metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,10-Phenanthroline-κ2N,N′)bis­­(2,2,6,6-tetra­methyl­heptane-3,5-dionato-κ2O,O′)nickel(II)

aLaboratory of General and Inorganic Chemistry, Chemistry Department, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia, and bPLIVA Croatia Ltd, PLIVA Research and Development Ltd, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia
*Correspondence e-mail: ernest.mestrovic@pliva.hr

(Received 9 November 2007; accepted 12 December 2007; online 21 December 2007)

The title compound, [Ni(C11H19O2)2(C12H8N2)], was obtained from the reaction of bis­(2,2,6,6-tetra­methyl­heptane-3,5-dionato)nickel(II), [Ni(dpm)], and 1,10-phenanthroline (phen). The NiII ion is coordinated by four O atoms from two dpm ligands and two N atoms from a phen ligand in a slightly distorted octa­hedral environment. The methyl C atoms of two of the tert-butyl groups are disordered over two sites, having approximate occupancies of 0.85 and 0.15 for the two components. In the crystal structure, there are no direction-specific inter­actions. Thermal studies showed that the title complex is stable to 623 K.

Related literature

For information on the synthetic procedure, see: Meštrović & Kaitner (2006[Meštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr. 36, 599-603.]). For information regarding the application of metal complexes with β-diketones, see: Soldatov et al. (1999[Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (1999). Supramol. Chem. 11, 35-47.], 2001[Soldatov, D. V., Enright, G. D., Ratcliff, C. I., Henegouwen, A. T. & Ripmeester, J. A. (2001). Chem. Mater. 13, 4322-4334.], 2002[Soldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2002). Chem. Mater. 14, 348-356.], 2003[Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826-3840.]); Soldatov & Ripmeester (2001a[Soldatov, D. V. & Ripmeester, J. A. (2001a). Supramol. Chem. 12, 357-368.],b[Soldatov, D. V. & Ripmeester, J. A. (2001b). Chem. Eur. J. 7, 2979-2994.]). For similar metal(II) (β-diketonates)2 as well as for the properties of neutral mol­ecules which form different types of supra­molecular assemblies, see: Bučar & Meštrović (2003[Bučar, D.-K. & Meštrović, E. (2003). Acta Cryst. E59, m985-m987.]); Meštrović et al. (2004[Meštrović, E., Halasz, I., Bučar, D.-K. & Žgela, M. (2004). Acta Cryst. E60, m367-m369.]); Meštrović & Kaitner (2006[Meštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr. 36, 599-603.]). For the crystal and mol­ecular structure of bis­(2,2,6,6-tetra­methyl­heptane-3,5-dionato)nickel(II), see: Cotton & Wise (1965[Cotton, F. A. & Wise, J. J. (1965). Inorg. Chem. 5, 1200-1207.]). For the crystal and mol­ecular structure of bis(acetyl­acetonato)-1,10-phenanthroline-nickel(II), see: Steblyanko et al. (1992[Steblyanko, A. Y., Grigor'ev, A. N., Tabachenko, V. V. & Mironov, A. V. (1992). Zh. Neorg. Khim. 37, 1036-1038.]).

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Kaitner & Meštrović (1993[Kaitner, B. & Meštrović, E. (1993). Acta Cryst. C49, 1523-1525.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H19O2)2(C12H8N2)]

  • Mr = 605.44

  • Triclinic, [P \overline 1]

  • a = 10.054 (2) Å

  • b = 10.386 (3) Å

  • c = 16.717 (2) Å

  • α = 89.69 (2)°

  • β = 83.48 (2)°

  • γ = 79.63 (3)°

  • V = 1705.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 (2) K

  • 0.60 × 0.60 × 0.30 mm

Data collection
  • Philips PW1100 diffractometer with Stoe upgrade

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.65, Tmax = 0.83

  • 7711 measured reflections

  • 7451 independent reflections

  • 5139 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections frequency: 90 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.02

  • 7451 reflections

  • 432 parameters

  • 69 restraints

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Ni—O12 2.0110 (18)
Ni—O21 2.0176 (18)
Ni—O11 2.0304 (18)
Ni—O22 2.0320 (18)
Ni—N32 2.089 (2)
Ni—N31 2.094 (2)

Data collection: STADI4 (Stoe & Cie, 1994[Stoe & Cie (1994). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED (Stoe & Cie, 1994[Stoe & Cie (1994). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our research of the study of metal β-diketonates complexes we have prepared the title compound by reaction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') nickel(II) with 1,10 phenantroline (Bučar and Meštrović, 2003, Meštrović et al., 2004, Meštrović and Kaitner 2006). After the work by Soldatov and his group this material was recognized as a smart sorbent and as a functional organic zeolite analogue (Soldatov et al., 1999, 2001, 2002, 2003; Soldatov & Ripmeester, 2001a,b).

Another very important field of application is based on the thermal stability and volatility of metal β-dionates which makes them important precursors in production of high temperature supraconductors using technique of metal organic chemical vapour deposition (MOCVD). Based on molecular structural properties of metal(II)(β-diketonates) 2 as well as on properties of neutral molecules we can obtain different properties of materials. Necesssary prerequisites of source precursors for any MOCVD proces are thermal stability, sufficient and stable evaporation, and good delivery properties under process conditions. The success of a potential compound, mostly depends on the properties of molecular precursors, since their nature and architecture both make the quality of materials. Nevertheless, relationships between the precursor molecular architectures and their properties still remain a challenge in the area of materials science.

The reason for using 2,2,6,6-tetramethyl-3,5-heptanedion (dipivaoilmethan, Hdpm) was the non-polar property of tert-butyl groups in the title molecule giving no possibility for interaction between molecules of complex. This fact is very important in preparation of material for metal organic chemical vapor deposition. We introduced 1,10 phenantroline as aditional part for achiving thermal stability of the substance.

We obtained the adduct molecule through reaction of bis(dipivaloimethan)nickel(II) with 1,10-phenantroline. The NiII ion is in a slightly distorted octahedral environment formed by two dipivaloilmethanate ligands and one 1, 10-phenantroline ligand. The Ni—O bond distances range from 2.012 (2) Å to 2.033 (2) Å and are longer than the bond distances found in the free Ni(dpm)2 complex (Cotton & Wise, 1965) which range from 1.839 Å to 1.844 Å. All other bond distances are similar to all other compounds in this class (Allen, 2002).

Related literature top

For information on the synthetic procedure, see: Meštrović & Kaitner (2006). For information regarding the application of metal complexes with β-diketones, see: Soldatov et al. (1999,2001,2002,2003); Soldatov & Ripmeester (2001a,b). For similar metal(II) (β-diketonates)2 as well as for the properties of neutral molecules which form different types of supramolecular assemblies, see: Bučar & Meštrović (2003); Meštrović et al. (2004); Meštrović & Kaitner (2006). For the crystal and molecular structure of bis(2,2,6,6-tetramethylheptane-3,5-dionato) nickel(II) see: Cotton & Wise (1965). For the crystal and molecular structure of bis (acetylacetonato)-1,10-phenanthroline-nickel(II) see: Steblyanko et al. (1992).

For related literature, see: Allen (2002); Kaitner & Meštrović (1993); Stoe & Cie (1991a, 1991b).

Experimental top

Bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') (1,10-phenanthroline-κ2N,N')nickel(II) was prepared by the published method (Meštrović and Kaitner, 2006). 1 mmol (190 mg) of phenantroline was disoved in 10 ml of acetone. 1 mmol (415 mg) of bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') nickel(II) was added to a warm solution of phenantroline. Green crystals were obtained overnight. The crystal suitable for single-crystal X– ray diffraction was obtained by evaporation of diluted acetone solution of the title compound over two weeks.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distance from 0.93 to 0.96 Å. They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl C atoms. The methyl groups on atoms C18 and C24 are disordered over two sites with the ratio of the refined occupancies being 0.853 (7):0.147 (7) and 0.846 (7): 0.154 (7), respectively.

Structure description top

As part of our research of the study of metal β-diketonates complexes we have prepared the title compound by reaction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato-κ2 O,O') nickel(II) with 1,10 phenantroline (Bučar and Meštrović, 2003, Meštrović et al., 2004, Meštrović and Kaitner 2006). After the work by Soldatov and his group this material was recognized as a smart sorbent and as a functional organic zeolite analogue (Soldatov et al., 1999, 2001, 2002, 2003; Soldatov & Ripmeester, 2001a,b).

Another very important field of application is based on the thermal stability and volatility of metal β-dionates which makes them important precursors in production of high temperature supraconductors using technique of metal organic chemical vapour deposition (MOCVD). Based on molecular structural properties of metal(II)(β-diketonates) 2 as well as on properties of neutral molecules we can obtain different properties of materials. Necesssary prerequisites of source precursors for any MOCVD proces are thermal stability, sufficient and stable evaporation, and good delivery properties under process conditions. The success of a potential compound, mostly depends on the properties of molecular precursors, since their nature and architecture both make the quality of materials. Nevertheless, relationships between the precursor molecular architectures and their properties still remain a challenge in the area of materials science.

The reason for using 2,2,6,6-tetramethyl-3,5-heptanedion (dipivaoilmethan, Hdpm) was the non-polar property of tert-butyl groups in the title molecule giving no possibility for interaction between molecules of complex. This fact is very important in preparation of material for metal organic chemical vapor deposition. We introduced 1,10 phenantroline as aditional part for achiving thermal stability of the substance.

We obtained the adduct molecule through reaction of bis(dipivaloimethan)nickel(II) with 1,10-phenantroline. The NiII ion is in a slightly distorted octahedral environment formed by two dipivaloilmethanate ligands and one 1, 10-phenantroline ligand. The Ni—O bond distances range from 2.012 (2) Å to 2.033 (2) Å and are longer than the bond distances found in the free Ni(dpm)2 complex (Cotton & Wise, 1965) which range from 1.839 Å to 1.844 Å. All other bond distances are similar to all other compounds in this class (Allen, 2002).

For information on the synthetic procedure, see: Meštrović & Kaitner (2006). For information regarding the application of metal complexes with β-diketones, see: Soldatov et al. (1999,2001,2002,2003); Soldatov & Ripmeester (2001a,b). For similar metal(II) (β-diketonates)2 as well as for the properties of neutral molecules which form different types of supramolecular assemblies, see: Bučar & Meštrović (2003); Meštrović et al. (2004); Meštrović & Kaitner (2006). For the crystal and molecular structure of bis(2,2,6,6-tetramethylheptane-3,5-dionato) nickel(II) see: Cotton & Wise (1965). For the crystal and molecular structure of bis (acetylacetonato)-1,10-phenanthroline-nickel(II) see: Steblyanko et al. (1992).

For related literature, see: Allen (2002); Kaitner & Meštrović (1993); Stoe & Cie (1991a, 1991b).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1994); cell refinement: X-RED (Stoe & Cie, 1994); data reduction: X-RED (Stoe & Cie, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex showing the numbering sheme and displacement ellipsoids drawn at the 30% probability level. The H atoms have been omitted for clarity.
(1,10-Phenanthroline-κ2N,N')bis(2,2,6,6-tetramethylheptane- 3,5-dionato-κ2O,O')nickel(II) top
Crystal data top
[Ni(C11H19O2)2(C12H8N2)]Z = 2
Mr = 605.44F(000) = 648
Triclinic, P1Dx = 1.179 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.054 (2) ÅCell parameters from 25 reflections
b = 10.386 (3) Åθ = 10–15°
c = 16.717 (2) ŵ = 0.61 mm1
α = 89.69 (2)°T = 293 K
β = 83.48 (2)°Prism, green
γ = 79.63 (3)°0.60 × 0.60 × 0.30 mm
V = 1705.8 (7) Å3
Data collection top
Philips Stoe upgrade
diffractometer
5139 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
ω scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.65, Tmax = 0.83l = 021
7711 measured reflections3 standard reflections every 90 min
7451 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3734P]
where P = (Fo2 + 2Fc2)/3
7451 reflections(Δ/σ)max < 0.001
432 parametersΔρmax = 0.64 e Å3
69 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C11H19O2)2(C12H8N2)]γ = 79.63 (3)°
Mr = 605.44V = 1705.8 (7) Å3
Triclinic, P1Z = 2
a = 10.054 (2) ÅMo Kα radiation
b = 10.386 (3) ŵ = 0.61 mm1
c = 16.717 (2) ÅT = 293 K
α = 89.69 (2)°0.60 × 0.60 × 0.30 mm
β = 83.48 (2)°
Data collection top
Philips Stoe upgrade
diffractometer
5139 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.65, Tmax = 0.833 standard reflections every 90 min
7711 measured reflections intensity decay: 1%
7451 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04569 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.02Δρmax = 0.64 e Å3
7451 reflectionsΔρmin = 0.38 e Å3
432 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Disorder was refined with restraints on bond distances of both orientations and on ADPs of atoms of the minor orientation. Occupancie of minor orientations of both t-buthyl residues refined to 0.85

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.32575 (3)0.31322 (3)0.188562 (17)0.04550 (12)
O110.47578 (17)0.18444 (17)0.23263 (10)0.0548 (4)
O120.19611 (17)0.27128 (19)0.28160 (10)0.0608 (5)
O210.38533 (17)0.45956 (17)0.24617 (10)0.0576 (4)
O220.17421 (17)0.44893 (17)0.15129 (10)0.0545 (4)
N310.2711 (2)0.1796 (2)0.11057 (13)0.0560 (5)
N320.4651 (2)0.3236 (2)0.08706 (12)0.0525 (5)
C110.4787 (2)0.1676 (2)0.30770 (14)0.0493 (6)
C120.3645 (3)0.1894 (3)0.36497 (16)0.0616 (7)
H120.37900.17240.41830.074*
C130.2307 (3)0.2343 (3)0.34972 (16)0.0558 (6)
C140.1124 (3)0.2384 (3)0.41701 (18)0.0710 (8)
C190.0004 (4)0.3504 (4)0.4040 (3)0.1095 (15)
H19A0.03090.34010.35240.164*
H19B0.03250.43140.40580.164*
H19C0.07490.35110.44550.164*
C1100.1533 (5)0.2546 (7)0.5014 (2)0.161 (3)
H11A0.19940.32780.50220.241*
H11B0.21290.17660.51500.241*
H11C0.07340.26960.53980.241*
C1110.0592 (5)0.1104 (4)0.4104 (3)0.136 (2)
H11D0.02300.11410.44640.204*
H11E0.12640.03860.42470.204*
H11F0.04080.09810.35620.204*
C180.6206 (3)0.1182 (3)0.33414 (16)0.0650 (7)
C150.7313 (4)0.1426 (8)0.2697 (3)0.133 (3)0.853 (7)
H15A0.72890.23510.26480.200*0.853 (7)
H15B0.71680.10690.21920.200*0.853 (7)
H15C0.81840.10130.28420.200*0.853 (7)
C160.6370 (5)0.1701 (8)0.4154 (3)0.123 (3)0.853 (7)
H16A0.72390.13000.43080.184*0.853 (7)
H16B0.56590.15020.45420.184*0.853 (7)
H16C0.63180.26320.41300.184*0.853 (7)
C170.6373 (6)0.0320 (4)0.3389 (4)0.118 (2)0.853 (7)
H17A0.72770.06780.35070.176*0.853 (7)
H17B0.62240.06680.28820.176*0.853 (7)
H17C0.57230.05480.38060.176*0.853 (7)
C15A0.704 (2)0.008 (2)0.2823 (16)0.091 (8)0.147 (7)
H15D0.71680.03610.22760.136*0.147 (7)
H15E0.65840.06570.28470.136*0.147 (7)
H15F0.79170.01740.30160.136*0.147 (7)
C16A0.675 (2)0.2465 (13)0.338 (2)0.092 (9)0.147 (7)
H16D0.61110.30860.37170.138*0.147 (7)
H16E0.68650.28090.28450.138*0.147 (7)
H16F0.76070.23030.35930.138*0.147 (7)
C17A0.616 (4)0.066 (4)0.4195 (11)0.125 (12)0.147 (7)
H17D0.56370.13190.45620.187*0.147 (7)
H17E0.70640.04270.43410.187*0.147 (7)
H17F0.57340.01020.42210.187*0.147 (7)
C210.3059 (3)0.5620 (2)0.27442 (15)0.0534 (6)
C220.1754 (3)0.6046 (3)0.25292 (16)0.0587 (6)
H220.12320.67750.28030.070*
C230.1162 (2)0.5474 (3)0.19387 (16)0.0540 (6)
C240.0296 (3)0.6042 (3)0.1747 (2)0.0749 (8)
C250.1095 (5)0.4912 (5)0.1775 (4)0.124 (2)0.846 (7)
H25A0.06080.42130.14240.186*0.846 (7)
H25B0.19750.52160.16020.186*0.846 (7)
H25C0.12030.45990.23160.186*0.846 (7)
C260.1031 (6)0.7154 (8)0.2291 (5)0.171 (4)0.846 (7)
H26A0.05130.78470.22650.256*0.846 (7)
H26B0.11400.68520.28340.256*0.846 (7)
H26C0.19100.74720.21210.256*0.846 (7)
C270.0206 (5)0.6481 (6)0.0866 (3)0.112 (2)0.846 (7)
H27A0.02720.57660.05240.168*0.846 (7)
H27B0.02750.72010.08080.168*0.846 (7)
H27C0.11060.67490.07150.168*0.846 (7)
C25A0.1224 (17)0.602 (3)0.2530 (9)0.100 (9)0.154 (7)
H25D0.08590.64180.29530.149*0.154 (7)
H25E0.12840.51320.26640.149*0.154 (7)
H25F0.21150.65000.24660.149*0.154 (7)
C26A0.024 (2)0.7462 (13)0.1521 (18)0.103 (10)0.154 (7)
H26D0.01260.78780.19370.155*0.154 (7)
H26E0.11380.79220.14610.155*0.154 (7)
H26F0.03350.74780.10220.155*0.154 (7)
C27A0.088 (3)0.537 (3)0.1105 (14)0.174 (18)0.154 (7)
H27D0.03130.53820.06020.261*0.154 (7)
H27E0.17810.58260.10490.261*0.154 (7)
H27F0.09060.44840.12550.261*0.154 (7)
C280.3632 (3)0.6349 (3)0.33910 (17)0.0654 (7)
C290.5132 (4)0.6332 (4)0.3144 (3)0.1026 (13)
H29A0.52420.68050.26530.154*
H29B0.55980.54430.30610.154*
H29C0.55050.67360.35600.154*
C2100.2912 (4)0.7776 (4)0.3525 (3)0.1086 (14)
H21A0.19590.78020.36850.163*
H21B0.30280.82480.30350.163*
H21C0.32980.81700.39410.163*
C2110.3453 (5)0.5590 (4)0.4167 (2)0.1189 (16)
H21D0.25020.56030.43230.178*
H21E0.38280.59890.45850.178*
H21F0.39170.47020.40810.178*
C310.1742 (3)0.1101 (3)0.1235 (2)0.0767 (9)
H310.12140.11720.17320.092*
C320.1474 (4)0.0242 (3)0.0637 (3)0.1010 (14)
H320.07740.02340.07370.121*
C330.2274 (5)0.0131 (4)0.0090 (3)0.1017 (14)
H330.21240.04370.04840.122*
C340.3290 (4)0.0847 (3)0.0242 (2)0.0793 (10)
C350.4177 (5)0.0771 (4)0.0982 (2)0.0993 (15)
H350.40770.02040.13900.119*
C360.5151 (5)0.1505 (4)0.1092 (2)0.1042 (15)
H360.57060.14350.15800.125*
C370.5365 (4)0.2388 (3)0.04893 (16)0.0776 (10)
C380.6382 (4)0.3153 (4)0.0552 (2)0.0914 (12)
H380.69520.31500.10310.110*
C390.6542 (4)0.3892 (4)0.0073 (2)0.0899 (11)
H390.72340.43830.00370.108*
C400.5653 (3)0.3912 (3)0.07798 (19)0.0673 (7)
H400.57720.44280.12100.081*
C410.4507 (3)0.2462 (3)0.02516 (14)0.0573 (7)
C420.3466 (3)0.1692 (3)0.03745 (15)0.0587 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.04364 (17)0.05020 (19)0.04083 (17)0.00254 (12)0.00597 (11)0.00931 (12)
O110.0509 (9)0.0640 (11)0.0451 (9)0.0042 (8)0.0091 (7)0.0107 (8)
O120.0456 (9)0.0842 (13)0.0509 (10)0.0075 (9)0.0059 (8)0.0050 (9)
O210.0495 (9)0.0628 (11)0.0581 (10)0.0014 (8)0.0083 (8)0.0225 (9)
O220.0506 (9)0.0561 (10)0.0542 (10)0.0022 (8)0.0126 (8)0.0091 (8)
N310.0580 (12)0.0483 (12)0.0629 (13)0.0033 (10)0.0217 (10)0.0053 (10)
N320.0549 (12)0.0519 (11)0.0459 (11)0.0018 (10)0.0038 (9)0.0046 (9)
C110.0517 (13)0.0476 (13)0.0486 (13)0.0042 (10)0.0127 (11)0.0071 (10)
C120.0579 (15)0.0799 (19)0.0461 (14)0.0070 (14)0.0107 (12)0.0061 (13)
C130.0569 (15)0.0591 (15)0.0511 (14)0.0116 (12)0.0026 (11)0.0006 (12)
C140.0606 (17)0.086 (2)0.0623 (17)0.0110 (15)0.0045 (13)0.0150 (15)
C190.089 (3)0.110 (3)0.105 (3)0.016 (2)0.041 (2)0.015 (2)
C1100.095 (3)0.324 (8)0.054 (2)0.028 (4)0.015 (2)0.008 (3)
C1110.101 (3)0.097 (3)0.198 (5)0.025 (3)0.046 (3)0.018 (3)
C180.0557 (15)0.082 (2)0.0572 (16)0.0018 (14)0.0208 (12)0.0065 (14)
C150.054 (2)0.255 (9)0.098 (4)0.041 (4)0.021 (2)0.029 (5)
C160.079 (3)0.182 (6)0.102 (4)0.014 (3)0.045 (3)0.075 (4)
C170.108 (4)0.092 (3)0.144 (5)0.032 (3)0.054 (4)0.012 (3)
C15A0.055 (11)0.101 (15)0.113 (16)0.003 (11)0.014 (11)0.011 (13)
C16A0.053 (11)0.084 (14)0.148 (19)0.007 (9)0.055 (12)0.013 (13)
C17A0.113 (14)0.142 (15)0.121 (14)0.010 (9)0.041 (9)0.012 (10)
C210.0569 (14)0.0541 (14)0.0478 (13)0.0118 (12)0.0043 (11)0.0123 (11)
C220.0529 (14)0.0543 (15)0.0629 (16)0.0022 (11)0.0009 (12)0.0140 (12)
C230.0478 (13)0.0547 (15)0.0558 (14)0.0023 (11)0.0012 (11)0.0009 (12)
C240.0518 (16)0.079 (2)0.088 (2)0.0073 (14)0.0120 (15)0.0029 (17)
C250.059 (3)0.138 (5)0.184 (7)0.029 (3)0.035 (3)0.019 (4)
C260.087 (4)0.182 (7)0.215 (8)0.075 (4)0.049 (5)0.112 (6)
C270.081 (3)0.133 (5)0.119 (4)0.006 (3)0.039 (3)0.030 (4)
C25A0.034 (9)0.132 (17)0.114 (15)0.027 (11)0.002 (9)0.030 (14)
C26A0.057 (11)0.116 (16)0.132 (18)0.005 (10)0.023 (11)0.065 (14)
C27A0.17 (2)0.18 (2)0.18 (2)0.001 (17)0.061 (18)0.010 (18)
C280.0764 (19)0.0622 (17)0.0590 (16)0.0174 (14)0.0045 (14)0.0214 (13)
C290.084 (2)0.107 (3)0.125 (3)0.033 (2)0.021 (2)0.043 (2)
C2100.122 (3)0.078 (2)0.125 (3)0.006 (2)0.026 (3)0.053 (2)
C2110.197 (5)0.114 (3)0.057 (2)0.052 (3)0.021 (3)0.021 (2)
C310.074 (2)0.0637 (18)0.099 (2)0.0155 (16)0.0317 (18)0.0010 (17)
C320.101 (3)0.067 (2)0.152 (4)0.024 (2)0.070 (3)0.000 (2)
C330.131 (4)0.068 (2)0.109 (3)0.010 (2)0.073 (3)0.024 (2)
C340.103 (2)0.0591 (17)0.075 (2)0.0149 (17)0.0519 (19)0.0184 (15)
C350.136 (4)0.092 (3)0.0541 (19)0.043 (2)0.047 (2)0.0327 (18)
C360.131 (4)0.115 (3)0.0415 (16)0.048 (3)0.016 (2)0.0148 (19)
C370.095 (2)0.077 (2)0.0420 (14)0.0336 (18)0.0055 (14)0.0010 (14)
C380.084 (2)0.102 (3)0.070 (2)0.014 (2)0.0207 (18)0.022 (2)
C390.075 (2)0.088 (2)0.096 (3)0.0022 (18)0.0172 (19)0.017 (2)
C400.0575 (16)0.0669 (18)0.0730 (19)0.0047 (14)0.0008 (14)0.0042 (14)
C410.0665 (16)0.0555 (15)0.0408 (13)0.0153 (13)0.0096 (11)0.0011 (11)
C420.0735 (17)0.0507 (14)0.0461 (14)0.0158 (13)0.0253 (12)0.0097 (11)
Geometric parameters (Å, º) top
Ni—O122.0110 (18)C22—H220.9300
Ni—O212.0176 (18)C23—C241.547 (4)
Ni—O112.0304 (18)C24—C261.502 (5)
Ni—O222.0320 (18)C24—C27A1.508 (8)
Ni—N322.089 (2)C24—C25A1.520 (8)
Ni—N312.094 (2)C24—C26A1.531 (8)
O11—C111.269 (3)C24—C251.535 (5)
O12—C131.266 (3)C24—C271.537 (5)
O21—C211.268 (3)C25—H25A0.9600
O22—C231.262 (3)C25—H25B0.9600
N31—C311.312 (4)C25—H25C0.9600
N31—C421.358 (3)C26—H26A0.9600
N32—C401.323 (4)C26—H26B0.9600
N32—C411.350 (3)C26—H26C0.9600
C11—C121.395 (4)C27—H27A0.9600
C11—C181.539 (3)C27—H27B0.9600
C12—C131.394 (4)C27—H27C0.9600
C12—H120.9300C25A—H25D0.9600
C13—C141.537 (4)C25A—H25E0.9600
C14—C191.505 (4)C25A—H25F0.9600
C14—C1111.528 (5)C26A—H26D0.9600
C14—C1101.532 (5)C26A—H26E0.9600
C19—H19A0.9600C26A—H26F0.9600
C19—H19B0.9600C27A—H27D0.9600
C19—H19C0.9600C27A—H27E0.9600
C110—H11A0.9600C27A—H27F0.9600
C110—H11B0.9600C28—C291.515 (5)
C110—H11C0.9600C28—C2111.523 (5)
C111—H11D0.9600C28—C2101.533 (4)
C111—H11E0.9600C29—H29A0.9600
C111—H11F0.9600C29—H29B0.9600
C18—C161.501 (4)C29—H29C0.9600
C18—C15A1.508 (9)C210—H21A0.9600
C18—C151.513 (5)C210—H21B0.9600
C18—C17A1.524 (9)C210—H21C0.9600
C18—C16A1.531 (9)C211—H21D0.9600
C18—C171.541 (5)C211—H21E0.9600
C15—H15A0.9600C211—H21F0.9600
C15—H15B0.9600C31—C321.423 (5)
C15—H15C0.9600C31—H310.9300
C16—H16A0.9600C32—C331.373 (6)
C16—H16B0.9600C32—H320.9300
C16—H16C0.9600C33—C341.368 (6)
C17—H17A0.9600C33—H330.9300
C17—H17B0.9600C34—C421.405 (4)
C17—H17C0.9600C34—C351.433 (6)
C15A—H15D0.9600C35—C361.341 (6)
C15A—H15E0.9600C35—H350.9300
C15A—H15F0.9600C36—C371.427 (5)
C16A—H16D0.9600C36—H360.9300
C16A—H16E0.9600C37—C381.398 (5)
C16A—H16F0.9600C37—C411.421 (4)
C17A—H17D0.9600C38—C391.341 (5)
C17A—H17E0.9600C38—H380.9300
C17A—H17F0.9600C39—C401.395 (4)
C21—C221.393 (4)C39—H390.9300
C21—C281.543 (3)C40—H400.9300
C22—C231.396 (4)C41—C421.424 (4)
O12—Ni—O2195.30 (8)C26—C24—C25A50.1 (9)
O12—Ni—O1188.56 (7)C27A—C24—C25A107.9 (9)
O21—Ni—O1189.12 (7)C26—C24—C26A59.3 (9)
O12—Ni—O2289.61 (8)C27A—C24—C26A110.4 (9)
O21—Ni—O2287.79 (7)C25A—C24—C26A109.3 (8)
O11—Ni—O22176.25 (6)C26—C24—C25110.9 (5)
O12—Ni—N32170.45 (8)C27A—C24—C2547.6 (12)
O21—Ni—N3292.88 (8)C25A—C24—C2567.2 (10)
O11—Ni—N3286.63 (8)C26A—C24—C25147.6 (8)
O22—Ni—N3295.65 (8)C26—C24—C27110.2 (4)
O12—Ni—N3193.42 (9)C27A—C24—C2757.6 (11)
O21—Ni—N31170.00 (8)C25A—C24—C27145.5 (8)
O11—Ni—N3195.99 (8)C26A—C24—C2758.3 (11)
O22—Ni—N3187.38 (8)C25—C24—C27105.1 (4)
N32—Ni—N3178.89 (9)C26—C24—C23114.6 (3)
C11—O11—Ni121.76 (15)C27A—C24—C23118.4 (14)
C13—O12—Ni124.30 (17)C25A—C24—C23106.4 (8)
C21—O21—Ni124.38 (16)C26A—C24—C23104.2 (8)
C23—O22—Ni122.52 (16)C25—C24—C23107.6 (3)
C31—N31—C42118.4 (3)C27—C24—C23108.0 (3)
C31—N31—Ni128.4 (2)C24—C25—H25A109.5
C42—N31—Ni113.25 (18)C24—C25—H25B109.5
C40—N32—C41117.9 (2)H25A—C25—H25B109.5
C40—N32—Ni128.40 (19)C24—C25—H25C109.5
C41—N32—Ni113.63 (19)H25A—C25—H25C109.5
O11—C11—C12124.6 (2)H25B—C25—H25C109.5
O11—C11—C18115.5 (2)C24—C26—H26A109.5
C12—C11—C18119.9 (2)C24—C26—H26B109.5
C13—C12—C11126.1 (2)H26A—C26—H26B109.5
C13—C12—H12117.0C24—C26—H26C109.5
C11—C12—H12117.0H26A—C26—H26C109.5
O12—C13—C12124.4 (2)H26B—C26—H26C109.5
O12—C13—C14115.1 (2)C24—C27—H27A109.5
C12—C13—C14120.6 (2)C24—C27—H27B109.5
C19—C14—C111108.5 (3)H27A—C27—H27B109.5
C19—C14—C110107.9 (4)C24—C27—H27C109.5
C111—C14—C110110.4 (4)H27A—C27—H27C109.5
C19—C14—C13109.9 (2)H27B—C27—H27C109.5
C111—C14—C13106.7 (3)C24—C25A—H25D109.5
C110—C14—C13113.4 (3)C24—C25A—H25E109.5
C14—C19—H19A109.5H25D—C25A—H25E109.5
C14—C19—H19B109.5C24—C25A—H25F109.5
H19A—C19—H19B109.5H25D—C25A—H25F109.5
C14—C19—H19C109.5H25E—C25A—H25F109.5
H19A—C19—H19C109.5C24—C26A—H26D109.5
H19B—C19—H19C109.5C24—C26A—H26E109.5
C14—C110—H11A109.5H26D—C26A—H26E109.5
C14—C110—H11B109.5C24—C26A—H26F109.5
H11A—C110—H11B109.5H26D—C26A—H26F109.5
C14—C110—H11C109.5H26E—C26A—H26F109.5
H11A—C110—H11C109.5C24—C27A—H27D109.5
H11B—C110—H11C109.5C24—C27A—H27E109.5
C14—C111—H11D109.5H27D—C27A—H27E109.5
C14—C111—H11E109.5C24—C27A—H27F109.5
H11D—C111—H11E109.5H27D—C27A—H27F109.5
C14—C111—H11F109.5H27E—C27A—H27F109.5
H11D—C111—H11F109.5C29—C28—C211109.6 (3)
H11E—C111—H11F109.5C29—C28—C210108.5 (3)
C16—C18—C15A131.7 (11)C211—C28—C210109.8 (3)
C16—C18—C15112.7 (4)C29—C28—C21109.2 (2)
C15A—C18—C1558.8 (12)C211—C28—C21106.3 (2)
C16—C18—C17A44.4 (16)C210—C28—C21113.4 (3)
C15A—C18—C17A104.9 (19)C28—C29—H29A109.5
C15—C18—C17A135.8 (14)C28—C29—H29B109.5
C16—C18—C16A62.1 (12)H29A—C29—H29B109.5
C15A—C18—C16A118.1 (16)C28—C29—H29C109.5
C15—C18—C16A61.6 (13)H29A—C29—H29C109.5
C17A—C18—C16A106 (2)H29B—C29—H29C109.5
C16—C18—C11113.2 (3)C28—C210—H21A109.5
C15A—C18—C11113.8 (10)C28—C210—H21B109.5
C15—C18—C11110.8 (3)H21A—C210—H21B109.5
C17A—C18—C11113.2 (14)C28—C210—H21C109.5
C16A—C18—C11101.1 (7)H21A—C210—H21C109.5
C16—C18—C17108.1 (4)H21B—C210—H21C109.5
C15A—C18—C1746.9 (12)C28—C211—H21D109.5
C15—C18—C17104.9 (4)C28—C211—H21E109.5
C17A—C18—C1765.7 (17)H21D—C211—H21E109.5
C16A—C18—C17152.2 (8)C28—C211—H21F109.5
C11—C18—C17106.6 (3)H21D—C211—H21F109.5
C18—C15—H15A109.5H21E—C211—H21F109.5
C18—C15—H15B109.5N31—C31—C32122.0 (4)
C18—C15—H15C109.5N31—C31—H31119.0
C18—C16—H16A109.5C32—C31—H31119.0
C18—C16—H16B109.5C33—C32—C31118.4 (4)
C18—C16—H16C109.5C33—C32—H32120.8
C18—C17—H17A109.5C31—C32—H32120.8
C18—C17—H17B109.5C34—C33—C32120.9 (3)
C18—C17—H17C109.5C34—C33—H33119.6
C18—C15A—H15D109.5C32—C33—H33119.6
C18—C15A—H15E109.5C33—C34—C42117.0 (4)
H15D—C15A—H15E109.5C33—C34—C35124.0 (3)
C18—C15A—H15F109.5C42—C34—C35118.9 (4)
H15D—C15A—H15F109.5C36—C35—C34121.0 (3)
H15E—C15A—H15F109.5C36—C35—H35119.5
C18—C16A—H16D109.5C34—C35—H35119.5
C18—C16A—H16E109.5C35—C36—C37122.4 (4)
H16D—C16A—H16E109.5C35—C36—H36118.8
C18—C16A—H16F109.5C37—C36—H36118.8
H16D—C16A—H16F109.5C38—C37—C41117.0 (3)
H16E—C16A—H16F109.5C38—C37—C36125.6 (4)
C18—C17A—H17D109.5C41—C37—C36117.4 (4)
C18—C17A—H17E109.5C39—C38—C37120.5 (3)
H17D—C17A—H17E109.5C39—C38—H38119.7
C18—C17A—H17F109.5C37—C38—H38119.7
H17D—C17A—H17F109.5C38—C39—C40118.9 (4)
H17E—C17A—H17F109.5C38—C39—H39120.6
O21—C21—C22124.3 (2)C40—C39—H39120.6
O21—C21—C28114.1 (2)N32—C40—C39123.5 (3)
C22—C21—C28121.6 (2)N32—C40—H40118.2
C21—C22—C23125.7 (2)C39—C40—H40118.2
C21—C22—H22117.1N32—C41—C37122.1 (3)
C23—C22—H22117.1N32—C41—C42117.1 (2)
O22—C23—C22124.6 (2)C37—C41—C42120.7 (3)
O22—C23—C24114.3 (2)N31—C42—C34123.3 (3)
C22—C23—C24121.1 (2)N31—C42—C41117.1 (2)
C26—C24—C27A126.8 (14)C34—C42—C41119.6 (3)

Experimental details

Crystal data
Chemical formula[Ni(C11H19O2)2(C12H8N2)]
Mr605.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.054 (2), 10.386 (3), 16.717 (2)
α, β, γ (°)89.69 (2), 83.48 (2), 79.63 (3)
V3)1705.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.60 × 0.60 × 0.30
Data collection
DiffractometerPhilips Stoe upgrade
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.65, 0.83
No. of measured, independent and
observed [I > 2σ(I)] reflections
7711, 7451, 5139
Rint0.033
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.02
No. of reflections7451
No. of parameters432
No. of restraints69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.38

Computer programs: STADI4 (Stoe & Cie, 1994), X-RED (Stoe & Cie, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni—O122.0110 (18)Ni—O222.0320 (18)
Ni—O212.0176 (18)Ni—N322.089 (2)
Ni—O112.0304 (18)Ni—N312.094 (2)
 

Acknowledgements

Financial support of this research by the Ministry of Science, Education and Sport, Republic of Croatia, through grant No. 0119630, is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBučar, D.-K. & Meštrović, E. (2003). Acta Cryst. E59, m985–m987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A. & Wise, J. J. (1965). Inorg. Chem. 5, 1200–1207.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaitner, B. & Meštrović, E. (1993). Acta Cryst. C49, 1523–1525.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeštrović, E., Halasz, I., Bučar, D.-K. & Žgela, M. (2004). Acta Cryst. E60, m367–m369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeštrović, E. & Kaitner, B. (2006). J. Chem. Crystallogr. 36, 599–603.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSoldatov, D. V., Enright, G. D., Ratcliff, C. I., Henegouwen, A. T. & Ripmeester, J. A. (2001). Chem. Mater. 13, 4322–4334.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoldatov, D. V., Enright, G. D. & Ripmeester, J. A. (1999). Supramol. Chem. 11, 35–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoldatov, D. V., Enright, G. D. & Ripmeester, J. A. (2002). Chem. Mater. 14, 348–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoldatov, D. V. & Ripmeester, J. A. (2001a). Supramol. Chem. 12, 357–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoldatov, D. V. & Ripmeester, J. A. (2001b). Chem. Eur. J. 7, 2979–2994.  CrossRef PubMed CAS Google Scholar
First citationSoldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826–3840.  Web of Science CSD CrossRef CAS Google Scholar
First citationSteblyanko, A. Y., Grigor'ev, A. N., Tabachenko, V. V. & Mironov, A. V. (1992). Zh. Neorg. Khim. 37, 1036–1038.  Google Scholar
First citationStoe & Cie (1994). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds