)0.0003 (8)0.0067 (8)0.0085 (7)
O2W0.0336 (8)0.0587 (11)0.0260 (8)0.0099 (8)0.0036 (7)0.0054 (8)
N10.0580 (13)0.0274 (10)0.0568 (13)0.0088 (10)0.0028 (12)0.0109 (10)
C10.0543 (15)0.0429 (15)0.0431 (13)0.0059 (13)0.0134 (14)0.0158 (12)
C50.0631 (18)0.0236 (11)0.0550 (15)0.0010 (13)0.0030 (15)0.0041 (12)
C40.0522 (13)0.0260 (11)0.0297 (12)0.0010 (11)0.0093 (12)0.0000 (10)
C20.0469 (14)0.0283 (12)0.0353 (12)0.0018 (11)0.0082 (11)0.0013 (11)
C30.0312 (11)0.0226 (10)0.0242 (10)0.0035 (9)0.0014 (9)0.0010 (8)
C60.0311 (12)0.0188 (9)0.0298 (11)0.0001 (9)0.0035 (10)0.0017 (9)
Geometric parameters (Å, º) top
Sm1—O1i2.3519 (15)O2W—H2WA0.819 (6)
Sm1—O1ii2.3519 (16)O2W—H2WB0.817 (6)
Sm1—O22.3747 (16)N1—C51.326 (4)
Sm1—O2iii2.3747 (16)N1—C11.327 (4)
Sm1—O2Wiii2.4642 (16)C1—C21.379 (4)
Sm1—O2W2.4642 (16)C1—H1A0.9300
Sm1—O1Wiii2.5132 (16)C5—C41.379 (3)
Sm1—O1W2.5132 (16)C5—H2A0.9300
O1W—H1WA0.821 (6)C4—C31.384 (3)
O1W—H1WB0.820 (7)C4—H3A0.9300
O1—C61.252 (3)C2—C31.383 (3)
O1—Sm1i2.3519 (15)C2—H4A0.9300
O2—C61.255 (3)C3—C61.512 (3)
O1i—Sm1—O1ii96.41 (8)Sm1—O1W—H1WA131.0 (10)
O1i—Sm1—O299.06 (6)Sm1—O1W—H1WB112.5 (10)
O1ii—Sm1—O2147.52 (6)H1WA—O1W—H1WB108.2 (10)
O1i—Sm1—O2iii147.52 (6)C6—O1—Sm1i148.18 (15)
O1ii—Sm1—O2iii99.06 (6)C6—O2—Sm1141.07 (14)
O2—Sm1—O2iii82.65 (8)Sm1—O2W—H2WA121.3 (9)
O1i—Sm1—O2Wiii69.61 (6)Sm1—O2W—H2WB126.9 (13)
O1ii—Sm1—O2Wiii78.16 (6)H2WA—O2W—H2WB108.9 (10)
O2—Sm1—O2Wiii80.75 (6)C5—N1—C1117.2 (2)
O2iii—Sm1—O2Wiii141.67 (6)N1—C1—C2123.9 (3)
O1i—Sm1—O2W78.16 (6)N1—C1—H1A118.1
O1ii—Sm1—O2W69.61 (6)C2—C1—H1A118.1
O2—Sm1—O2W141.67 (6)N1—C5—C4123.4 (2)
O2iii—Sm1—O2W80.75 (6)N1—C5—H2A118.3
O2Wiii—Sm1—O2W130.93 (9)C4—C5—H2A118.3
O1i—Sm1—O1Wiii68.82 (5)C5—C4—C3118.9 (2)
O1ii—Sm1—O1Wiii140.43 (5)C5—C4—H3A120.6
O2—Sm1—O1Wiii72.03 (6)C3—C4—H3A120.6
O2iii—Sm1—O1Wiii81.20 (6)C1—C2—C3118.4 (2)
O2Wiii—Sm1—O1Wiii124.99 (5)C1—C2—H4A120.8
O2W—Sm1—O1Wiii71.44 (5)C3—C2—H4A120.8
O1i—Sm1—O1W140.43 (5)C2—C3—C4118.2 (2)
O1ii—Sm1—O1W68.82 (5)C2—C3—C6121.0 (2)
O2—Sm1—O1W81.20 (6)C4—C3—C6120.8 (2)
O2iii—Sm1—O1W72.03 (6)O1—C6—O2125.2 (2)
O2Wiii—Sm1—O1W71.44 (5)O1—C6—C3117.68 (19)
O2W—Sm1—O1W124.99 (5)O2—C6—C3117.10 (18)
O1Wiii—Sm1—O1W144.22 (7)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z1/2; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1iv0.82 (1)1.90 (1)2.711 (3)173 (2)
O1W—H1WB···Cl10.82 (1)2.41 (1)3.2267 (18)173 (2)
O2W—H2WA···Cl1v0.82 (1)2.23 (1)3.0465 (16)172 (1)
O2W—H2WB···O1Wvi0.82 (1)2.07 (1)2.873 (2)170 (1)
Symmetry codes: (iv) x+1/2, y+1/2, z1/2; (v) x1, y, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sm(C6H4NO2)2(H2O)4]Cl
Mr502.07
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)8.9713 (4), 19.6698 (9), 10.1459 (5)
V3)1790.38 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.47
Crystal size (mm)0.50 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.216, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
5176, 1572, 1326
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 0.98
No. of reflections1572
No. of parameters127
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.84

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXTL (Siemens, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N1i0.821 (6)1.895 (7)2.711 (3)173 (2)
O1W—H1WB···Cl10.820 (7)2.411 (8)3.2267 (18)173 (2)
O2W—H2WA···Cl1ii0.819 (6)2.233 (6)3.0465 (16)172.3 (8)
O2W—H2WB···O1Wiii0.817 (6)2.065 (7)2.873 (2)169.8 (12)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1, y, z; (iii) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge the financial support of the NSF of Fujian Province (e0510028, 2006J0275).

References

First citationCai, L.-Z., Wang, M.-S., Zhou, G.-W., Guo, G.-C., Mao, J.-G. & Huang, J.-S. (2003). Acta Cryst. E59, m249–m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. 4, 281–282.  CSD CrossRef Google Scholar
First citationKay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818–2827.  CSD CrossRef CAS Web of Science Google Scholar
First citationMa, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837–5840.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J. F., Hu, N. H. & Ni, J. Z. (1996). Polyhedron, 15, 1797–1799.  Google Scholar
First citationMao, J. G., Zhang, H. J., Ni, J. Z., Wang, S. B. & Mak, T. C. W. (1998). J. Chem. Cryst. 17, 3999–4009.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, German.  Google Scholar
First citationSiemens (1994). SAINT and SHELXTL. Siemens X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1995). SHELXTL. Version 5. Siemens X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Siemens X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStarynowicz, P. (1991). Acta Cryst. C47, 294–297.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationStarynowicz, P. (1993). Acta Cryst. C49, 1895–1897.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325–e326.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Cui, Y., Zheng, F.-K. & Huang, J.-S. (1999). Chem. Lett. pp. 1111–1112.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds