metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyanido­phenyl­tris­(tri­methyl­phosphine)cobalt(II)

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China, and bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 58, Qingdao 266042, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 12 November 2007; accepted 30 November 2007; online 6 December 2007)

The title mol­ecule, [Co(C6H5)(CN)(C3H9P)3], lies on a crystallographic mirror plane with the CoII ion coordinated in a distorted square-pyramidal environment with one of the P atoms in the apical position. In the basal plane, the phenyl substituent is trans to the cyanide group with a C—Co—C angle which is significantly distorted from linearity.

Related literature

For related structures, see: Li et al. (2006[Li, X. Y., Sun, H. J., Yu, F. L., Florke, U. & Klein, H.-F. (2006). Organometallics, 25, 4695-4697.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H5)(CN)(C3H9P)3]

  • Mr = 390.27

  • Orthorhombic, P n m a

  • a = 12.456 (3) Å

  • b = 11.420 (2) Å

  • c = 14.495 (3) Å

  • V = 2061.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 373 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.742, Tmax = 0.816

  • 12996 measured reflections

  • 2373 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.04

  • 2373 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—C2 1.970 (2)
Co1—C1 2.011 (3)
Co1—P2 2.2034 (6)
Co1—P1 2.2745 (7)
C2—Co1—C1 157.00 (9)
C2—Co1—P2 88.168 (17)
C1—Co1—P2 87.783 (16)
P2—Co1—P2i 159.58 (3)
C2—Co1—P1 104.05 (6)
C1—Co1—P1 98.96 (6)
P2—Co1—P1 100.188 (13)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the molecular structure of the title compound the CoII ion is in a distorted square-pyramidal coordination environment with atom P1 in the apical position. In the equatorial plane, the phenyl ring substituent and cyano group are trans to each other. The distortion from ideal geometry of the angles around Co1 is most likely due to the steric effects of the bulky P(Me)3 groups. The Co1—C2 bond is relatively short, while the Co—C1 bond is relatively long compared to related distances in a complex reported by Li et al. (2006).

Related literature top

For related structures, see: Li et al. (2006).

Experimental top

All air-sensitive and volatile materials were handled in vacuo or under argon atmosphere using standard Schlenk techniques. A solution of benzonitrile (0.63 g, 1.74 mmol) in 10 ml of pentane was combined with a solution of tetra(trimethylphosphine)cobalt(0) (0.18 g, 1.75 mmol) in 50 ml of pentane at 193 K. The reaction mixture was allowed to warm to ambient temperature and stirred for 16 h to form a red-brown, turbid solution, which was filtered. Red-brown crystals of the title compound were obtained from the filtrate at 251 K.

Refinement top

H atoms were included in calculated positions and refined as riding atoms with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

In the molecular structure of the title compound the CoII ion is in a distorted square-pyramidal coordination environment with atom P1 in the apical position. In the equatorial plane, the phenyl ring substituent and cyano group are trans to each other. The distortion from ideal geometry of the angles around Co1 is most likely due to the steric effects of the bulky P(Me)3 groups. The Co1—C2 bond is relatively short, while the Co—C1 bond is relatively long compared to related distances in a complex reported by Li et al. (2006).

For related structures, see: Li et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms [symmetry code: (A) x - y + 1/2, z].
Cyanidophenyltris(trimethylphosphine)cobalt(II) top
Crystal data top
[Co(C6H5)(CN)(C3H9P)3]F(000) = 828
Mr = 390.27Dx = 1.257 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 11258 reflections
a = 12.456 (3) Åθ = 2.1–22.5°
b = 11.420 (2) ŵ = 1.06 mm1
c = 14.495 (3) ÅT = 373 K
V = 2061.9 (7) Å3Block, dark red
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.742, Tmax = 0.816k = 1414
12996 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2 + 0.7567P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max = 0.019
117 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Co(C6H5)(CN)(C3H9P)3]V = 2061.9 (7) Å3
Mr = 390.27Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.456 (3) ŵ = 1.06 mm1
b = 11.420 (2) ÅT = 373 K
c = 14.495 (3) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2185 reflections with I > 2σ(I)
Tmin = 0.742, Tmax = 0.816Rint = 0.057
12996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2373 reflectionsΔρmin = 0.59 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.75567 (2)0.25000.524811 (19)0.02152 (10)
P10.66451 (4)0.25000.66077 (4)0.02425 (13)
P20.77302 (3)0.06011 (3)0.50237 (3)0.02474 (11)
C10.9064 (2)0.25000.57450 (15)0.0281 (4)
C20.64192 (16)0.25000.43042 (14)0.0243 (4)
C30.53100 (17)0.25000.44650 (15)0.0272 (4)
H30.50670.25000.50720.033*
C40.45567 (18)0.25000.37551 (17)0.0328 (5)
H40.38280.25000.38950.039*
C50.4886 (2)0.25000.28431 (17)0.0358 (5)
H50.43840.25000.23680.043*
C60.5977 (2)0.25000.26512 (16)0.0341 (5)
H60.62130.25000.20430.041*
C70.67166 (18)0.25000.33676 (15)0.0290 (4)
H70.74440.25000.32220.035*
C80.87110 (13)0.03228 (14)0.41206 (12)0.0352 (4)
H8A0.88630.05000.40940.053*
H8B0.93590.07450.42530.053*
H8C0.84280.05770.35380.053*
C90.65951 (13)0.02741 (14)0.46370 (12)0.0324 (3)
H9A0.63140.00490.40760.049*
H9B0.60470.02690.51020.049*
H9C0.68260.10640.45290.049*
C100.82540 (13)0.02849 (15)0.59702 (12)0.0347 (4)
H10A0.84330.10510.57450.052*
H10B0.77190.03500.64440.052*
H10C0.88850.00810.62180.052*
C110.57347 (13)0.12794 (15)0.68682 (11)0.0323 (3)
H11A0.61300.05580.68620.048*
H11B0.51770.12480.64120.048*
H11C0.54210.13940.74670.048*
C120.74842 (18)0.25000.76408 (16)0.0333 (5)
H12A0.78930.32120.76650.050*0.50
H12B0.79640.18420.76220.050*0.50
H12C0.70370.24460.81780.050*0.50
N10.9851 (2)0.25000.59240 (15)0.0423 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01951 (15)0.02179 (16)0.02326 (17)0.0000.00048 (10)0.000
P10.0231 (3)0.0276 (3)0.0220 (2)0.0000.00096 (19)0.000
P20.0226 (2)0.0224 (2)0.0292 (2)0.00031 (14)0.00004 (14)0.00009 (14)
C10.0460 (14)0.0156 (9)0.0227 (9)0.0000.0052 (9)0.000
C20.0265 (9)0.0215 (9)0.0247 (9)0.0000.0022 (8)0.000
C30.0265 (10)0.0286 (10)0.0266 (10)0.0000.0016 (8)0.000
C40.0275 (10)0.0345 (11)0.0364 (11)0.0000.0065 (9)0.000
C50.0409 (12)0.0341 (11)0.0325 (11)0.0000.0139 (10)0.000
C60.0470 (13)0.0310 (11)0.0244 (10)0.0000.0019 (9)0.000
C70.0306 (11)0.0290 (10)0.0275 (10)0.0000.0013 (8)0.000
C80.0325 (8)0.0308 (8)0.0421 (9)0.0023 (7)0.0067 (7)0.0037 (7)
C90.0302 (8)0.0272 (7)0.0398 (8)0.0031 (6)0.0006 (6)0.0024 (7)
C100.0327 (8)0.0307 (8)0.0407 (9)0.0046 (6)0.0022 (7)0.0065 (7)
C110.0321 (7)0.0359 (8)0.0289 (7)0.0044 (7)0.0023 (6)0.0010 (6)
C120.0315 (11)0.0434 (13)0.0251 (11)0.0000.0037 (8)0.000
N10.0585 (15)0.0298 (10)0.0386 (11)0.0000.0021 (11)0.000
Geometric parameters (Å, º) top
Co1—C21.970 (2)C5—H50.9300
Co1—C12.011 (3)C6—C71.388 (3)
Co1—P22.2034 (6)C6—H60.9300
Co1—P2i2.2034 (6)C7—H70.9300
Co1—P12.2745 (7)C8—H8A0.9600
P1—C121.826 (2)C8—H8B0.9600
P1—C111.8362 (16)C8—H8C0.9600
P1—C11i1.8362 (16)C9—H9A0.9600
P2—C91.8200 (16)C9—H9B0.9600
P2—C81.8186 (16)C9—H9C0.9600
P2—C101.8252 (16)C10—H10A0.9600
C1—N11.014 (3)C10—H10B0.9600
C2—C31.401 (3)C10—H10C0.9600
C2—C71.407 (3)C11—H11A0.9600
C3—C41.393 (3)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.384 (4)C12—H12A0.9602
C4—H40.9300C12—H12B0.9602
C5—C61.388 (4)C12—H12C0.9602
C2—Co1—C1157.00 (9)C5—C6—H6120.0
C2—Co1—P288.168 (17)C7—C6—H6120.0
C1—Co1—P287.783 (16)C6—C7—C2123.2 (2)
C2—Co1—P2i88.168 (17)C6—C7—H7118.4
C1—Co1—P2i87.783 (16)C2—C7—H7118.4
P2—Co1—P2i159.58 (3)P2—C8—H8A109.5
C2—Co1—P1104.05 (6)P2—C8—H8B109.5
C1—Co1—P198.96 (6)H8A—C8—H8B109.5
P2—Co1—P1100.188 (13)P2—C8—H8C109.5
P2i—Co1—P1100.188 (13)H8A—C8—H8C109.5
C12—P1—C11100.65 (7)H8B—C8—H8C109.5
C12—P1—C11i100.65 (7)P2—C9—H9A109.5
C11—P1—C11i98.78 (11)P2—C9—H9B109.5
C12—P1—Co1115.14 (8)H9A—C9—H9B109.5
C11—P1—Co1119.11 (5)P2—C9—H9C109.5
C11i—P1—Co1119.11 (5)H9A—C9—H9C109.5
C9—P2—C8101.78 (8)H9B—C9—H9C109.5
C9—P2—C10101.81 (8)P2—C10—H10A109.5
C8—P2—C10101.78 (8)P2—C10—H10B109.5
C9—P2—Co1120.65 (6)H10A—C10—H10B109.5
C8—P2—Co1110.13 (6)P2—C10—H10C109.5
C10—P2—Co1118.01 (6)H10A—C10—H10C109.5
N1—C1—Co1173.8 (2)H10B—C10—H10C109.5
C3—C2—C7114.84 (19)P1—C11—H11A109.5
C3—C2—Co1126.43 (16)P1—C11—H11B109.5
C7—C2—Co1118.73 (16)H11A—C11—H11B109.5
C4—C3—C2122.8 (2)P1—C11—H11C109.5
C4—C3—H3118.6H11A—C11—H11C109.5
C2—C3—H3118.6H11B—C11—H11C109.5
C5—C4—C3120.4 (2)P1—C12—H12A109.5
C5—C4—H4119.8P1—C12—H12B109.5
C3—C4—H4119.8H12A—C12—H12B109.5
C4—C5—C6118.8 (2)P1—C12—H12C109.5
C4—C5—H5120.6H12A—C12—H12C109.5
C6—C5—H5120.6H12B—C12—H12C109.5
C5—C6—C7120.0 (2)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C6H5)(CN)(C3H9P)3]
Mr390.27
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)373
a, b, c (Å)12.456 (3), 11.420 (2), 14.495 (3)
V3)2061.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.742, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
12996, 2373, 2185
Rint0.057
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.04
No. of reflections2373
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.59

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Co1—C21.970 (2)Co1—P22.2034 (6)
Co1—C12.011 (3)Co1—P12.2745 (7)
C2—Co1—C1157.00 (9)C2—Co1—P1104.05 (6)
C2—Co1—P288.168 (17)C1—Co1—P198.96 (6)
C1—Co1—P287.783 (16)P2—Co1—P1100.188 (13)
P2—Co1—P2i159.58 (3)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

This work was supported by the NSFC (grant Nos. 20572062 and 20372042).

References

First citationBruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X. Y., Sun, H. J., Yu, F. L., Florke, U. & Klein, H.-F. (2006). Organometallics, 25, 4695–4697.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds