organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl­imidazolium) chloranilate

aDepartment of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
*Correspondence e-mail: jialihui715@gmail.com

(Received 21 September 2007; accepted 2 October 2007; online 6 December 2007)

The asymmetric unit of the title structure, 2C4H7N2+·C6Cl2O42−, consists of one 2-methyl­imidazolium cation and one-half of a chloranilate anion, the formula unit being generated by crystallographic inversion symmetry. N—H⋯O hydrogen bonds link the ions into a two-dimensional framework parallel to the (102) plane. No ππ stacking or C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Ishida & Kashino (2001[Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476-479.]); Ishida (2004a[Ishida, H. (2004a). Acta Cryst. E60, o2506-o2508.],b[Ishida, H. (2004b). Acta Cryst. E60, o974-o976.]); Meng & Qian (2006[Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178-o4180.]); Min et al. (2006[Min, S. K., Rheingold, A. L., DiPasquale, A. & Miller, J. S. (2006). Inorg. Chem. 45, 6135-6137.]); Wang & Wei (2005[Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129-o3130.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H7N2+·C6Cl2O42−

  • Mr = 373.20

  • Monoclinic, P 21 /c

  • a = 8.5092 (10) Å

  • b = 7.6658 (9) Å

  • c = 12.7204 (16) Å

  • β = 91.204 (2)°

  • V = 829.57 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 (2) K

  • 0.12 × 0.05 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.992

  • 9164 measured reflections

  • 1880 independent reflections

  • 1150 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.132

  • S = 1.01

  • 1880 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.99 (3) 1.73 (3) 2.713 (3) 172 (2)
N2—H2A⋯O2i 0.82 (3) 1.96 (3) 2.719 (3) 152 (3)
N2—H2A⋯O1i 0.82 (3) 2.40 (3) 3.014 (3) 132 (3)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Chloranilic acid (CA) is a potential bridging ligand which is often used in the synthesis of metal organic frameworks (Min et al., 2006). Also some organic salts containing chloranilate have been reported recently (Ishida, 2004a,b; Ishida & Kashino, 2001; Wang & Wei, 2005, Meng & Qian, 2006). In the hydrothermal process using equimolar amounts of CA, 2-Methylimidazole (2-MeIm) and copper nitrate, we unexpectedly obtained the title compound, and report herein its crystal structure.

The asymmetric unit contains one 2-methylimidazolium cation, half of a chloranilate anion the formula unit being generated by crystallogrphic inversion symmetry (Fig. 1). A proton has been transferred from the hydroxyl group in CA to the 2-MeIm N atom, forming the 1:2 organic salt.

In the crystal structure, by a combination of three N—H···O hydrogen bonds (Table 1) the molecules are linked into a two-dimensional framework (Fig. 2) built from the R21(5) and R68(32) rings (Bernstein et al., 1995) running parallel to the (102) plane. Two such networks pass through the cell and analysis using PLATON (Spek, 2003) shows that there are no direction-specific interactions such as ππ and C–H···π interactions observed in the packing of the structure.

Related literature top

For related literature, see: Bernstein et al. (1995); Ishida & Kashino (2001); Ishida (2004a,b); Meng & Qian (2006); Min et al. (2006); Wang & Wei (2005).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of CA (0.2 mmol, 41.4 mg), 2-MeIm (0.2 mmol, 16.2 mg) and Cu(NO3)2.3(H2O)(0.2 mmol, 48 mg) in 10 ml water solvent sealed in a 25 ml Teflon-lined autoclave. The mixture was heated to 393 K and maintained for 48 h. After slowly cooling to room temperature with the rate of 5°/h, dark red crystals suitable for single-crystal X-ray diffraction analysis were obtained. The crystals were filtered and washed with distilled water and dried in air.

Refinement top

H atoms bonded to carbon atoms were located at the geometrical positions [C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), and Uiso(H) = 1.5Ueq (methyl) or 1.2Ueq (aromatic). H atoms attached to N atoms were located in difference fourier maps and N—H distance refined freely and their Uiso values set 1.2 times of their carrier atoms.

Structure description top

Chloranilic acid (CA) is a potential bridging ligand which is often used in the synthesis of metal organic frameworks (Min et al., 2006). Also some organic salts containing chloranilate have been reported recently (Ishida, 2004a,b; Ishida & Kashino, 2001; Wang & Wei, 2005, Meng & Qian, 2006). In the hydrothermal process using equimolar amounts of CA, 2-Methylimidazole (2-MeIm) and copper nitrate, we unexpectedly obtained the title compound, and report herein its crystal structure.

The asymmetric unit contains one 2-methylimidazolium cation, half of a chloranilate anion the formula unit being generated by crystallogrphic inversion symmetry (Fig. 1). A proton has been transferred from the hydroxyl group in CA to the 2-MeIm N atom, forming the 1:2 organic salt.

In the crystal structure, by a combination of three N—H···O hydrogen bonds (Table 1) the molecules are linked into a two-dimensional framework (Fig. 2) built from the R21(5) and R68(32) rings (Bernstein et al., 1995) running parallel to the (102) plane. Two such networks pass through the cell and analysis using PLATON (Spek, 2003) shows that there are no direction-specific interactions such as ππ and C–H···π interactions observed in the packing of the structure.

For related literature, see: Bernstein et al. (1995); Ishida & Kashino (2001); Ishida (2004a,b); Meng & Qian (2006); Min et al. (2006); Wang & Wei (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure, showing the formation of the two-dimensional network by N—H···O hydrogen bonds. H-bonds are shown as dashed lines.
Bis(2-methylimidazolium) chloranilate top
Crystal data top
2C4H7N2+·C6Cl2O42F(000) = 384
Mr = 373.20Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 863 reflections
a = 8.5092 (10) Åθ = 2.4–19.5°
b = 7.6658 (9) ŵ = 0.42 mm1
c = 12.7204 (16) ÅT = 296 K
β = 91.204 (2)°Plate, red
V = 829.57 (17) Å30.12 × 0.05 × 0.02 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1880 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
0.3° wide ω exposures scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.942, Tmax = 0.992k = 99
9164 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
1880 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C4H7N2+·C6Cl2O42V = 829.57 (17) Å3
Mr = 373.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5092 (10) ŵ = 0.42 mm1
b = 7.6658 (9) ÅT = 296 K
c = 12.7204 (16) Å0.12 × 0.05 × 0.02 mm
β = 91.204 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1150 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.992Rint = 0.067
9164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.28 e Å3
1880 reflectionsΔρmin = 0.23 e Å3
116 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9935 (3)0.3795 (3)0.1722 (2)0.0386 (7)
C20.8754 (4)0.2917 (4)0.0266 (2)0.0472 (7)
H20.85910.24500.04030.057*
C30.7656 (3)0.3549 (4)0.0898 (2)0.0457 (7)
H30.65820.36090.07510.055*
C41.1147 (4)0.4178 (5)0.2537 (2)0.0614 (9)
H4A1.16630.31160.27450.092*
H4B1.06610.46950.31360.092*
H4C1.19050.49740.22600.092*
C50.5122 (3)0.3827 (3)0.41260 (19)0.0346 (6)
C60.6258 (3)0.5121 (3)0.42497 (17)0.0310 (6)
C70.6127 (3)0.6382 (3)0.51780 (19)0.0336 (6)
Cl10.52835 (9)0.23376 (10)0.31053 (5)0.0543 (3)
N10.8402 (3)0.4086 (3)0.17996 (17)0.0404 (6)
H1A0.794 (3)0.452 (3)0.246 (2)0.049*
N21.0162 (3)0.3091 (3)0.07907 (18)0.0419 (6)
H2A1.105 (4)0.275 (4)0.066 (2)0.050*
O10.7415 (2)0.5352 (2)0.36643 (13)0.0413 (5)
O20.7146 (2)0.7533 (3)0.52727 (15)0.0512 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0307 (16)0.0390 (16)0.0466 (16)0.0006 (13)0.0121 (12)0.0012 (12)
C20.0474 (19)0.0524 (18)0.0419 (15)0.0007 (15)0.0054 (14)0.0076 (14)
C30.0331 (16)0.0542 (18)0.0500 (17)0.0010 (14)0.0045 (14)0.0066 (14)
C40.0455 (19)0.074 (2)0.065 (2)0.0006 (17)0.0009 (16)0.0138 (17)
C50.0292 (14)0.0381 (15)0.0370 (13)0.0020 (12)0.0105 (11)0.0084 (11)
C60.0245 (14)0.0386 (15)0.0299 (12)0.0022 (11)0.0042 (11)0.0018 (11)
C70.0285 (14)0.0361 (15)0.0363 (13)0.0010 (12)0.0059 (11)0.0007 (11)
Cl10.0482 (5)0.0624 (5)0.0532 (5)0.0135 (4)0.0227 (4)0.0260 (4)
N10.0347 (14)0.0444 (14)0.0428 (13)0.0027 (11)0.0158 (11)0.0063 (11)
N20.0347 (14)0.0450 (15)0.0468 (13)0.0075 (11)0.0177 (12)0.0038 (11)
O10.0315 (11)0.0521 (12)0.0409 (10)0.0071 (9)0.0177 (8)0.0033 (9)
O20.0441 (12)0.0547 (13)0.0557 (12)0.0212 (10)0.0237 (10)0.0174 (10)
Geometric parameters (Å, º) top
C1—N21.319 (3)C4—H4C0.9600
C1—N11.329 (3)C5—C61.392 (3)
C1—C41.477 (4)C5—C7i1.406 (3)
C2—C31.337 (4)C5—Cl11.737 (2)
C2—N21.366 (4)C6—O11.259 (3)
C2—H20.9300C6—C71.532 (3)
C3—N11.363 (3)C7—O21.242 (3)
C3—Cl13.613 (3)C7—C5i1.406 (3)
C3—H30.9300N1—H1A0.99 (3)
C4—H4A0.9600N2—H2A0.82 (3)
C4—H4B0.9600
N2—C1—N1107.3 (2)H4B—C4—H4C109.5
N2—C1—C4126.8 (3)C6—C5—C7i122.8 (2)
N1—C1—C4125.9 (3)C6—C5—Cl1119.15 (18)
C3—C2—N2106.7 (3)C7i—C5—Cl1117.96 (19)
C3—C2—H2126.7O1—C6—C5125.7 (2)
N2—C2—H2126.7O1—C6—C7115.9 (2)
C2—C3—N1107.3 (3)C5—C6—C7118.4 (2)
C2—C3—Cl1141.6 (2)O2—C7—C5i123.7 (2)
N1—C3—Cl171.46 (15)O2—C7—C6117.5 (2)
C2—C3—H3126.4C5i—C7—C6118.8 (2)
N1—C3—H3126.4C5—Cl1—C3117.80 (10)
Cl1—C3—H366.9C1—N1—C3109.1 (2)
C1—C4—H4A109.5C1—N1—H1A121.6 (15)
C1—C4—H4B109.5C3—N1—H1A129.0 (15)
H4A—C4—H4B109.5C1—N2—C2109.6 (2)
C1—C4—H4C109.5C1—N2—H2A118 (2)
H4A—C4—H4C109.5C2—N2—H2A132 (2)
N2—C2—C3—N10.4 (3)C7i—C5—Cl1—C3161.62 (18)
N2—C2—C3—Cl182.1 (4)C2—C3—Cl1—C5135.2 (3)
C7i—C5—C6—O1178.7 (2)N1—C3—Cl1—C540.6 (2)
Cl1—C5—C6—O11.6 (4)N2—C1—N1—C30.2 (3)
C7i—C5—C6—C70.7 (4)C4—C1—N1—C3179.3 (3)
Cl1—C5—C6—C7177.85 (17)C2—C3—N1—C10.2 (3)
O1—C6—C7—O20.9 (3)Cl1—C3—N1—C1139.7 (2)
C5—C6—C7—O2179.6 (2)N1—C1—N2—C20.4 (3)
O1—C6—C7—C5i178.8 (2)C4—C1—N2—C2179.1 (3)
C5—C6—C7—C5i0.7 (4)C3—C2—N2—C10.5 (3)
C6—C5—Cl1—C321.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.99 (3)1.73 (3)2.713 (3)172 (2)
N2—H2A···O2ii0.82 (3)1.96 (3)2.719 (3)152 (3)
N2—H2A···O1ii0.82 (3)2.40 (3)3.014 (3)132 (3)
Symmetry code: (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C4H7N2+·C6Cl2O42
Mr373.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.5092 (10), 7.6658 (9), 12.7204 (16)
β (°) 91.204 (2)
V3)829.57 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.12 × 0.05 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
9164, 1880, 1150
Rint0.067
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.01
No. of reflections1880
No. of parameters116
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.99 (3)1.73 (3)2.713 (3)172 (2)
N2—H2A···O2i0.82 (3)1.96 (3)2.719 (3)152 (3)
N2—H2A···O1i0.82 (3)2.40 (3)3.014 (3)132 (3)
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge support from the Key Project of the National Natural Science Foundation of China (grant No. 20490210) and from National Natural Science Foundation of China (grant Nos. 10574047 and 10574048). This work was also supported by the National 973 Project under grant No. 2006CB921600 and by the Programme on Major International Cooperation Projects (grant No. 2003DF000034).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIshida, H. (2004a). Acta Cryst. E60, o2506–o2508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. (2004b). Acta Cryst. E60, o974–o976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshida, H. & Kashino, S. (2001). Acta Cryst. C57, 476–479.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMin, S. K., Rheingold, A. L., DiPasquale, A. & Miller, J. S. (2006). Inorg. Chem. 45, 6135–6137.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds