metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ato)manganese(II)]-μ3-4,4′-oxydibenzoato] monohydrate]

aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: junhong000@hotmail.com

(Received 8 November 2007; accepted 19 November 2007; online 6 December 2007)

In the title compound, {[Mn(C16H18N3O3)(C14H8O5)]·H2O}n, the unique MnII ion is coordinated by two O atoms from a chelating 1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ate ligand and three O atoms from three 4,4′-oxydibenzoate ligands, forming a distorted square-pyramidal coordination environment. In the crystal structure, centrosymmetric dinuclear manganese units are linked via 4,4′-oxydibenzoate ligands into one-dimensional chains; these chains are, in turn, connected via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds to form a two-dimensional supra­molecular network. The O atom of the solvent water mol­ecule is disordered over two sites with equal occupancies; the attached H atoms are common to both sites.

Related literature

For general background, see: Xiao et al. (2005[Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673-6686.]). For a related structure, see: An et al. (2007[An, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C16H18N3O3)(C14H8O5)]·H2O

  • Mr = 648.49

  • Triclinic, [P \overline 1]

  • a = 10.208 (5) Å

  • b = 11.915 (5) Å

  • c = 13.202 (5) Å

  • α = 100.751 (5)°

  • β = 112.010 (5)°

  • γ = 102.318 (5)°

  • V = 1390.1 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.908

  • 13533 measured reflections

  • 6236 independent reflections

  • 5434 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.129

  • S = 1.05

  • 6236 reflections

  • 407 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W′—H2⋯O3i 1.16 2.40 3.359 (14) 138
O1W′—H2⋯O4i 1.16 1.87 2.874 (12) 142
N3—H3B⋯O8i 0.90 1.80 2.694 (3) 169
N3—H3C⋯O4ii 0.90 1.83 2.716 (3) 169
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y-2, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Norfloxacin [1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid, Hcf] is a member of a class of quinolones that is used to treat infections (Xiao et al. 2005; An et al. 2007). As a part of our ongoing investigations in this field, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Mn atoms are coordinated by three oxygen atoms of one Hcf ligand, one 4,4'-oxydibenzoate ligand and one oxygen atom from one symmetry related 4,4'-oxydibenzoate within a distorted square-pyramidal geometry (Figure 1). In the crystal structure, dinuclear manganese units are linked via the 4,4'-oxydibenzoate anions into a one-dimensional chain running along [-2, -3, 2]. Finally, one-dimensional chains are connected with N—H···O and O—H···O hydrogen bonds to form a two-dimensional supramolecular network.

Related literature top

For general background, see: Xiao et al. (2005). For a related structure, see: An et al. (2007).

Experimental top

The title compound was prepared by a hydrothermal method. A mixture of MnCl2 (0.07 g 0.5 mmol), norfloxacin (0.16 g 0.5 mmol), 4,4'-oxy-bisbenzoic acid (0.13 g 0.5 mmol) and water (10 ml) was stirred for 20 min and then transferred to a 23 ml Teflon reactor. The reactor was kept at 433 K for 72 h under autogenous pressure. Single crystals of were obtained after cooling to room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93, 0.96 and 0.97 Å and N—H = 0.90 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C, N, O). H atoms of water molecule were located in difference maps but were included as riding with O - H = 0.85 Å and Uiso(H) = 1.5 Ueq(O). The O atom of the water molecule is disordered over two sites with the ratio of refined occupancies being 0.50 (2):0.50 (2). The H atoms of this water molecule are common to both sites.

Structure description top

Norfloxacin [1-Ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3-carboxylic acid, Hcf] is a member of a class of quinolones that is used to treat infections (Xiao et al. 2005; An et al. 2007). As a part of our ongoing investigations in this field, we report here the crystal structure of the title compound. In the crystal structure of the title compound, the Mn atoms are coordinated by three oxygen atoms of one Hcf ligand, one 4,4'-oxydibenzoate ligand and one oxygen atom from one symmetry related 4,4'-oxydibenzoate within a distorted square-pyramidal geometry (Figure 1). In the crystal structure, dinuclear manganese units are linked via the 4,4'-oxydibenzoate anions into a one-dimensional chain running along [-2, -3, 2]. Finally, one-dimensional chains are connected with N—H···O and O—H···O hydrogen bonds to form a two-dimensional supramolecular network.

For general background, see: Xiao et al. (2005). For a related structure, see: An et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Part of the crystal structure with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: i = x - 1,y - 1,z; ii = -x + 2,-y + 1,-z + 1]. The disorder is not showm.
catena-Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline- 3-carboxylato-κ2O3,O4)manganese(II)]-µ-4,4'-oxydibenzoato- κ3O,O':O''] monohydrate] top
Crystal data top
[Mn(C16H18N3O3)(C14H8O5)]·H2OZ = 2
Mr = 648.49F(000) = 670
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.208 (5) ÅCell parameters from 13533 reflections
b = 11.915 (5) Åθ = 3.2–27.5°
c = 13.202 (5) ŵ = 0.55 mm1
α = 100.751 (5)°T = 298 K
β = 112.010 (5)°Block, colorless
γ = 102.318 (5)°0.23 × 0.20 × 0.18 mm
V = 1390.1 (10) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6236 independent reflections
Radiation source: fine-focus sealed tube5434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.885, Tmax = 0.908k = 1415
13533 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.3678P]
where P = (Fo2 + 2Fc2)/3
6236 reflections(Δ/σ)max = 0.001
407 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn(C16H18N3O3)(C14H8O5)]·H2Oγ = 102.318 (5)°
Mr = 648.49V = 1390.1 (10) Å3
Triclinic, P1Z = 2
a = 10.208 (5) ÅMo Kα radiation
b = 11.915 (5) ŵ = 0.55 mm1
c = 13.202 (5) ÅT = 298 K
α = 100.751 (5)°0.23 × 0.20 × 0.18 mm
β = 112.010 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6236 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5434 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.908Rint = 0.031
13533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
6236 reflectionsΔρmin = 0.35 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.87296 (3)0.44003 (2)0.32348 (2)0.02128 (10)
C11.1128 (2)0.82195 (16)0.49788 (16)0.0247 (4)
C21.1270 (2)0.90958 (17)0.59100 (16)0.0264 (4)
H2A1.09970.88650.64560.032*
C31.1812 (2)1.03007 (17)0.60306 (16)0.0273 (4)
H3A1.19031.08790.66540.033*
C41.2219 (2)1.06439 (16)0.52159 (17)0.0262 (4)
C51.2094 (2)0.97946 (18)0.42831 (18)0.0314 (4)
H5A1.23781.00290.37430.038*
C61.1536 (2)0.85872 (17)0.41711 (18)0.0297 (4)
H6A1.14320.80100.35410.036*
C71.0531 (2)0.69147 (17)0.48503 (18)0.0264 (4)
C81.4875 (2)1.36779 (17)0.38123 (17)0.0265 (4)
C91.3520 (2)1.37948 (19)0.37526 (19)0.0323 (4)
H9A1.31221.43160.33800.039*
C101.2758 (2)1.31470 (19)0.42401 (19)0.0315 (4)
H10A1.18601.32370.42050.038*
C111.3354 (2)1.23664 (16)0.47793 (17)0.0280 (4)
C121.4669 (2)1.21939 (18)0.48114 (18)0.0329 (4)
H12A1.50311.16350.51430.039*
C131.5432 (2)1.28651 (19)0.43436 (18)0.0303 (4)
H13A1.63311.27730.43840.036*
C141.5780 (2)1.44426 (18)0.33786 (18)0.0298 (4)
C150.72279 (18)0.18861 (15)0.16263 (14)0.0198 (3)
C160.84417 (19)0.18967 (15)0.13214 (15)0.0208 (3)
C170.8599 (2)0.08327 (16)0.08805 (16)0.0247 (4)
H17A0.93750.08660.06690.030*
C180.65597 (18)0.03553 (15)0.10430 (14)0.0201 (3)
C190.62933 (18)0.06987 (15)0.14683 (14)0.0195 (3)
C200.51069 (19)0.06089 (16)0.17796 (15)0.0224 (3)
H20A0.49180.12990.20680.027*
C210.42376 (19)0.04923 (17)0.16565 (16)0.0239 (4)
C220.44917 (19)0.15747 (15)0.12569 (15)0.0216 (3)
C230.56632 (19)0.14844 (15)0.09490 (15)0.0208 (3)
H23A0.58590.21780.06770.025*
C240.3535 (2)0.28055 (17)0.22389 (17)0.0278 (4)
H24A0.34400.20840.26470.033*
H24B0.44670.29060.27130.033*
C250.2255 (2)0.38815 (17)0.20169 (19)0.0303 (4)
H25A0.22720.39700.27370.036*
H25B0.13180.37650.15780.036*
C260.2411 (2)0.48454 (17)0.02785 (17)0.0314 (4)
H26A0.14730.47610.02030.038*
H26B0.25250.55620.01210.038*
C270.3680 (2)0.37514 (16)0.04987 (16)0.0271 (4)
H27A0.46250.38640.09250.032*
H27B0.36460.36530.02230.032*
C280.95504 (19)0.30350 (15)0.14442 (16)0.0230 (4)
C290.8106 (2)0.13254 (17)0.02814 (19)0.0298 (4)
H29A0.85680.11470.02160.036*
H29B0.72030.19980.01670.036*
C300.9141 (3)0.1668 (2)0.1229 (2)0.0460 (6)
H30A0.93620.23580.09150.069*
H30B0.86810.18550.17180.069*
H30C1.00440.10100.16650.069*
F10.30490 (14)0.05557 (11)0.18978 (12)0.0368 (3)
N10.77241 (17)0.02611 (13)0.07263 (14)0.0234 (3)
N20.35453 (17)0.26761 (13)0.11516 (13)0.0232 (3)
N30.23945 (18)0.49768 (14)0.13743 (14)0.0272 (3)
H3B0.16260.56170.12280.033*
H3C0.32400.51050.18020.033*
O11.01455 (17)0.61842 (12)0.38860 (14)0.0356 (3)
O21.04421 (16)0.66314 (13)0.56977 (14)0.0323 (3)
O31.71509 (15)1.46076 (13)0.38222 (13)0.0342 (3)
O41.51348 (18)1.48909 (17)0.26125 (17)0.0451 (4)
O51.26452 (19)1.18672 (13)0.53831 (14)0.0360 (3)
O60.69325 (14)0.28045 (11)0.19922 (12)0.0260 (3)
O70.96748 (15)0.40179 (12)0.20826 (12)0.0291 (3)
O81.03114 (17)0.29361 (12)0.08966 (14)0.0366 (4)
O1W0.7413 (5)0.5678 (6)0.2066 (4)0.0338 (16)0.50 (2)
H10.82240.61890.25750.051*
H20.66980.54110.22260.051*
O1W'0.7286 (5)0.6219 (15)0.2009 (4)0.064 (3)0.50 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02024 (16)0.01816 (15)0.02471 (16)0.00072 (10)0.01335 (11)0.00295 (11)
C10.0233 (9)0.0223 (9)0.0277 (9)0.0064 (7)0.0100 (7)0.0088 (7)
C20.0276 (9)0.0303 (10)0.0235 (9)0.0084 (7)0.0120 (7)0.0111 (7)
C30.0333 (10)0.0251 (9)0.0217 (9)0.0085 (7)0.0113 (7)0.0047 (7)
C40.0290 (10)0.0202 (8)0.0281 (9)0.0054 (7)0.0120 (7)0.0074 (7)
C50.0406 (11)0.0261 (9)0.0300 (10)0.0049 (8)0.0209 (8)0.0080 (8)
C60.0356 (11)0.0235 (9)0.0302 (10)0.0053 (7)0.0184 (8)0.0039 (7)
C70.0199 (9)0.0237 (9)0.0373 (10)0.0071 (7)0.0136 (7)0.0098 (8)
C80.0223 (9)0.0252 (9)0.0318 (10)0.0059 (7)0.0130 (7)0.0071 (7)
C90.0314 (11)0.0360 (11)0.0426 (12)0.0168 (8)0.0214 (9)0.0214 (9)
C100.0287 (10)0.0331 (10)0.0395 (11)0.0105 (8)0.0193 (8)0.0149 (9)
C110.0343 (10)0.0203 (8)0.0271 (9)0.0026 (7)0.0152 (8)0.0047 (7)
C120.0404 (11)0.0278 (10)0.0330 (10)0.0144 (8)0.0149 (9)0.0122 (8)
C130.0237 (9)0.0321 (10)0.0357 (11)0.0115 (7)0.0123 (8)0.0096 (8)
C140.0269 (10)0.0271 (9)0.0386 (11)0.0086 (7)0.0189 (8)0.0070 (8)
C150.0185 (8)0.0178 (8)0.0187 (8)0.0002 (6)0.0073 (6)0.0038 (6)
C160.0178 (8)0.0193 (8)0.0235 (8)0.0016 (6)0.0115 (6)0.0050 (6)
C170.0220 (9)0.0221 (8)0.0302 (9)0.0002 (6)0.0164 (7)0.0048 (7)
C180.0184 (8)0.0195 (8)0.0205 (8)0.0010 (6)0.0092 (6)0.0052 (6)
C190.0185 (8)0.0190 (8)0.0188 (8)0.0012 (6)0.0086 (6)0.0050 (6)
C200.0212 (9)0.0207 (8)0.0248 (8)0.0026 (6)0.0128 (7)0.0041 (7)
C210.0171 (8)0.0268 (9)0.0292 (9)0.0013 (6)0.0150 (7)0.0072 (7)
C220.0208 (8)0.0192 (8)0.0206 (8)0.0018 (6)0.0085 (6)0.0067 (6)
C230.0186 (8)0.0170 (8)0.0247 (8)0.0009 (6)0.0103 (6)0.0048 (6)
C240.0331 (10)0.0230 (9)0.0271 (9)0.0009 (7)0.0165 (8)0.0084 (7)
C250.0330 (11)0.0257 (9)0.0395 (11)0.0051 (8)0.0238 (9)0.0133 (8)
C260.0347 (11)0.0220 (9)0.0281 (10)0.0059 (7)0.0127 (8)0.0050 (7)
C270.0311 (10)0.0205 (8)0.0254 (9)0.0025 (7)0.0143 (7)0.0051 (7)
C280.0219 (9)0.0187 (8)0.0270 (9)0.0015 (6)0.0141 (7)0.0052 (7)
C290.0315 (10)0.0193 (8)0.0406 (11)0.0031 (7)0.0237 (8)0.0011 (7)
C300.0532 (15)0.0436 (13)0.0495 (14)0.0252 (11)0.0262 (12)0.0118 (11)
F10.0323 (7)0.0301 (6)0.0591 (8)0.0045 (5)0.0345 (6)0.0122 (6)
N10.0222 (7)0.0173 (7)0.0319 (8)0.0020 (5)0.0167 (6)0.0039 (6)
N20.0238 (8)0.0188 (7)0.0248 (8)0.0020 (5)0.0126 (6)0.0070 (6)
N30.0251 (8)0.0222 (7)0.0341 (9)0.0002 (6)0.0152 (7)0.0111 (6)
O10.0395 (8)0.0201 (6)0.0445 (9)0.0001 (6)0.0227 (7)0.0043 (6)
O20.0312 (7)0.0333 (7)0.0440 (8)0.0142 (6)0.0213 (6)0.0214 (6)
O30.0235 (7)0.0362 (8)0.0410 (8)0.0066 (6)0.0180 (6)0.0017 (6)
O40.0338 (9)0.0575 (10)0.0628 (11)0.0180 (7)0.0291 (8)0.0375 (9)
O50.0542 (10)0.0213 (7)0.0401 (8)0.0064 (6)0.0314 (7)0.0087 (6)
O60.0214 (6)0.0181 (6)0.0350 (7)0.0007 (5)0.0144 (5)0.0017 (5)
O70.0322 (7)0.0191 (6)0.0358 (8)0.0029 (5)0.0232 (6)0.0017 (5)
O80.0412 (9)0.0226 (7)0.0504 (9)0.0047 (6)0.0370 (7)0.0003 (6)
O1W0.0325 (17)0.036 (2)0.0339 (17)0.0081 (9)0.0168 (11)0.0111 (9)
O1W'0.051 (3)0.092 (8)0.057 (3)0.018 (3)0.028 (2)0.035 (3)
Geometric parameters (Å, º) top
Mn1—O3i2.0723 (16)C18—C191.401 (2)
Mn1—O2ii2.0997 (15)C18—C231.411 (2)
Mn1—O12.1028 (16)C19—C201.408 (2)
Mn1—O72.1170 (15)C20—C211.360 (2)
Mn1—O62.1827 (14)C20—H20A0.9300
C1—C61.390 (3)C21—F11.356 (2)
C1—C21.395 (3)C21—C221.414 (3)
C1—C71.496 (3)C22—C231.390 (3)
C2—C31.379 (3)C22—N21.402 (2)
C2—H2A0.9300C23—H23A0.9300
C3—C41.387 (3)C24—N21.476 (2)
C3—H3A0.9300C24—C251.515 (3)
C4—O51.378 (2)C24—H24A0.9700
C4—C51.385 (3)C24—H24B0.9700
C5—C61.387 (3)C25—N31.483 (3)
C5—H5A0.9300C25—H25A0.9700
C6—H6A0.9300C25—H25B0.9700
C7—O21.256 (3)C26—N31.490 (3)
C7—O11.264 (3)C26—C271.523 (2)
C8—C91.393 (3)C26—H26A0.9700
C8—C131.394 (3)C26—H26B0.9700
C8—C141.498 (3)C27—N21.468 (2)
C9—C101.386 (3)C27—H27A0.9700
C9—H9A0.9300C27—H27B0.9700
C10—C111.380 (3)C28—O81.252 (2)
C10—H10A0.9300C28—O71.259 (2)
C11—C121.387 (3)C29—N11.487 (2)
C11—O51.392 (2)C29—C301.494 (3)
C12—C131.381 (3)C29—H29A0.9700
C12—H12A0.9300C29—H29B0.9700
C13—H13A0.9300C30—H30A0.9600
C14—O31.251 (3)C30—H30B0.9600
C14—O41.263 (3)C30—H30C0.9600
C15—O61.255 (2)N3—H3B0.9000
C15—C161.437 (2)N3—H3C0.9000
C15—C191.456 (2)O2—Mn1ii2.0997 (15)
C16—C171.361 (3)O3—Mn1iii2.0723 (16)
C16—C281.507 (2)O1W—H10.8501
C17—N11.344 (2)O1W—H20.8500
C17—H17A0.9300O1W'—H10.9823
C18—N11.390 (2)O1W'—H21.1648
O3i—Mn1—O2ii94.25 (7)C19—C20—H20A120.1
O3i—Mn1—O199.66 (7)F1—C21—C20118.42 (16)
O2ii—Mn1—O1110.98 (7)F1—C21—C22118.55 (15)
O3i—Mn1—O7159.82 (6)C20—C21—C22123.01 (16)
O2ii—Mn1—O798.92 (6)C23—C22—N2123.11 (16)
O1—Mn1—O789.87 (6)C23—C22—C21117.17 (15)
O3i—Mn1—O683.01 (6)N2—C22—C21119.69 (16)
O2ii—Mn1—O690.64 (6)C22—C23—C18120.92 (16)
O1—Mn1—O6157.82 (6)C22—C23—H23A119.5
O7—Mn1—O681.62 (6)C18—C23—H23A119.5
C6—C1—C2118.53 (18)N2—C24—C25110.46 (16)
C6—C1—C7121.02 (17)N2—C24—H24A109.6
C2—C1—C7120.45 (18)C25—C24—H24A109.6
C3—C2—C1120.77 (18)N2—C24—H24B109.6
C3—C2—H2A119.6C25—C24—H24B109.6
C1—C2—H2A119.6H24A—C24—H24B108.1
C2—C3—C4119.57 (18)N3—C25—C24109.14 (16)
C2—C3—H3A120.2N3—C25—H25A109.9
C4—C3—H3A120.2C24—C25—H25A109.9
O5—C4—C5124.49 (18)N3—C25—H25B109.9
O5—C4—C3114.36 (17)C24—C25—H25B109.9
C5—C4—C3121.01 (18)H25A—C25—H25B108.3
C4—C5—C6118.62 (19)N3—C26—C27110.69 (15)
C4—C5—H5A120.7N3—C26—H26A109.5
C6—C5—H5A120.7C27—C26—H26A109.5
C5—C6—C1121.51 (18)N3—C26—H26B109.5
C5—C6—H6A119.2C27—C26—H26B109.5
C1—C6—H6A119.2H26A—C26—H26B108.1
O2—C7—O1125.27 (18)N2—C27—C26109.42 (16)
O2—C7—C1117.92 (18)N2—C27—H27A109.8
O1—C7—C1116.81 (18)C26—C27—H27A109.8
C9—C8—C13118.67 (19)N2—C27—H27B109.8
C9—C8—C14121.97 (18)C26—C27—H27B109.8
C13—C8—C14119.29 (17)H27A—C27—H27B108.2
C10—C9—C8121.04 (19)O8—C28—O7123.65 (15)
C10—C9—H9A119.5O8—C28—C16116.83 (16)
C8—C9—H9A119.5O7—C28—C16119.52 (16)
C11—C10—C9118.86 (19)N1—C29—C30111.51 (17)
C11—C10—H10A120.6N1—C29—H29A109.3
C9—C10—H10A120.6C30—C29—H29A109.3
C10—C11—C12121.40 (19)N1—C29—H29B109.3
C10—C11—O5116.02 (19)C30—C29—H29B109.3
C12—C11—O5122.25 (19)H29A—C29—H29B108.0
C13—C12—C11119.01 (19)C29—C30—H30A109.5
C13—C12—H12A120.5C29—C30—H30B109.5
C11—C12—H12A120.5H30A—C30—H30B109.5
C12—C13—C8120.93 (19)C29—C30—H30C109.5
C12—C13—H13A119.5H30A—C30—H30C109.5
C8—C13—H13A119.5H30B—C30—H30C109.5
O3—C14—O4124.1 (2)C17—N1—C18119.41 (15)
O3—C14—C8116.81 (19)C17—N1—C29117.84 (15)
O4—C14—C8119.05 (18)C18—N1—C29122.66 (15)
O6—C15—C16124.88 (15)C22—N2—C27115.72 (15)
O6—C15—C19119.88 (16)C22—N2—C24114.10 (14)
C16—C15—C19115.23 (15)C27—N2—C24111.64 (15)
C17—C16—C15119.13 (15)C25—N3—C26110.69 (15)
C17—C16—C28117.57 (16)C25—N3—H3B109.5
C15—C16—C28123.30 (16)C26—N3—H3B109.5
N1—C17—C16125.34 (17)C25—N3—H3C109.5
N1—C17—H17A117.3C26—N3—H3C109.5
C16—C17—H17A117.3H3B—N3—H3C108.1
N1—C18—C19118.70 (15)C7—O1—Mn1127.16 (13)
N1—C18—C23121.14 (16)C7—O2—Mn1ii139.01 (13)
C19—C18—C23120.16 (16)C14—O3—Mn1iii136.07 (15)
C18—C19—C20118.98 (16)C4—O5—C11120.98 (16)
C18—C19—C15122.11 (16)C15—O6—Mn1119.80 (11)
C20—C19—C15118.89 (16)C28—O7—Mn1131.03 (11)
C21—C20—C19119.72 (17)H1—O1W—H2120.8
C21—C20—H20A120.1H1—O1W'—H286.6
Symmetry codes: (i) x1, y1, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2···O3i1.162.403.359 (14)138
O1W—H2···O4i1.161.872.874 (12)142
N3—H3B···O8i0.901.802.694 (3)169
N3—H3C···O4iv0.901.832.716 (3)169
Symmetry codes: (i) x1, y1, z; (iv) x1, y2, z.

Experimental details

Crystal data
Chemical formula[Mn(C16H18N3O3)(C14H8O5)]·H2O
Mr648.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.208 (5), 11.915 (5), 13.202 (5)
α, β, γ (°)100.751 (5), 112.010 (5), 102.318 (5)
V3)1390.1 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.885, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
13533, 6236, 5434
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.129, 1.05
No. of reflections6236
No. of parameters407
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W'—H2···O3i1.162.403.359 (14)138
O1W'—H2···O4i1.161.872.874 (12)142
N3—H3B···O8i0.901.802.694 (3)169
N3—H3C···O4ii0.901.832.716 (3)169
Symmetry codes: (i) x1, y1, z; (ii) x1, y2, z.
 

Acknowledgements

The authors thank Jilin Normal University for supporting this work.

References

First citationAn, Z., Huang, J. & Qi, W. (2007). Acta Cryst. E63, m2009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673–6686.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds