organic compounds
2-(4,5-Dihydro-1,3-oxazol-2-yl)quinoline
aNúcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil, and bLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br, mmartins@base.ufsm.br
The title compound, C12H10N2O, is approximately planar. The angle between the quinoline and 4,5-dihydrooxazole ring systems is 11.91 (12)°. The molecules pack into a herringbone array with no significant π–π interactions. The dihydrooxazole N and O atoms are disordered over two positions, with almost equal site occupancy factors.
Related literature
For related 2-substituted quinoline compounds, see: Mague et al. (1997); Yang et al. (2001); Qi et al. (2003); Xu et al. (2006). For the synthesis, see: Ishihara & Togo (2007). For related literature, see: Allen (2002); Cunico et al. (2006); Hartline et al. (2005).
Experimental
Crystal data
|
Data collection: APEX2/COSMO/BIS (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807045023/lh2491sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807045023/lh2491Isup2.hkl
The title compound was synthesized from quinoline-2-carbaldehyde and aminoethanol according to the general procedure of Ishihara & Togo (2007). The crystal used for the data collection was obtained by recrystallization from hexane followed by slow evaporation at room temperature.
All H atoms were refined using a riding model, with C—H = 0.97%A and Uiso(H) = 1.2Ueq(C) for the methylene C atoms and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for the quinoline C atoms.
Quinoline derivatives are known to possess a variety of biological properties such as antimalarial and antiviral activity (Cunico et al., 2006; Hartline et al., 2005). In addition, oxazoline-derived complexes of Pd(II) and other metals have attracted a great deal of attention due to their high efficiency in enantioselective catalysis. In this context, we were interested in detailed knowledge of the molecular structure of the above derivatives. In this communication we report the π-π interactions.
of the title compound, 2-(4,5-dihydrooxazol-2-yl)quinoline. The analysis was focused on the planarity of the molecule. Both the quinoline and the 4,5-dihydrooxazole rings are planar, with r.m.s. deviations from planarity of 0.0136 Å for the first and 0.0176 ° for the last. The entire molecule is almost planar; the angle between the two rings is 11.91 (12) °. Quinoline and dihydrooxazole rings are essentially planar, with an average r.m.s. deviation from planarity of 0.06 (3) Å for 552 observations for the first and 0.05 (3) Å for 31 observations for the last in the Cambridge Structural Database [CSD, Version 5.28, update of May 2007; Allen, 2002)]. The molecules pack into a herringbone array with no significantFor related 2-substituted quinoline compounds, see: Mague et al. (1997); Yang et al. (2001); Qi et al. (2003); Xu et al. (2006). For the synthesis, see: Ishihara & Togo (2007).
For related literature, see: Allen (2002); Cunico et al. (2006); Hartline et al. (2005).
Data collection: APEX2/COSMO/BIS (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT and SADABS (Bruker, 2006); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H10N2O | F(000) = 416 |
Mr = 198.22 | Dx = 1.34 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1185 reflections |
a = 6.2240 (3) Å | θ = 6.9–40.4° |
b = 13.6649 (6) Å | µ = 0.09 mm−1 |
c = 11.8186 (6) Å | T = 273 K |
β = 102.097 (3)° | Block, colourless |
V = 982.86 (8) Å3 | 0.24 × 0.21 × 0.13 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 1128 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
phi and ω scans | θmax = 27.5°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data. | h = −7→8 |
Tmin = 0.705, Tmax = 1 | k = −16→16 |
9874 measured reflections | l = −15→15 |
2183 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.069P)2] where P = (Fo2 + 2Fc2)/3 |
2183 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C12H10N2O | V = 982.86 (8) Å3 |
Mr = 198.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.2240 (3) Å | µ = 0.09 mm−1 |
b = 13.6649 (6) Å | T = 273 K |
c = 11.8186 (6) Å | 0.24 × 0.21 × 0.13 mm |
β = 102.097 (3)° |
Bruker APEXII CCD area-detector diffractometer | 2183 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data. | 1128 reflections with I > 2σ(I) |
Tmin = 0.705, Tmax = 1 | Rint = 0.039 |
9874 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.14 e Å−3 |
2183 reflections | Δρmin = −0.15 e Å−3 |
137 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.0592 (3) | 0.64386 (12) | 0.61057 (14) | 0.0526 (5) | |
C2 | −0.0108 (3) | 0.68102 (15) | 0.49740 (15) | 0.0664 (5) | |
H2 | −0.1414 | 0.6592 | 0.4508 | 0.080* | |
C3 | 0.1126 (3) | 0.74813 (14) | 0.45761 (15) | 0.0671 (6) | |
H3 | 0.0666 | 0.7738 | 0.3836 | 0.080* | |
C4 | 0.3119 (3) | 0.77950 (12) | 0.52818 (13) | 0.0531 (5) | |
C5 | 0.4498 (3) | 0.85086 (13) | 0.49471 (15) | 0.0644 (5) | |
H5 | 0.4114 | 0.8792 | 0.4217 | 0.077* | |
C6 | 0.6375 (4) | 0.87843 (14) | 0.56788 (18) | 0.0701 (6) | |
H6 | 0.7272 | 0.9256 | 0.5448 | 0.084* | |
C7 | 0.6978 (3) | 0.83631 (15) | 0.67849 (17) | 0.0729 (6) | |
H7 | 0.8267 | 0.8561 | 0.7283 | 0.087* | |
C8 | 0.5700 (3) | 0.76724 (14) | 0.71306 (15) | 0.0644 (5) | |
H8 | 0.6128 | 0.7392 | 0.7860 | 0.077* | |
C9 | 0.3723 (3) | 0.73727 (12) | 0.63946 (13) | 0.0514 (5) | |
C11 | −0.0822 (3) | 0.57463 (13) | 0.65666 (15) | 0.0591 (5) | |
C12 | −0.2299 (4) | 0.48788 (16) | 0.77775 (19) | 0.0812 (7) | |
H12A | −0.3146 | 0.5189 | 0.8280 | 0.097* | |
H12B | −0.1788 | 0.4247 | 0.8099 | 0.097* | |
C13 | −0.3652 (4) | 0.47695 (17) | 0.65699 (18) | 0.0815 (7) | |
H13A | −0.3657 | 0.4096 | 0.6312 | 0.098* | |
H13B | −0.5156 | 0.4977 | 0.6533 | 0.098* | |
N1 | 0.2441 (2) | 0.67018 (10) | 0.67998 (11) | 0.0538 (4) | |
N2 | −0.2574 (3) | 0.54003 (12) | 0.58733 (13) | 0.0854 (7) | 0.473 (17) |
O1 | −0.0448 (2) | 0.54973 (11) | 0.76424 (12) | 0.0751 (7) | 0.473 (17) |
O1A | −0.2574 (3) | 0.54003 (12) | 0.58733 (13) | 0.0854 (7) | 0.527 (17) |
N2A | −0.0448 (2) | 0.54973 (11) | 0.76424 (12) | 0.0751 (7) | 0.527 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0561 (11) | 0.0528 (10) | 0.0477 (10) | 0.0063 (9) | 0.0085 (9) | −0.0031 (8) |
C2 | 0.0650 (13) | 0.0777 (13) | 0.0509 (11) | −0.0018 (11) | −0.0007 (9) | 0.0018 (9) |
C3 | 0.0771 (14) | 0.0744 (14) | 0.0450 (10) | 0.0102 (11) | 0.0019 (10) | 0.0063 (8) |
C4 | 0.0640 (12) | 0.0516 (10) | 0.0448 (9) | 0.0099 (9) | 0.0141 (9) | 0.0004 (7) |
C5 | 0.0796 (14) | 0.0627 (12) | 0.0534 (11) | 0.0080 (11) | 0.0194 (11) | 0.0074 (9) |
C6 | 0.0747 (14) | 0.0647 (13) | 0.0751 (13) | −0.0037 (11) | 0.0253 (11) | 0.0090 (10) |
C7 | 0.0706 (14) | 0.0771 (14) | 0.0676 (13) | −0.0116 (11) | 0.0071 (11) | 0.0052 (10) |
C8 | 0.0699 (14) | 0.0682 (13) | 0.0515 (10) | −0.0032 (10) | 0.0047 (10) | 0.0087 (8) |
C9 | 0.0583 (11) | 0.0506 (10) | 0.0439 (9) | 0.0083 (9) | 0.0075 (8) | −0.0007 (7) |
C11 | 0.0600 (12) | 0.0562 (11) | 0.0604 (12) | 0.0043 (9) | 0.0112 (10) | −0.0050 (9) |
C12 | 0.0734 (15) | 0.0889 (15) | 0.0850 (15) | −0.0119 (12) | 0.0249 (12) | 0.0050 (11) |
C13 | 0.0698 (14) | 0.0826 (15) | 0.0923 (16) | −0.0137 (11) | 0.0178 (13) | 0.0012 (11) |
N1 | 0.0580 (9) | 0.0536 (9) | 0.0481 (8) | 0.0009 (7) | 0.0075 (7) | 0.0019 (6) |
N2 | 0.0765 (12) | 0.1034 (13) | 0.0690 (11) | −0.0272 (9) | −0.0013 (9) | 0.0046 (8) |
O1 | 0.0772 (12) | 0.0848 (12) | 0.0607 (10) | −0.0168 (8) | 0.0083 (8) | 0.0091 (7) |
O1A | 0.0765 (12) | 0.1034 (13) | 0.0690 (11) | −0.0272 (9) | −0.0013 (9) | 0.0046 (8) |
N2A | 0.0772 (12) | 0.0848 (12) | 0.0607 (10) | −0.0168 (8) | 0.0083 (8) | 0.0091 (7) |
C1—N1 | 1.315 (2) | C7—H7 | 0.9300 |
C1—C2 | 1.412 (2) | C8—C9 | 1.411 (2) |
C1—C11 | 1.472 (3) | C8—H8 | 0.9300 |
C2—C3 | 1.343 (3) | C9—N1 | 1.366 (2) |
C2—H2 | 0.9300 | C11—O1 | 1.289 (2) |
C3—C4 | 1.409 (2) | C11—N2 | 1.307 (2) |
C3—H3 | 0.9300 | C12—O1 | 1.464 (2) |
C4—C5 | 1.409 (2) | C12—C13 | 1.505 (3) |
C4—C9 | 1.413 (2) | C12—H12A | 0.9700 |
C5—C6 | 1.353 (2) | C12—H12B | 0.9700 |
C5—H5 | 0.9300 | C13—N2 | 1.450 (2) |
C6—C7 | 1.405 (2) | C13—H13A | 0.9700 |
C6—H6 | 0.9300 | C13—H13B | 0.9700 |
C7—C8 | 1.352 (3) | ||
N1—C1—C2 | 123.27 (18) | C9—C8—H8 | 119.7 |
N1—C1—C11 | 117.23 (15) | N1—C9—C8 | 118.48 (15) |
C2—C1—C11 | 119.46 (16) | N1—C9—C4 | 122.63 (16) |
C3—C2—C1 | 119.45 (17) | C8—C9—C4 | 118.87 (18) |
C3—C2—H2 | 120.3 | O1—C11—N2 | 118.51 (18) |
C1—C2—H2 | 120.3 | O1—C11—C1 | 122.40 (16) |
C2—C3—C4 | 119.85 (16) | N2—C11—C1 | 119.03 (16) |
C2—C3—H3 | 120.1 | O1—C12—C13 | 104.53 (16) |
C4—C3—H3 | 120.1 | O1—C12—H12A | 110.8 |
C3—C4—C5 | 123.84 (16) | C13—C12—H12A | 110.8 |
C3—C4—C9 | 117.14 (18) | O1—C12—H12B | 110.8 |
C5—C4—C9 | 119.01 (17) | C13—C12—H12B | 110.8 |
C6—C5—C4 | 120.54 (17) | H12A—C12—H12B | 108.9 |
C6—C5—H5 | 119.7 | N2—C13—C12 | 104.22 (15) |
C4—C5—H5 | 119.7 | N2—C13—H13A | 110.9 |
C5—C6—C7 | 120.47 (19) | C12—C13—H13A | 110.9 |
C5—C6—H6 | 119.8 | N2—C13—H13B | 110.9 |
C7—C6—H6 | 119.8 | C12—C13—H13B | 110.9 |
C8—C7—C6 | 120.50 (18) | H13A—C13—H13B | 108.9 |
C8—C7—H7 | 119.7 | C1—N1—C9 | 117.63 (14) |
C6—C7—H7 | 119.7 | C11—N2—C13 | 106.47 (15) |
C7—C8—C9 | 120.60 (17) | C11—O1—C12 | 106.02 (16) |
C7—C8—H8 | 119.7 | ||
N1—C1—C2—C3 | −1.4 (3) | N1—C1—C11—O1 | 8.9 (3) |
C11—C1—C2—C3 | 176.45 (16) | C2—C1—C11—O1 | −169.11 (17) |
C1—C2—C3—C4 | 1.1 (3) | N1—C1—C11—N2 | −173.99 (16) |
C2—C3—C4—C5 | −178.70 (17) | C2—C1—C11—N2 | 8.0 (3) |
C2—C3—C4—C9 | 0.2 (3) | O1—C12—C13—N2 | −4.9 (2) |
C3—C4—C5—C6 | 179.00 (17) | C2—C1—N1—C9 | 0.3 (2) |
C9—C4—C5—C6 | 0.2 (3) | C11—C1—N1—C9 | −177.55 (14) |
C4—C5—C6—C7 | 0.0 (3) | C8—C9—N1—C1 | 179.31 (15) |
C5—C6—C7—C8 | 0.4 (3) | C4—C9—N1—C1 | 1.0 (2) |
C6—C7—C8—C9 | −0.9 (3) | O1—C11—N2—C13 | −1.2 (2) |
C7—C8—C9—N1 | −177.34 (17) | C1—C11—N2—C13 | −178.42 (15) |
C7—C8—C9—C4 | 1.1 (3) | C12—C13—N2—C11 | 3.8 (2) |
C3—C4—C9—N1 | −1.3 (2) | N2—C11—O1—C12 | −2.2 (2) |
C5—C4—C9—N1 | 177.67 (14) | C1—C11—O1—C12 | 174.98 (16) |
C3—C4—C9—C8 | −179.57 (15) | C13—C12—O1—C11 | 4.4 (2) |
C5—C4—C9—C8 | −0.6 (2) |
Experimental details
Crystal data | |
Chemical formula | C12H10N2O |
Mr | 198.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 273 |
a, b, c (Å) | 6.2240 (3), 13.6649 (6), 11.8186 (6) |
β (°) | 102.097 (3) |
V (Å3) | 982.86 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.24 × 0.21 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) was used to perform the multi-scan semi-empirical (using intensity measurements) absorption correction and to scale the data. |
Tmin, Tmax | 0.705, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9874, 2183, 1128 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.143, 1.00 |
No. of reflections | 2183 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.15 |
Computer programs: APEX2/COSMO/BIS (Bruker, 2006), SAINT (Bruker, 2006), SAINT and SADABS (Bruker, 2006), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2007), WinGX (Farrugia, 1999).
Acknowledgements
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/PRONEX) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support. Fellowships from CNPq and CAPES are also acknowledged. The diffractomer was funded by a CT-INFRA grant from the Financiadora de Estudos e Projetos (FINEP), Brazil.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact Gbr, Bonn, Germany. Google Scholar
Bruker (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., de Souza, M. V. N., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hartline, C. B., Harden, E. A., Williams-Aziz, S. L., Kushner, N. L., Brideau, R. J. & Kern, E. R. (2005). Antiviral Res. 65, 97–105. Web of Science CrossRef PubMed CAS Google Scholar
Ishihara, M. & Togo, H. (2007). Tetrahedron, 63, 1474–1480. Web of Science CrossRef CAS Google Scholar
Mague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973–979. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Qi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o104–o105. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, R.-H., Zhou, J., Xu, Y., Qi, L., Shen, X. & Zhu, D.-R. (2006). Acta Cryst. E62, o5234–o5235. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, Q.-Y., Zhou, Z.-Y. & Qi, J.-Y. (2001). Acta Cryst. E57, o971–o972. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives are known to possess a variety of biological properties such as antimalarial and antiviral activity (Cunico et al., 2006; Hartline et al., 2005). In addition, oxazoline-derived complexes of Pd(II) and other metals have attracted a great deal of attention due to their high efficiency in enantioselective catalysis. In this context, we were interested in detailed knowledge of the molecular structure of the above derivatives. In this communication we report the crystal structure of the title compound, 2-(4,5-dihydrooxazol-2-yl)quinoline. The analysis was focused on the planarity of the molecule. Both the quinoline and the 4,5-dihydrooxazole rings are planar, with r.m.s. deviations from planarity of 0.0136 Å for the first and 0.0176 ° for the last. The entire molecule is almost planar; the angle between the two rings is 11.91 (12) °. Quinoline and dihydrooxazole rings are essentially planar, with an average r.m.s. deviation from planarity of 0.06 (3) Å for 552 observations for the first and 0.05 (3) Å for 31 observations for the last in the Cambridge Structural Database [CSD, Version 5.28, update of May 2007; Allen, 2002)]. The molecules pack into a herringbone array with no significant π-π interactions.