metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Methyl­piperazinediium penta­chlorido­anti­monate(III) monohydrate

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: apharm@sina.com

(Received 6 November 2007; accepted 28 November 2007; online 12 December 2007)

The asymmetric unit of the title compound, (C5H14N2)[SbCl5]·H2O, consists of an N-methyl­piperazinediium cation, a penta­chloridoanti­monate anion with the SbIII ion in a slightly distorted square-pyramidal coordination environment, and one solvent water mol­ecule. The crystal structure is stabilized by inter­molecular N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Baker & Williams (1978[Baker, W. A. & Williams, D. E. (1978). Acta Cryst. B34, 1111-1116.]); Bujak & Zaleski (1999[Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775-1778.]); Clemente & Marzotto (2003[Clemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43-50.]); Feng et al. (2007[Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786-m1787.]); Knodler et al. (1988[Knodler, R., Ensinger, U., Schwarz, W. & Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208-218.]); Linden et al. (1999[Linden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122-128.]); Marsh (1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[SbCl5]·H2O

  • Mr = 419.20

  • Monoclinic, P 21 /c

  • a = 9.600 (4) Å

  • b = 7.934 (3) Å

  • c = 19.966 (6) Å

  • β = 106.765 (16)°

  • V = 1456.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 273 (2) K

  • 0.33 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.460, Tmax = 0.696

  • 7167 measured reflections

  • 2577 independent reflections

  • 2400 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.07

  • 2577 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sb1—Cl2 2.4110 (10)
Sb1—Cl3 2.4623 (10)
Sb1—Cl1 2.5538 (11)
Sb1—Cl4 2.7446 (11)
Sb1—Cl5 2.9112 (11)
Cl2—Sb1—Cl3 89.29 (4)
Cl2—Sb1—Cl1 90.76 (4)
Cl3—Sb1—Cl1 93.67 (4)
Cl2—Sb1—Cl4 91.71 (4)
Cl3—Sb1—Cl4 90.95 (4)
Cl1—Sb1—Cl4 174.79 (3)
Cl5—Sb1—Cl1 92.15(4)
Cl5—Sb1—Cl2 84.50(4)
Cl5—Sb1—Cl3 171.54(4)
Cl5—Sb1—Cl4 83.52(4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1F⋯Cl1i 0.82 2.57 3.346 (4) 159
O1—H1G⋯Cl4 0.82 2.51 3.223 (5) 147
N1—H1A⋯Cl5ii 0.90 2.43 3.179 (4) 141
N1—H1B⋯O1iii 0.90 1.91 2.801 (5) 168
N2—H2⋯Cl5 0.91 2.28 3.133 (5) 157
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogenoantimonates constitute a group of salts in which a number of compounds have been reported (e.g. Feng et al., 2007; Bujak & Zaleski, 1999; Knodler et al., 1988; Baker & Williams, 1978 and see: Clemente & Marzotto (2003); Marsh et al. (1995) for corrected space groups of some of these types of compounds). In our laboratory, a compound containing pentachloridoantimonate has been synthesized, its crystal structure is reported herein.

As shown in Fig. 1, an ion pair consisting of N-methylpiperazinium and (SbCl5)2+, and one water molecule comprise the formula unit. In the selected asymmetric unit The SbCl5 anion is linked to N-methylpiperazinium and the water molecule by N—H···Cl and O—H···Cl hydrogen bonds.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4110 (10) to 2.9112 (11) Å. The Sb—Cl distances are slightly different to the values of 2.499 (4)–2.768 (4)Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl2) is ca 0.50 Å. The slight deformation of the square-pyramidal coordination environment may be attributed to the presence of relatively strong N—H···Cl hydrogen bonds. The atoms Cl1/Cl3/Cl4/Cl5 form the basal plane, while atom Cl2 is the apical atom. The structure of the anion is similar to that of the (TiCl5)2- anion (Linden et al., 1999).

The six-membered piperazine ring is in chair conformation. The crystal structure is stabilized by N—H···Cl, O—H···Cl and N—H···O hydrogen bonds, and by weak C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

Related literature top

For related literature, see: Baker & Williams (1978); Bujak & Zaleski (1999); Clemente & Marzotto (2003); Feng et al. (2007); Knodler et al. (1988); Linden et al. (1999); Marsh (1995).

Experimental top

SbCl3, N-methylpiperazine and 30% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 373 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were fromed, collected and washed with dilute aqueous HCl.

Refinement top

H atoms were included in calculated positions with O—H = 0.82, N—H = 0.90 - 0.91 and C—H = 0.96–0.97 Å and included in the riding-model approximation with Uiso(H) = 1.2Ueq(C,N,O) or 1.5Ueq(C) for methyl H atoms.

Structure description top

Halogenoantimonates constitute a group of salts in which a number of compounds have been reported (e.g. Feng et al., 2007; Bujak & Zaleski, 1999; Knodler et al., 1988; Baker & Williams, 1978 and see: Clemente & Marzotto (2003); Marsh et al. (1995) for corrected space groups of some of these types of compounds). In our laboratory, a compound containing pentachloridoantimonate has been synthesized, its crystal structure is reported herein.

As shown in Fig. 1, an ion pair consisting of N-methylpiperazinium and (SbCl5)2+, and one water molecule comprise the formula unit. In the selected asymmetric unit The SbCl5 anion is linked to N-methylpiperazinium and the water molecule by N—H···Cl and O—H···Cl hydrogen bonds.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4110 (10) to 2.9112 (11) Å. The Sb—Cl distances are slightly different to the values of 2.499 (4)–2.768 (4)Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl2) is ca 0.50 Å. The slight deformation of the square-pyramidal coordination environment may be attributed to the presence of relatively strong N—H···Cl hydrogen bonds. The atoms Cl1/Cl3/Cl4/Cl5 form the basal plane, while atom Cl2 is the apical atom. The structure of the anion is similar to that of the (TiCl5)2- anion (Linden et al., 1999).

The six-membered piperazine ring is in chair conformation. The crystal structure is stabilized by N—H···Cl, O—H···Cl and N—H···O hydrogen bonds, and by weak C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

For related literature, see: Baker & Williams (1978); Bujak & Zaleski (1999); Clemente & Marzotto (2003); Feng et al. (2007); Knodler et al. (1988); Linden et al. (1999); Marsh (1995).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels, and 30% probability displacement ellipsoids. Hydrogen bonds are illustrated as dashed lines.
[Figure 2] Fig. 2. The packing viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines.
N-Methylpiperazinediium pentachloridoantimonate(III) monohydrate top
Crystal data top
(C5H14N2)[SbCl5]·H2OF(000) = 816
Mr = 419.20Dx = 1.912 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3256 reflections
a = 9.600 (4) Åθ = 2.1–25.0°
b = 7.934 (3) ŵ = 2.79 mm1
c = 19.966 (6) ÅT = 273 K
β = 106.765 (16)°Block, brown
V = 1456.1 (9) Å30.33 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2577 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.460, Tmax = 0.696k = 99
7167 measured reflectionsl = 1623
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0213P)2 + 0.8984P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2577 reflectionsΔρmax = 0.35 e Å3
129 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (3)
Crystal data top
(C5H14N2)[SbCl5]·H2OV = 1456.1 (9) Å3
Mr = 419.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.600 (4) ŵ = 2.79 mm1
b = 7.934 (3) ÅT = 273 K
c = 19.966 (6) Å0.33 × 0.18 × 0.14 mm
β = 106.765 (16)°
Data collection top
Bruker SMART CCD
diffractometer
2577 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2400 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.696Rint = 0.021
7167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
2577 reflectionsΔρmin = 0.48 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6846 (3)1.0018 (3)0.96651 (12)0.0597 (6)
H1F0.68111.07700.93780.072*
H1G0.72460.91490.96070.072*
N10.8129 (3)0.3813 (3)0.60274 (12)0.0430 (6)
H1A0.85800.28140.60420.052*
H1B0.76640.40450.55770.052*
N20.7418 (2)0.6714 (3)0.67442 (12)0.0386 (5)
H20.79030.64270.71920.046*
C10.6710 (4)0.8384 (4)0.67596 (18)0.0546 (8)
H1C0.74330.91960.69880.082*
H1D0.59990.82840.70110.082*
H1E0.62420.87470.62900.082*
C20.9227 (3)0.5143 (4)0.63140 (17)0.0432 (7)
H2A0.98790.52390.60240.052*
H2B0.98000.48350.67830.052*
C30.8497 (3)0.6806 (4)0.63348 (16)0.0434 (7)
H3A0.92300.76450.65440.052*
H3B0.80060.71630.58610.052*
C40.6329 (3)0.5373 (4)0.64511 (18)0.0490 (8)
H4A0.57650.56840.59810.059*
H4B0.56650.52780.67350.059*
C50.7048 (3)0.3696 (4)0.64308 (18)0.0524 (8)
H5A0.75330.33310.69040.063*
H5B0.63150.28640.62160.063*
Sb10.82184 (2)0.48123 (2)0.906548 (10)0.03847 (9)
Cl10.71738 (9)0.22687 (12)0.83017 (4)0.0586 (2)
Cl20.63328 (9)0.65958 (12)0.83543 (5)0.0628 (2)
Cl30.67147 (9)0.43460 (13)0.98606 (5)0.0607 (2)
Cl40.95679 (9)0.75059 (10)0.98509 (4)0.0497 (2)
Cl50.98660 (8)0.58815 (10)0.81238 (4)0.04343 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0592 (15)0.0667 (16)0.0495 (14)0.0137 (11)0.0096 (12)0.0028 (11)
N10.0458 (14)0.0450 (14)0.0374 (13)0.0000 (11)0.0106 (11)0.0041 (11)
N20.0367 (13)0.0475 (14)0.0324 (13)0.0034 (11)0.0114 (10)0.0027 (11)
C10.053 (2)0.0537 (19)0.061 (2)0.0157 (16)0.0214 (17)0.0051 (17)
C20.0366 (16)0.0524 (18)0.0428 (18)0.0024 (13)0.0150 (14)0.0043 (14)
C30.0448 (17)0.0477 (17)0.0432 (17)0.0071 (14)0.0213 (14)0.0033 (14)
C40.0324 (15)0.063 (2)0.052 (2)0.0043 (14)0.0140 (14)0.0037 (16)
C50.0505 (19)0.0527 (19)0.059 (2)0.0117 (15)0.0233 (16)0.0005 (17)
Sb10.03744 (13)0.04726 (14)0.03172 (13)0.00487 (8)0.01155 (9)0.00274 (8)
Cl10.0575 (5)0.0664 (5)0.0521 (5)0.0089 (4)0.0163 (4)0.0123 (4)
Cl20.0541 (5)0.0779 (6)0.0553 (5)0.0234 (4)0.0140 (4)0.0178 (4)
Cl30.0572 (5)0.0802 (6)0.0548 (5)0.0108 (4)0.0323 (4)0.0108 (5)
Cl40.0565 (5)0.0523 (4)0.0457 (4)0.0030 (4)0.0232 (4)0.0021 (4)
Cl50.0432 (4)0.0520 (4)0.0346 (4)0.0007 (3)0.0104 (3)0.0005 (3)
Geometric parameters (Å, º) top
O1—H1F0.8219C2—H2A0.9700
O1—H1G0.8128C2—H2B0.9700
N1—C21.485 (4)C3—H3A0.9700
N1—C51.488 (4)C3—H3B0.9700
N1—H1A0.9000C4—C51.505 (4)
N1—H1B0.9000C4—H4A0.9700
N2—C41.488 (4)C4—H4B0.9700
N2—C11.493 (4)C5—H5A0.9700
N2—C31.496 (3)C5—H5B0.9700
N2—H20.9100Sb1—Cl22.4110 (10)
C1—H1C0.9600Sb1—Cl32.4623 (10)
C1—H1D0.9600Sb1—Cl12.5538 (11)
C1—H1E0.9600Sb1—Cl42.7446 (11)
C2—C31.500 (4)Sb1—Cl52.9112 (11)
H1F—O1—H1G116.3C2—C3—H3A109.2
C2—N1—C5111.3 (2)N2—C3—H3B109.2
C2—N1—H1A109.4C2—C3—H3B109.2
C5—N1—H1A109.4H3A—C3—H3B107.9
C2—N1—H1B109.4N2—C4—C5111.5 (2)
C5—N1—H1B109.4N2—C4—H4A109.3
H1A—N1—H1B108.0C5—C4—H4A109.3
C4—N2—C1111.7 (2)N2—C4—H4B109.3
C4—N2—C3109.8 (2)C5—C4—H4B109.3
C1—N2—C3111.1 (2)H4A—C4—H4B108.0
C4—N2—H2108.0N1—C5—C4110.9 (3)
C1—N2—H2108.0N1—C5—H5A109.5
C3—N2—H2108.0C4—C5—H5A109.5
N2—C1—H1C109.5N1—C5—H5B109.5
N2—C1—H1D109.5C4—C5—H5B109.5
H1C—C1—H1D109.5H5A—C5—H5B108.0
N2—C1—H1E109.5Cl2—Sb1—Cl389.29 (4)
H1C—C1—H1E109.5Cl2—Sb1—Cl190.76 (4)
H1D—C1—H1E109.5Cl3—Sb1—Cl193.67 (4)
N1—C2—C3110.5 (2)Cl2—Sb1—Cl491.71 (4)
N1—C2—H2A109.5Cl3—Sb1—Cl490.95 (4)
C3—C2—H2A109.5Cl1—Sb1—Cl4174.79 (3)
N1—C2—H2B109.5Cl5—Sb1—Cl192.15 (4)
C3—C2—H2B109.5Cl5—Sb1—Cl284.50 (4)
H2A—C2—H2B108.1Cl5—Sb1—Cl3171.54 (4)
N2—C3—C2112.0 (2)Cl5—Sb1—Cl483.52 (4)
N2—C3—H3A109.2
C5—N1—C2—C355.7 (3)C1—N2—C4—C5179.5 (3)
C4—N2—C3—C256.1 (3)C3—N2—C4—C555.8 (3)
C1—N2—C3—C2179.8 (3)C2—N1—C5—C455.9 (3)
N1—C2—C3—N256.2 (3)N2—C4—C5—N156.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1F···Cl1i0.822.573.346 (4)159
O1—H1G···Cl40.822.513.223 (5)147
N1—H1A···Cl5ii0.902.433.179 (4)141
N1—H1B···O1iii0.901.912.801 (5)168
N2—H2···Cl50.912.283.133 (5)157
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C5H14N2)[SbCl5]·H2O
Mr419.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.600 (4), 7.934 (3), 19.966 (6)
β (°) 106.765 (16)
V3)1456.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.79
Crystal size (mm)0.33 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.460, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
7167, 2577, 2400
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.07
No. of reflections2577
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Sb1—Cl22.4110 (10)Sb1—Cl42.7446 (11)
Sb1—Cl32.4623 (10)Sb1—Cl52.9112 (11)
Sb1—Cl12.5538 (11)
Cl2—Sb1—Cl389.29 (4)Cl2—Sb1—Cl491.71 (4)
Cl2—Sb1—Cl190.76 (4)Cl3—Sb1—Cl490.95 (4)
Cl3—Sb1—Cl193.67 (4)Cl1—Sb1—Cl4174.79 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1F···Cl1i0.822.573.346 (4)159
O1—H1G···Cl40.822.513.223 (5)147
N1—H1A···Cl5ii0.902.433.179 (4)141
N1—H1B···O1iii0.901.912.801 (5)168
N2—H2···Cl50.912.283.133 (5)157
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+3/2; (iii) x, y+3/2, z1/2.
 

References

First citationBaker, W. A. & Williams, D. E. (1978). Acta Cryst. B34, 1111–1116.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775–1778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43–50.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFeng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKnodler, R., Ensinger, U., Schwarz, W. & Schmidt, A. (1988). Z. Anorg. Allg. Chem. 557, 208–218.  CSD CrossRef Web of Science Google Scholar
First citationLinden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (1995). Acta Cryst. B51, 897–907.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds