metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanolato)(pyridine)[N2,N2′-(pyridine-2,6-diyldicarbon­yl)diacetohydra­zide(2–)]iron(III) methanol solvate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: dougroup@163.com

(Received 8 November 2007; accepted 19 November 2007; online 6 December 2007)

In the title complex, [Fe(C11H10N5O4)(CH3O)(C5H5N)]·CH4O, the FeIII ion has a distorted penta­gonal-bipyramidal geometry. In the crystal structure, mol­ecules are linked into one-dimensional chains along [1[\overline{1}][\overline{1}]] via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Sreeja et al. (2004[Sreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23 575-581.]); Bonardi et al. (1991[Bonardi, A., Merlo, C., Pelizzi, C., Pelizzi, G., Tarasconi, P. & Cavatorta, F. (1991). J. Chem. Soc. Dalton Trans. pp. 1063-1069.]); Drozdzewski et al. (2006[Drozdzewski, P., Brozyna, A., Kubiak, M. & Lis, T. (2006). Vib. Spectrosc. 40 118-126.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C11H10N5O4)(CH3O)(C5H5N)]·CH4O

  • Mr = 475.27

  • Triclinic, [P \overline 1]

  • a = 8.258 (10) Å

  • b = 10.64 (14) Å

  • c = 12.448 (18) Å

  • α = 83.518 (3)°

  • β = 85.924 (3)°

  • γ = 77.176 (2)°

  • V = 1058.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 298 (2) K

  • 0.37 × 0.29 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.766, Tmax = 0.863

  • 5507 measured reflections

  • 3658 independent reflections

  • 2647 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.00

  • 3658 reflections

  • 285 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O5 1.922 (3)
Fe1—N4 2.107 (3)
Fe1—O4 2.142 (2)
Fe1—N2 2.150 (3)
Fe1—O3 2.209 (2)
Fe1—N1 2.228 (3)
Fe1—N6 2.245 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 1.94 2.780 (3) 167
N5—H5⋯O6ii 0.86 1.98 2.830 (4) 167
O6—H6⋯O5iii 0.82 1.90 2.718 (3) 172
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. University of Göttingen, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-hydrazide complexes, especially Fe complexes with acetylhydrazide, continue to attract considerable attention due to their biological activities and structural versatilities (Drozdzewski et al., 2006; Sreeja et al., 2004) We report herein, the crystal structure of the title complex. A view of the title complex (I) is shown in Fig.1. The FeIII ion has a distorted pentagonal-bipyramidal coordination geometry, formed by one 2-oxido-N, N'-2,6-picoloylhydrazide ligand, one pyridine ligand and one methanol molecule. The distances involving atom Fe1 atom are consistent with those in a Fe complex with pentagonal-bipyramidal coordination geometry (Bonardi et al., 1991). Both intermolecular O—H···O and N—H···O hydrogen bonding occur in the crystal structure (Table 2).

Related literature top

For related literature, see: Sreeja et al. (2004); Bonardi et al. (1991); Drozdzewski et al. (2006).

Experimental top

A pyridine solution (10 mL) of N,N'-diacetyl-2,6-picoloylhydrazide (0.2 mmol,0.0559 g) was mixed with a methanol solution (10 mL) of iron chloride (0.2 mmol, 0.0808 g). The mixture was stirred at room temperature for 6 h and then filtered. Dark block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained after three weeks (m.p. >573 K). Elemental analysis calculated for (C18H23N6O6)Fe: C 45.49, H 4.88, N 17.68%; found: C 45.41, H 4.76, N 17.50%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with pyridine C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å, methanol hydroxyl O—H distances of 0.82 Å, hydrazide N—H distances of 0.86Å and Uiso(H)=1.2Ueq(C,N) or 1.5Ueq(O).

Structure description top

Metal-hydrazide complexes, especially Fe complexes with acetylhydrazide, continue to attract considerable attention due to their biological activities and structural versatilities (Drozdzewski et al., 2006; Sreeja et al., 2004) We report herein, the crystal structure of the title complex. A view of the title complex (I) is shown in Fig.1. The FeIII ion has a distorted pentagonal-bipyramidal coordination geometry, formed by one 2-oxido-N, N'-2,6-picoloylhydrazide ligand, one pyridine ligand and one methanol molecule. The distances involving atom Fe1 atom are consistent with those in a Fe complex with pentagonal-bipyramidal coordination geometry (Bonardi et al., 1991). Both intermolecular O—H···O and N—H···O hydrogen bonding occur in the crystal structure (Table 2).

For related literature, see: Sreeja et al. (2004); Bonardi et al. (1991); Drozdzewski et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at 30% probability level and solvent molecule has been omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
(Methanolato)(pyridine)[N2,N2'-(pyridine-2,6- diyldicarbonyl)diacetohydrazide(2-)]iron(III) methanol solvate top
Crystal data top
[Fe(C11H10N5O4)(CH3O)(C5H5N)]·CH4OZ = 2
Mr = 475.27F(000) = 494
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.258 (10) ÅCell parameters from 1856 reflections
b = 10.64 (14) Åθ = 2.4–25.1°
c = 12.448 (18) ŵ = 0.76 mm1
α = 83.518 (3)°T = 298 K
β = 85.924 (3)°Block, black
γ = 77.176 (2)°0.37 × 0.29 × 0.20 mm
V = 1058.4 (2) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
3658 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.766, Tmax = 0.863k = 129
5507 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2 + 0.8457P]
where P = (Fo2 + 2Fc2)/3
3658 reflections(Δ/σ)max = 0.004
285 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C11H10N5O4)(CH3O)(C5H5N)]·CH4Oγ = 77.176 (2)°
Mr = 475.27V = 1058.4 (2) Å3
Triclinic, P1Z = 2
a = 8.258 (10) ÅMo Kα radiation
b = 10.64 (14) ŵ = 0.76 mm1
c = 12.448 (18) ÅT = 298 K
α = 83.518 (3)°0.37 × 0.29 × 0.20 mm
β = 85.924 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2647 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.863Rint = 0.021
5507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.00Δρmax = 0.45 e Å3
3658 reflectionsΔρmin = 0.27 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.31969 (6)0.23928 (4)0.23357 (4)0.03344 (18)
N10.2243 (3)0.4328 (2)0.1451 (2)0.0303 (6)
N20.1580 (4)0.3649 (2)0.3383 (2)0.0338 (7)
N30.1451 (4)0.3167 (3)0.4458 (2)0.0384 (7)
H30.09280.36330.49490.046*
N40.4403 (4)0.2535 (3)0.0791 (2)0.0370 (7)
N50.5609 (4)0.1455 (3)0.0544 (2)0.0423 (8)
H50.61170.13950.00820.051*
N60.5139 (4)0.3108 (3)0.3122 (2)0.0391 (7)
O10.0049 (3)0.5677 (2)0.37219 (18)0.0445 (7)
O20.4513 (4)0.3481 (2)0.0965 (2)0.0585 (8)
O30.2966 (3)0.1301 (2)0.39371 (18)0.0441 (7)
O40.5115 (3)0.0678 (2)0.22480 (18)0.0427 (6)
O50.1500 (3)0.1644 (2)0.18472 (19)0.0420 (6)
O60.7483 (4)0.0858 (3)0.8604 (2)0.0673 (9)
H60.77540.00830.85280.101*
C10.0853 (4)0.4869 (3)0.3119 (3)0.0309 (8)
C20.1142 (4)0.5230 (3)0.1937 (3)0.0329 (8)
C30.0382 (5)0.6368 (3)0.1377 (3)0.0466 (10)
H3A0.03920.69840.17250.056*
C40.0788 (5)0.6583 (4)0.0286 (3)0.0543 (12)
H40.02760.73420.01120.065*
C50.1959 (5)0.5662 (3)0.0208 (3)0.0473 (10)
H5A0.22620.57960.09390.057*
C60.2669 (4)0.4542 (3)0.0403 (3)0.0331 (8)
C70.3972 (5)0.3455 (3)0.0011 (3)0.0374 (9)
C80.2196 (5)0.1930 (3)0.4677 (3)0.0412 (9)
C90.2090 (6)0.1342 (4)0.5816 (3)0.0655 (14)
H9A0.15320.06360.58490.098*
H9B0.14790.19840.62620.098*
H9C0.31900.10260.60720.098*
C100.5907 (5)0.0531 (3)0.1351 (3)0.0394 (9)
C110.7196 (5)0.0667 (4)0.1174 (3)0.0561 (12)
H11A0.81010.07310.16340.084*
H11B0.76000.06280.04310.084*
H11C0.67140.14130.13410.084*
C120.5929 (5)0.2396 (4)0.3965 (3)0.0560 (11)
H120.58160.15440.41280.067*
C130.6902 (6)0.2880 (6)0.4597 (4)0.0707 (14)
H130.74250.23630.51800.085*
C140.7092 (6)0.4122 (6)0.4364 (4)0.0709 (14)
H140.77230.44720.47920.085*
C150.6335 (6)0.4841 (5)0.3486 (4)0.0683 (13)
H150.64690.56840.32950.082*
C160.5374 (5)0.4305 (4)0.2890 (3)0.0503 (10)
H160.48630.48040.22950.060*
C170.0016 (6)0.1640 (4)0.2357 (4)0.0607 (12)
H17A0.01310.11840.30660.091*
H17B0.06390.12180.19450.091*
H17C0.06070.25160.24190.091*
C180.7218 (7)0.1580 (4)0.7573 (4)0.0744 (15)
H18A0.67650.24750.76680.112*
H18B0.64540.12480.71950.112*
H18C0.82570.15030.71600.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0429 (3)0.0265 (3)0.0255 (3)0.0037 (2)0.0005 (2)0.00328 (19)
N10.0369 (17)0.0263 (14)0.0241 (14)0.0012 (12)0.0014 (12)0.0032 (11)
N20.0463 (18)0.0276 (15)0.0221 (14)0.0017 (13)0.0010 (13)0.0003 (11)
N30.055 (2)0.0319 (16)0.0214 (14)0.0048 (14)0.0045 (13)0.0049 (12)
N40.0420 (18)0.0321 (16)0.0287 (15)0.0084 (13)0.0021 (13)0.0035 (13)
N50.052 (2)0.0353 (17)0.0294 (16)0.0109 (14)0.0068 (14)0.0068 (13)
N60.0381 (18)0.0389 (17)0.0360 (17)0.0006 (14)0.0005 (14)0.0041 (14)
O10.0584 (17)0.0358 (14)0.0310 (13)0.0083 (12)0.0053 (12)0.0092 (11)
O20.082 (2)0.0459 (16)0.0315 (15)0.0122 (14)0.0145 (14)0.0010 (12)
O30.0611 (18)0.0313 (13)0.0317 (14)0.0057 (12)0.0040 (12)0.0034 (11)
O40.0538 (17)0.0333 (13)0.0307 (14)0.0099 (11)0.0010 (12)0.0005 (11)
O50.0567 (18)0.0337 (14)0.0334 (14)0.0041 (12)0.0006 (12)0.0066 (11)
O60.099 (3)0.0498 (17)0.0482 (18)0.0039 (17)0.0139 (16)0.0173 (14)
C10.0318 (19)0.0311 (18)0.0282 (18)0.0018 (15)0.0008 (15)0.0066 (15)
C20.039 (2)0.0291 (18)0.0282 (18)0.0007 (15)0.0013 (15)0.0071 (14)
C30.062 (3)0.033 (2)0.034 (2)0.0134 (18)0.0006 (18)0.0034 (16)
C40.074 (3)0.035 (2)0.039 (2)0.014 (2)0.002 (2)0.0081 (17)
C50.064 (3)0.041 (2)0.0274 (19)0.0053 (19)0.0002 (18)0.0015 (16)
C60.040 (2)0.0290 (18)0.0276 (18)0.0014 (15)0.0028 (15)0.0009 (14)
C70.046 (2)0.0310 (19)0.0296 (19)0.0016 (16)0.0031 (16)0.0030 (15)
C80.054 (2)0.035 (2)0.0306 (19)0.0005 (17)0.0002 (17)0.0015 (16)
C90.099 (4)0.048 (2)0.034 (2)0.008 (2)0.011 (2)0.0040 (19)
C100.048 (2)0.0324 (19)0.031 (2)0.0069 (16)0.0005 (17)0.0080 (16)
C110.067 (3)0.044 (2)0.043 (2)0.020 (2)0.002 (2)0.0077 (18)
C120.050 (3)0.060 (3)0.052 (3)0.003 (2)0.012 (2)0.008 (2)
C130.055 (3)0.102 (4)0.053 (3)0.014 (3)0.020 (2)0.008 (3)
C140.060 (3)0.101 (4)0.062 (3)0.030 (3)0.006 (3)0.020 (3)
C150.061 (3)0.065 (3)0.086 (4)0.026 (2)0.011 (3)0.010 (3)
C160.044 (2)0.051 (3)0.055 (3)0.0125 (19)0.003 (2)0.005 (2)
C170.067 (3)0.058 (3)0.058 (3)0.014 (2)0.005 (2)0.006 (2)
C180.109 (4)0.053 (3)0.057 (3)0.015 (3)0.021 (3)0.007 (2)
Geometric parameters (Å, º) top
Fe1—O51.922 (3)C3—H3A0.9300
Fe1—N42.107 (3)C4—C51.381 (5)
Fe1—O42.142 (2)C4—H40.9300
Fe1—N22.150 (3)C5—C61.375 (5)
Fe1—O32.209 (2)C5—H5A0.9300
Fe1—N12.228 (3)C6—C71.505 (4)
Fe1—N62.245 (3)C8—C91.489 (5)
N1—C21.334 (4)C9—H9A0.9600
N1—C61.334 (4)C9—H9B0.9600
N2—C11.319 (4)C9—H9C0.9600
N2—N31.384 (4)C10—C111.495 (5)
N3—C81.330 (4)C11—H11A0.9600
N3—H30.8600C11—H11B0.9600
N4—C71.325 (4)C11—H11C0.9600
N4—N51.391 (4)C12—C131.377 (6)
N5—C101.320 (4)C12—H120.9300
N5—H50.8600C13—C141.361 (7)
N6—C161.327 (5)C13—H130.9300
N6—C121.341 (4)C14—C151.366 (6)
O1—C11.251 (4)C14—H140.9300
O2—C71.238 (4)C15—C161.374 (6)
O3—C81.252 (4)C15—H150.9300
O4—C101.260 (4)C16—H160.9300
O5—C171.363 (5)C17—H17A0.9600
O6—C181.424 (5)C17—H17B0.9600
O6—H60.8200C17—H17C0.9600
C1—C21.494 (4)C18—H18A0.9600
C2—C31.372 (5)C18—H18B0.9600
C3—C41.381 (5)C18—H18C0.9600
O5—Fe1—N493.67 (11)C6—C5—C4118.6 (3)
O5—Fe1—O494.66 (10)C6—C5—H5A120.7
N4—Fe1—O472.86 (9)C4—C5—H5A120.7
O5—Fe1—N296.21 (11)N1—C6—C5121.5 (3)
N4—Fe1—N2138.16 (10)N1—C6—C7113.4 (3)
O4—Fe1—N2145.91 (10)C5—C6—C7125.1 (3)
O5—Fe1—O388.85 (10)O2—C7—N4128.1 (3)
N4—Fe1—O3149.43 (10)O2—C7—C6122.4 (3)
O4—Fe1—O376.57 (9)N4—C7—C6109.5 (3)
N2—Fe1—O371.46 (9)O3—C8—N3120.0 (3)
O5—Fe1—N193.58 (10)O3—C8—C9122.1 (3)
N4—Fe1—N169.58 (10)N3—C8—C9117.9 (3)
O4—Fe1—N1141.95 (10)C8—C9—H9A109.5
N2—Fe1—N169.30 (10)C8—C9—H9B109.5
O3—Fe1—N1140.72 (9)H9A—C9—H9B109.5
O5—Fe1—N6172.22 (11)C8—C9—H9C109.5
N4—Fe1—N692.96 (11)H9A—C9—H9C109.5
O4—Fe1—N683.42 (10)H9B—C9—H9C109.5
N2—Fe1—N681.48 (11)O4—C10—N5119.8 (3)
O3—Fe1—N683.37 (10)O4—C10—C11121.7 (3)
N1—Fe1—N692.54 (10)N5—C10—C11118.6 (3)
C2—N1—C6120.0 (3)C10—C11—H11A109.5
C2—N1—Fe1120.3 (2)C10—C11—H11B109.5
C6—N1—Fe1119.5 (2)H11A—C11—H11B109.5
C1—N2—N3117.5 (3)C10—C11—H11C109.5
C1—N2—Fe1125.9 (2)H11A—C11—H11C109.5
N3—N2—Fe1116.18 (18)H11B—C11—H11C109.5
C8—N3—N2114.9 (3)N6—C12—C13122.4 (4)
C8—N3—H3122.5N6—C12—H12118.8
N2—N3—H3122.5C13—C12—H12118.8
C7—N4—N5116.8 (3)C14—C13—C12119.6 (4)
C7—N4—Fe1126.6 (2)C14—C13—H13120.2
N5—N4—Fe1115.8 (2)C12—C13—H13120.2
C10—N5—N4114.3 (3)C13—C14—C15118.5 (4)
C10—N5—H5122.9C13—C14—H14120.8
N4—N5—H5122.9C15—C14—H14120.8
C16—N6—C12117.2 (4)C14—C15—C16119.2 (5)
C16—N6—Fe1122.0 (3)C14—C15—H15120.4
C12—N6—Fe1120.1 (3)C16—C15—H15120.4
C8—O3—Fe1116.7 (2)N6—C16—C15123.2 (4)
C10—O4—Fe1117.0 (2)N6—C16—H16118.4
C17—O5—Fe1125.7 (2)C15—C16—H16118.4
C18—O6—H6109.5O5—C17—H17A109.5
O1—C1—N2128.4 (3)O5—C17—H17B109.5
O1—C1—C2121.3 (3)H17A—C17—H17B109.5
N2—C1—C2110.3 (3)O5—C17—H17C109.5
N1—C2—C3121.6 (3)H17A—C17—H17C109.5
N1—C2—C1113.5 (3)H17B—C17—H17C109.5
C3—C2—C1125.0 (3)O6—C18—H18A109.5
C2—C3—C4118.8 (3)O6—C18—H18B109.5
C2—C3—H3A120.6H18A—C18—H18B109.5
C4—C3—H3A120.6O6—C18—H18C109.5
C3—C4—C5119.5 (3)H18A—C18—H18C109.5
C3—C4—H4120.3H18B—C18—H18C109.5
C5—C4—H4120.3
O5—Fe1—N1—C291.5 (3)N4—Fe1—O4—C105.2 (3)
N4—Fe1—N1—C2175.9 (3)N2—Fe1—O4—C10164.4 (3)
O4—Fe1—N1—C2166.3 (2)O3—Fe1—O4—C10175.0 (3)
N2—Fe1—N1—C23.8 (2)N1—Fe1—O4—C1014.6 (4)
O3—Fe1—N1—C21.1 (3)N6—Fe1—O4—C10100.3 (3)
N6—Fe1—N1—C283.7 (3)N4—Fe1—O5—C17159.1 (3)
O5—Fe1—N1—C682.8 (3)O4—Fe1—O5—C17127.8 (3)
N4—Fe1—N1—C69.8 (2)N2—Fe1—O5—C1719.8 (3)
O4—Fe1—N1—C619.5 (3)O3—Fe1—O5—C1751.4 (3)
N2—Fe1—N1—C6178.1 (3)N1—Fe1—O5—C1789.3 (3)
O3—Fe1—N1—C6175.3 (2)N3—N2—C1—O10.5 (6)
N6—Fe1—N1—C6102.0 (3)Fe1—N2—C1—O1171.7 (3)
O5—Fe1—N2—C193.7 (3)N3—N2—C1—C2179.0 (3)
N4—Fe1—N2—C18.9 (4)Fe1—N2—C1—C26.8 (4)
O4—Fe1—N2—C1158.5 (2)C6—N1—C2—C32.2 (5)
O3—Fe1—N2—C1179.6 (3)Fe1—N1—C2—C3172.0 (3)
N1—Fe1—N2—C12.2 (3)C6—N1—C2—C1177.5 (3)
N6—Fe1—N2—C193.8 (3)Fe1—N1—C2—C18.3 (4)
O5—Fe1—N2—N394.0 (2)O1—C1—C2—N1169.5 (3)
N4—Fe1—N2—N3163.4 (2)N2—C1—C2—N19.2 (4)
O4—Fe1—N2—N313.9 (4)O1—C1—C2—C310.3 (6)
O3—Fe1—N2—N37.3 (2)N2—C1—C2—C3171.1 (4)
N1—Fe1—N2—N3174.5 (3)N1—C2—C3—C40.7 (6)
N6—Fe1—N2—N378.5 (2)C1—C2—C3—C4179.0 (4)
C1—N2—N3—C8179.5 (3)C2—C3—C4—C51.0 (6)
Fe1—N2—N3—C87.5 (4)C3—C4—C5—C61.1 (7)
O5—Fe1—N4—C781.0 (3)C2—N1—C6—C52.1 (5)
O4—Fe1—N4—C7174.7 (3)Fe1—N1—C6—C5172.1 (3)
N2—Fe1—N4—C722.6 (4)C2—N1—C6—C7177.7 (3)
O3—Fe1—N4—C7174.9 (3)Fe1—N1—C6—C78.0 (4)
N1—Fe1—N4—C711.5 (3)C4—C5—C6—N10.4 (6)
N6—Fe1—N4—C7103.1 (3)C4—C5—C6—C7179.4 (4)
O5—Fe1—N4—N588.6 (2)N5—N4—C7—O20.2 (6)
O4—Fe1—N4—N55.1 (2)Fe1—N4—C7—O2169.8 (3)
N2—Fe1—N4—N5167.8 (2)N5—N4—C7—C6179.7 (3)
O3—Fe1—N4—N55.3 (4)Fe1—N4—C7—C610.7 (4)
N1—Fe1—N4—N5178.9 (3)N1—C6—C7—O2179.6 (4)
N6—Fe1—N4—N587.3 (2)C5—C6—C7—O20.5 (6)
C7—N4—N5—C10175.5 (3)N1—C6—C7—N40.8 (4)
Fe1—N4—N5—C104.8 (4)C5—C6—C7—N4179.0 (4)
N4—Fe1—N6—C1665.6 (3)Fe1—O3—C8—N35.4 (5)
O4—Fe1—N6—C16138.0 (3)Fe1—O3—C8—C9174.0 (3)
N2—Fe1—N6—C1672.7 (3)N2—N3—C8—O31.3 (5)
O3—Fe1—N6—C16144.8 (3)N2—N3—C8—C9179.3 (3)
N1—Fe1—N6—C164.0 (3)Fe1—O4—C10—N54.4 (5)
N4—Fe1—N6—C12124.6 (3)Fe1—O4—C10—C11175.9 (3)
O4—Fe1—N6—C1252.3 (3)N4—N5—C10—O40.2 (5)
N2—Fe1—N6—C1297.1 (3)N4—N5—C10—C11179.4 (3)
O3—Fe1—N6—C1224.9 (3)C16—N6—C12—C132.2 (6)
N1—Fe1—N6—C12165.7 (3)Fe1—N6—C12—C13168.0 (3)
O5—Fe1—O3—C8103.8 (3)N6—C12—C13—C140.5 (7)
N4—Fe1—O3—C8161.0 (3)C12—C13—C14—C151.5 (7)
O4—Fe1—O3—C8161.2 (3)C13—C14—C15—C161.8 (7)
N2—Fe1—O3—C86.8 (3)C12—N6—C16—C151.9 (6)
N1—Fe1—O3—C89.5 (4)Fe1—N6—C16—C15168.1 (3)
N6—Fe1—O3—C876.4 (3)C14—C15—C16—N60.1 (7)
O5—Fe1—O4—C1087.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.942.780 (3)167
N5—H5···O6ii0.861.982.830 (4)167
O6—H6···O5iii0.821.902.718 (3)172
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C11H10N5O4)(CH3O)(C5H5N)]·CH4O
Mr475.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.258 (10), 10.64 (14), 12.448 (18)
α, β, γ (°)83.518 (3), 85.924 (3), 77.176 (2)
V3)1058.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.37 × 0.29 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.766, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
5507, 3658, 2647
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.00
No. of reflections3658
No. of parameters285
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Fe1—O51.922 (3)Fe1—O32.209 (2)
Fe1—N42.107 (3)Fe1—N12.228 (3)
Fe1—O42.142 (2)Fe1—N62.245 (3)
Fe1—N22.150 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.861.942.780 (3)166.6
N5—H5···O6ii0.861.982.830 (4)167.4
O6—H6···O5iii0.821.902.718 (3)172.0
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the support of the Natural Science Foundation of Shandong Province, People's Republic of China (Y2003B01).

References

First citationBonardi, A., Merlo, C., Pelizzi, C., Pelizzi, G., Tarasconi, P. & Cavatorta, F. (1991). J. Chem. Soc. Dalton Trans. pp. 1063–1069.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrozdzewski, P., Brozyna, A., Kubiak, M. & Lis, T. (2006). Vib. Spectrosc. 40 118–126.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. University of Göttingen, Germany.  Google Scholar
First citationSreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23 575–581.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds