organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo­benzaldehyde cyano­hydrin

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 3 October 2007; accepted 9 October 2007; online 6 December 2007)

The title compound [alternatively called (2-bromo­phen­yl)­(hydr­oxy)acetonitrile], C8H6BrNO, is the reaction product of 2-bromo­benzaldehyde and hydrogen cyanide. Bond lengths and angles are normal. In the crystal structure, an intermolecular hydrogen bond between the hydr­oxy group and the nitrile N atom is established. In agreement with bonding considerations, a linear C—N⋯H acceptor geometry is observed. Each mol­ecule is a single donor and a single acceptor; extended hydrogen-bonded chains are formed along [100].

Related literature

For the synthesis of the title compound, see: Becker et al. (2001[Becker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum - Organisch-chemisches Grundpraktikum. Weinheim: Wiley-VCH.]). For the crystal structure of a related compound, see: Flores-Morales et al. (2003[Flores-Morales, V., Fernández-Zertuche, M. & Ordóñez, M. (2003). Tetrahedron Asymmetry, 14, 2693-2698.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrNO

  • Mr = 212.05

  • Orthorhombic, P b c a

  • a = 8.0538 (3) Å

  • b = 13.9970 (5) Å

  • c = 14.2969 (5) Å

  • V = 1611.68 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 200 (2) K

  • 0.14 × 0.09 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Version 2. University of Göttingen, Germany.]) Tmin = 0.624, Tmax = 0.86

  • 19593 measured reflections

  • 1844 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.02

  • 1844 reflections

  • 102 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O—H82⋯Ni 0.84 2.01 2.844 (3) 170
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared as in intermediate in the synthesis of 2-bromomandelic acid.

In the title compound a phenyl moiety, a hydroxy group and a cyano group are bonded to one C atom. The aromatic moiety bears a Br atom in 2- position to this C atom (Fig. 1). Bond lengths and angles show no significant deviations from values apparent in the literature for similar bonds (Allen et al., 1987).

In the crystal structure, hydrogen bonds between the hydroxy groups and the N atom result in the formation of infinite chains along [100]. The aromatic moieties are arranged parallel to each other (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Becker et al. (2001). For the crystal structure of a related compound, see: Flores-Morales et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained as an intermediate in the synthesis of 2-bromomandelic acid according to a published procedure (Becker et al., 2001) upon addition of 2-bromobenzaldehyde to an acidified aqueous solution of potassium cyanide. After workup, crystals suitable for X-ray analysis were obtained upon free evaporation of a solution of the compound in diethylether.

Refinement top

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined.

Structure description top

The title compound was prepared as in intermediate in the synthesis of 2-bromomandelic acid.

In the title compound a phenyl moiety, a hydroxy group and a cyano group are bonded to one C atom. The aromatic moiety bears a Br atom in 2- position to this C atom (Fig. 1). Bond lengths and angles show no significant deviations from values apparent in the literature for similar bonds (Allen et al., 1987).

In the crystal structure, hydrogen bonds between the hydroxy groups and the N atom result in the formation of infinite chains along [100]. The aromatic moieties are arranged parallel to each other (Fig. 2).

For the synthesis of the title compound, see: Becker et al. (2001). For the crystal structure of a related compound, see: Flores-Morales et al. (2003). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing of viewed along [-1 0 0]. Hydrogen bonds are drawn as yellow bars.
(2-bromophenyl)(hydroxy)acetonitrile top
Crystal data top
C8H6BrNOF(000) = 832
Mr = 212.05Dx = 1.748 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10818 reflections
a = 8.0538 (3) Åθ = 3.1–27.5°
b = 13.9970 (5) ŵ = 5.04 mm1
c = 14.2969 (5) ÅT = 200 K
V = 1611.68 (10) Å3Platelet, colourless
Z = 80.14 × 0.09 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1844 independent reflections
Radiation source: rotating anode1351 reflections with I > 2σ(I)
MONTEL, graded multilayered X-ray optics monochromatorRint = 0.040
CCD; rotation images; thick slices scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.624, Tmax = 0.86k = 1815
19593 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.083Only H-atom displacement parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.038P)2 + 1.1081P]
where P = (Fo2 + 2Fc2)/3
1844 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C8H6BrNOV = 1611.68 (10) Å3
Mr = 212.05Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.0538 (3) ŵ = 5.04 mm1
b = 13.9970 (5) ÅT = 200 K
c = 14.2969 (5) Å0.14 × 0.09 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1351 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.86Rint = 0.040
19593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083Only H-atom displacement parameters refined
S = 1.02Δρmax = 0.29 e Å3
1844 reflectionsΔρmin = 0.59 e Å3
102 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.25307 (3)0.16689 (2)0.310767 (19)0.04887 (13)
O0.1470 (3)0.09045 (13)0.01121 (14)0.0533 (5)
H820.08230.13020.01350.055 (3)*
N0.4211 (3)0.26649 (17)0.05011 (16)0.0501 (6)
C10.3312 (3)0.20716 (18)0.07017 (16)0.0367 (5)
C20.2128 (3)0.12902 (19)0.09341 (17)0.0364 (5)
H20.12060.15520.13270.055 (3)*
C30.3037 (3)0.05167 (17)0.14759 (16)0.0309 (5)
C40.3299 (3)0.05819 (17)0.24325 (16)0.0330 (5)
C50.4107 (3)0.01275 (19)0.29246 (18)0.0410 (6)
H50.42530.00750.35820.055 (3)*
C60.4697 (4)0.09138 (18)0.2449 (2)0.0469 (7)
H60.52610.14050.27790.055 (3)*
C70.4473 (3)0.09931 (18)0.1491 (2)0.0443 (6)
H70.48990.15310.11640.055 (3)*
C80.3623 (3)0.02833 (17)0.10115 (18)0.0392 (6)
H80.34420.03470.03580.055 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0455 (2)0.0566 (2)0.04446 (19)0.00087 (13)0.00098 (12)0.01748 (11)
O0.0627 (14)0.0467 (11)0.0505 (12)0.0086 (9)0.0308 (10)0.0072 (9)
N0.0567 (15)0.0477 (14)0.0458 (13)0.0024 (12)0.0043 (11)0.0100 (11)
C10.0415 (14)0.0352 (13)0.0334 (12)0.0049 (12)0.0002 (11)0.0049 (10)
C20.0362 (13)0.0366 (13)0.0363 (12)0.0030 (11)0.0045 (10)0.0020 (11)
C30.0259 (10)0.0319 (11)0.0350 (12)0.0025 (9)0.0007 (10)0.0051 (10)
C40.0272 (12)0.0357 (12)0.0361 (12)0.0071 (10)0.0011 (10)0.0009 (10)
C50.0396 (14)0.0482 (15)0.0352 (12)0.0121 (12)0.0060 (11)0.0110 (11)
C60.0435 (16)0.0375 (14)0.0596 (18)0.0003 (12)0.0086 (14)0.0154 (13)
C70.0455 (16)0.0302 (13)0.0573 (17)0.0032 (11)0.0012 (13)0.0015 (12)
C80.0427 (14)0.0371 (14)0.0378 (12)0.0015 (11)0.0004 (11)0.0001 (10)
Geometric parameters (Å, º) top
Br—C41.905 (2)C4—C51.380 (3)
O—C21.398 (3)C5—C61.379 (4)
O—H820.8400C5—H50.9500
N—C11.138 (3)C6—C71.386 (4)
C1—C21.489 (4)C6—H60.9500
C2—C31.519 (3)C7—C81.387 (4)
C2—H21.0000C7—H70.9500
C3—C81.385 (3)C8—H80.9500
C3—C41.387 (3)
C2—O—H82109.5C3—C4—Br120.18 (17)
N—C1—C2178.3 (3)C6—C5—C4119.0 (2)
O—C2—C1109.8 (2)C6—C5—H5120.5
O—C2—C3109.6 (2)C4—C5—H5120.5
C1—C2—C3109.2 (2)C5—C6—C7120.5 (2)
O—C2—H2109.4C5—C6—H6119.8
C1—C2—H2109.4C7—C6—H6119.8
C3—C2—H2109.4C6—C7—C8119.7 (2)
C8—C3—C4118.3 (2)C6—C7—H7120.2
C8—C3—C2119.7 (2)C8—C7—H7120.2
C4—C3—C2122.0 (2)C3—C8—C7120.7 (2)
C5—C4—C3121.8 (2)C3—C8—H8119.6
C5—C4—Br118.01 (19)C7—C8—H8119.6
O—C2—C3—C822.9 (3)C3—C4—C5—C61.3 (4)
C1—C2—C3—C897.4 (3)Br—C4—C5—C6178.99 (19)
O—C2—C3—C4156.8 (2)C4—C5—C6—C70.4 (4)
C1—C2—C3—C482.9 (3)C5—C6—C7—C81.1 (4)
C8—C3—C4—C50.6 (3)C4—C3—C8—C71.0 (4)
C2—C3—C4—C5179.1 (2)C2—C3—C8—C7179.3 (2)
C8—C3—C4—Br179.68 (18)C6—C7—C8—C31.8 (4)
C2—C3—C4—Br0.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H82···Ni0.842.012.844 (3)170
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC8H6BrNO
Mr212.05
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)8.0538 (3), 13.9970 (5), 14.2969 (5)
V3)1611.68 (10)
Z8
Radiation typeMo Kα
µ (mm1)5.04
Crystal size (mm)0.14 × 0.09 × 0.03
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.624, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
19593, 1844, 1351
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.02
No. of reflections1844
No. of parameters102
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.59

Computer programs: COLLECT (Nonius, 2004), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H82···Ni0.842.012.844 (3)170.1
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank Dr Peter Mayer and Sandra Albrecht for professional support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBecker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum – Organisch-chemisches Grundpraktikum. Weinheim: Wiley-VCH.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFlores-Morales, V., Fernández-Zertuche, M. & Ordóñez, M. (2003). Tetrahedron Asymmetry, 14, 2693–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Version 2. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds