organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 4-[4-(di­ethyl­amino)styr­yl]benzoate

aDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
*Correspondence e-mail: he1208@mail.ccnu.edu.cn

(Received 14 November 2007; accepted 4 December 2007; online 12 December 2007)

In the title mol­ecule, C21H25NO2, the dihedral angle between the two benzene rings is 4.8 (2)°. Both the ethyl group of the ester group and one of the ethyl groups attached to the N atom are disordered over two sites, the approximate occupancies being 66:34 and 81:19, respectively. In the cystal structure, there are no direction-specific inter­actions.

Related literature

For related literature, see: Boggess et al. (1986[Boggess, T. F. Jr, Bohnert, K. M., Mansour, K., Moss, S. C. & Boyd, I. W. (1986). IEEE J. Quant. Electron. 22, 360-368.]); Iwase et al. (2003[Iwase, Y., Ohta, K. & Kondo, K. (2003). J. Mater. Chem. 13, 1575-1581.]); Marynaoff & Reitz (1989[Marynaoff, B. E. & Reitz, A. B. (1989). Chem. Rev. 89, 863-927.]); Reinhardt et al. (1998[Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannan, R., Yuan, L. & He, G. S. (1998). Chem. Mater. 10, 1863-1874.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO2

  • Mr = 323.42

  • Orthorhombic, P n a 21

  • a = 7.8689 (11) Å

  • b = 8.8441 (11) Å

  • c = 26.404 (3) Å

  • V = 1837.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 292 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 10027 measured reflections

  • 2043 independent reflections

  • 1118 reflections with I > 2σ(I)

  • Rint = 0.121

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 0.88

  • 2043 reflections

  • 261 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Two-photon absorption (TPA) of organic materials has attracted much attention because of its various applications in photonics (Iwase et al., 2003). For these applications, it is important to prepare materials having a TPA cross-section at the wavelength of available laser sources (Reinhardt et al.,1998). We report here the structure of a new compound containing a TPA cross-section. The measurement of the TPA cross-section was performed by the nonlinear transmission method (Boggess et al., 1986).

In the molecular structure, the two benzene rings are almost coplanar with a dihedral angle of only 4.8 (2)° between them (Fig.1). The bond lengths and angles in the molecule are as expected (Allen et al., 1987).

In the crystal structure, no H-bonding, C—H···π, or π-π interactions are observed. The crystal is stablized only by van der Waals interactions.

Related literature top

For related literature, see: Boggess et al. (1986); Iwase et al. (2003); Marynaoff & Reitz (1989); Reinhardt et al. (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

All reagents and solvents were used as obtained without further purification. The title compound was prepared according to literature procedure (Marynaoff et al., 1989). The solid product was dissolved in ether and the solution kept in air for one week. Crystals of of the title compound suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement top

All H atoms were included in calculated positions with C—H = 0.93Å (aromatic and –CH=CH– moiety), 0.97Å (methylene), 0.96Å (methyl); Uiso(H)=1.2UeqC (aromatic, –CH=CH–, methylene) and Uiso(H)=1.5UeqC (methyl). Two ethyl groups (C16/C17/O2 & C20/C21/N1) are disordered over two sites and the corresponding N—C, C—C and O—C bond distances were refined by using the SHELXL97 (Sheldrick, 1997) commands; DFIX, EADP and EXYZ with the ratios of the refined occupancies being 0.66 (1):0.34 (1) and 0.81 (1):0.19 (1) for the major and minor components, respectively. In the absence of significant anomalous dispersion effects Fridel pairs were merged.

Structure description top

Two-photon absorption (TPA) of organic materials has attracted much attention because of its various applications in photonics (Iwase et al., 2003). For these applications, it is important to prepare materials having a TPA cross-section at the wavelength of available laser sources (Reinhardt et al.,1998). We report here the structure of a new compound containing a TPA cross-section. The measurement of the TPA cross-section was performed by the nonlinear transmission method (Boggess et al., 1986).

In the molecular structure, the two benzene rings are almost coplanar with a dihedral angle of only 4.8 (2)° between them (Fig.1). The bond lengths and angles in the molecule are as expected (Allen et al., 1987).

In the crystal structure, no H-bonding, C—H···π, or π-π interactions are observed. The crystal is stablized only by van der Waals interactions.

For related literature, see: Boggess et al. (1986); Iwase et al. (2003); Marynaoff & Reitz (1989); Reinhardt et al. (1998). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The disorder is not shown.
(E)-Ethyl 4-[4-(diethylamino)styryl]benzoate top
Crystal data top
C21H25NO2F(000) = 696
Mr = 323.42Dx = 1.169 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1356 reflections
a = 7.8689 (11) Åθ = 2.6–26.4°
b = 8.8441 (11) ŵ = 0.07 mm1
c = 26.404 (3) ÅT = 292 K
V = 1837.6 (4) Å3Prism, orange
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.121
Graphite monochromatorθmax = 27.0°, θmin = 2.4°
φ and ω scansh = 108
10027 measured reflectionsk = 119
2043 independent reflectionsl = 3333
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max = 0.001
2043 reflectionsΔρmax = 0.15 e Å3
261 parametersΔρmin = 0.14 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (12)
Crystal data top
C21H25NO2V = 1837.6 (4) Å3
Mr = 323.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.8689 (11) ŵ = 0.07 mm1
b = 8.8441 (11) ÅT = 292 K
c = 26.404 (3) Å0.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1118 reflections with I > 2σ(I)
10027 measured reflectionsRint = 0.121
2043 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.88Δρmax = 0.15 e Å3
2043 reflectionsΔρmin = 0.14 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3128 (5)0.0493 (5)0.53178 (16)0.0725 (10)
C20.4421 (5)0.0245 (4)0.49197 (13)0.0623 (9)
C30.4259 (5)0.0791 (4)0.45313 (14)0.0757 (10)
H30.32820.13780.45080.091*
C40.5536 (5)0.0961 (4)0.41782 (14)0.0755 (11)
H40.53950.16590.39180.091*
C50.7031 (4)0.0120 (4)0.41986 (13)0.0600 (8)
C60.7157 (5)0.0933 (4)0.45886 (14)0.0700 (10)
H60.81190.15400.46110.084*
C70.5887 (5)0.1088 (4)0.49398 (14)0.0716 (10)
H70.60220.17860.52000.086*
C80.8356 (5)0.0350 (4)0.38217 (13)0.0636 (9)
H80.81290.10740.35750.076*
C90.9833 (5)0.0335 (4)0.37851 (14)0.0652 (9)
H91.00580.10620.40310.078*
C101.1164 (4)0.0102 (4)0.34089 (13)0.0576 (8)
C111.1104 (4)0.0989 (3)0.30381 (14)0.0613 (9)
H111.01810.16460.30310.074*
C121.2348 (4)0.1150 (4)0.26768 (13)0.0639 (9)
H121.22440.19010.24320.077*
C131.3780 (4)0.0193 (4)0.26715 (13)0.0598 (9)
C141.3851 (5)0.0887 (4)0.30509 (15)0.0700 (9)
H141.47840.15310.30670.084*
C151.2587 (5)0.1030 (4)0.34012 (14)0.0678 (9)
H151.26830.17820.36460.081*
O20.1775 (4)0.0376 (3)0.52482 (12)0.1001 (9)0.663 (19)
C160.0545 (15)0.0316 (14)0.5682 (5)0.076 (3)0.663 (19)
H16A0.00440.06480.56910.091*0.663 (19)
H16B0.11270.04620.60020.091*0.663 (19)
C170.0668 (12)0.1578 (11)0.5583 (5)0.091 (4)0.663 (19)
H17A0.00720.25240.55970.137*0.663 (19)
H17B0.15480.15690.58350.137*0.663 (19)
H17C0.11640.14530.52540.137*0.663 (19)
O2'0.1775 (4)0.0376 (3)0.52482 (12)0.1001 (9)0.337 (19)
C16'0.009 (5)0.025 (4)0.5492 (11)0.107 (10)0.337 (19)
H16C0.00810.07250.56510.128*0.337 (19)
H16D0.08330.04520.52570.128*0.337 (19)
C17'0.029 (5)0.149 (4)0.5871 (11)0.153 (12)0.337 (19)
H17D0.14120.14420.60150.230*0.337 (19)
H17E0.05370.13710.61350.230*0.337 (19)
H17F0.01350.24480.57080.230*0.337 (19)
C181.4744 (5)0.1303 (4)0.18598 (12)0.0739 (10)
H18A1.58190.14480.16870.089*
H18B1.43490.22890.19700.089*
C191.3479 (5)0.0668 (5)0.14881 (15)0.0886 (11)
H19A1.39340.02320.13370.133*
H19B1.32550.14030.12290.133*
H19C1.24410.04290.16620.133*
N11.5034 (4)0.0366 (3)0.23066 (12)0.0738 (9)0.811 (11)
C201.6626 (7)0.0480 (8)0.2327 (3)0.0763 (19)0.811 (11)
H20A1.69200.06650.26790.092*0.811 (11)
H20B1.75250.01260.21790.092*0.811 (11)
C211.6527 (8)0.1943 (8)0.2057 (3)0.110 (2)0.811 (11)
H21A1.58120.26250.22430.166*0.811 (11)
H21B1.76450.23680.20270.166*0.811 (11)
H21C1.60590.17850.17250.166*0.811 (11)
N1'1.5034 (4)0.0366 (3)0.23066 (12)0.0738 (9)0.189 (11)
C20'1.599 (3)0.1001 (14)0.2184 (12)0.083 (10)0.189 (11)
H20C1.59480.12090.18230.100*0.189 (11)
H20D1.55480.18670.23660.100*0.189 (11)
C21'1.775 (4)0.065 (3)0.2346 (19)0.113 (19)0.189 (11)
H21D1.79600.04100.23070.170*0.189 (11)
H21E1.85380.12120.21410.170*0.189 (11)
H21F1.78930.09320.26950.170*0.189 (11)
O10.3244 (3)0.1352 (3)0.56591 (12)0.0978 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.064 (3)0.076 (2)0.078 (3)0.010 (2)0.002 (2)0.003 (2)
C20.061 (2)0.063 (2)0.063 (2)0.0091 (17)0.0039 (18)0.0026 (18)
C30.065 (3)0.087 (2)0.075 (3)0.014 (2)0.010 (2)0.005 (2)
C40.081 (3)0.081 (2)0.065 (2)0.0169 (19)0.006 (2)0.0128 (19)
C50.069 (2)0.0576 (18)0.053 (2)0.0048 (16)0.0036 (19)0.0054 (16)
C60.060 (2)0.078 (2)0.072 (2)0.0067 (17)0.001 (2)0.009 (2)
C70.071 (3)0.073 (2)0.071 (2)0.0006 (19)0.002 (2)0.0177 (18)
C80.072 (3)0.0589 (19)0.059 (2)0.0024 (18)0.0006 (18)0.0005 (16)
C90.067 (2)0.062 (2)0.066 (2)0.0011 (18)0.0025 (19)0.0040 (18)
C100.059 (2)0.057 (2)0.057 (2)0.0024 (16)0.0021 (18)0.0014 (16)
C110.065 (2)0.056 (2)0.063 (2)0.0083 (16)0.0024 (19)0.0015 (18)
C120.068 (2)0.059 (2)0.065 (2)0.0102 (16)0.0009 (19)0.0066 (17)
C130.061 (2)0.0586 (19)0.059 (2)0.0038 (17)0.0026 (19)0.0067 (17)
C140.065 (2)0.073 (2)0.071 (2)0.0174 (18)0.009 (2)0.007 (2)
C150.074 (2)0.066 (2)0.063 (2)0.0069 (18)0.003 (2)0.0139 (18)
O20.080 (2)0.109 (2)0.111 (2)0.0086 (16)0.0270 (18)0.0163 (19)
C160.066 (6)0.091 (7)0.071 (8)0.006 (4)0.011 (5)0.001 (6)
C170.083 (6)0.080 (5)0.110 (7)0.008 (4)0.036 (5)0.004 (4)
O2'0.080 (2)0.109 (2)0.111 (2)0.0086 (16)0.0270 (18)0.0163 (19)
C16'0.11 (2)0.145 (19)0.070 (16)0.042 (15)0.007 (11)0.034 (13)
C17'0.15 (3)0.18 (2)0.13 (2)0.044 (19)0.050 (18)0.067 (18)
C180.071 (2)0.080 (2)0.071 (2)0.0031 (18)0.007 (2)0.005 (2)
C190.088 (3)0.100 (3)0.078 (2)0.000 (2)0.004 (2)0.005 (2)
N10.070 (2)0.082 (2)0.0688 (19)0.0183 (16)0.0061 (17)0.0071 (17)
C200.050 (5)0.090 (5)0.090 (4)0.003 (3)0.002 (3)0.002 (3)
C210.092 (4)0.113 (5)0.126 (5)0.035 (4)0.013 (4)0.026 (4)
N1'0.070 (2)0.082 (2)0.0688 (19)0.0183 (16)0.0061 (17)0.0071 (17)
C20'0.071 (17)0.062 (19)0.12 (2)0.031 (12)0.046 (17)0.037 (13)
C21'0.067 (19)0.09 (2)0.13 (6)0.012 (17)0.03 (3)0.06 (2)
O10.079 (2)0.120 (2)0.095 (2)0.0136 (15)0.0086 (16)0.0296 (19)
Geometric parameters (Å, º) top
C1—O11.182 (4)C16—H16A0.9700
C1—O21.326 (4)C16—H16B0.9700
C1—C21.479 (5)C17—H17A0.9600
C2—C71.374 (5)C17—H17B0.9600
C2—C31.381 (5)C17—H17C0.9600
C3—C41.379 (5)C16'—C17'1.492 (8)
C3—H30.9300C16'—H16C0.9700
C4—C51.393 (5)C16'—H16D0.9700
C4—H40.9300C17'—H17D0.9600
C5—C61.392 (5)C17'—H17E0.9600
C5—C81.456 (4)C17'—H17F0.9600
C6—C71.370 (5)C18—N11.460 (3)
C6—H60.9300C18—C191.506 (5)
C7—H70.9300C18—H18A0.9700
C8—C91.314 (4)C18—H18B0.9700
C8—H80.9300C19—H19A0.9600
C9—C101.458 (5)C19—H19B0.9600
C9—H90.9300C19—H19C0.9600
C10—C111.376 (4)N1—C201.460 (4)
C10—C151.389 (5)C20—C211.480 (7)
C11—C121.374 (4)C20—H20A0.9700
C11—H110.9300C20—H20B0.9700
C12—C131.409 (4)C21—H21A0.9600
C12—H120.9300C21—H21B0.9600
C13—C141.386 (5)C21—H21C0.9600
C13—N11.388 (4)C20'—C21'1.481 (7)
C14—C151.364 (5)C20'—H20C0.9700
C14—H140.9300C20'—H20D0.9700
C15—H150.9300C21'—H21D0.9600
O2—C161.502 (14)C21'—H21E0.9600
C16—C171.492 (8)C21'—H21F0.9600
O1—C1—O2122.7 (4)C17—C16—O2104.6 (8)
O1—C1—C2125.7 (4)C17—C16—H16A110.8
O2—C1—C2111.6 (4)O2—C16—H16A110.8
C7—C2—C3117.8 (3)C17—C16—H16B110.8
C7—C2—C1118.0 (3)O2—C16—H16B110.8
C3—C2—C1124.2 (4)H16A—C16—H16B108.9
C4—C3—C2120.5 (3)C17'—C16'—H16C112.1
C4—C3—H3119.8C17'—C16'—H16D112.2
C2—C3—H3119.8H16C—C16'—H16D109.8
C3—C4—C5122.1 (3)C16'—C17'—H17D109.5
C3—C4—H4119.0C16'—C17'—H17E109.5
C5—C4—H4119.0H17D—C17'—H17E109.5
C6—C5—C4116.5 (3)C16'—C17'—H17F109.5
C6—C5—C8123.3 (3)H17D—C17'—H17F109.5
C4—C5—C8120.3 (3)H17E—C17'—H17F109.5
C7—C6—C5121.1 (3)N1—C18—C19114.7 (3)
C7—C6—H6119.5N1—C18—H18A108.6
C5—C6—H6119.5C19—C18—H18A108.6
C6—C7—C2122.1 (3)N1—C18—H18B108.6
C6—C7—H7118.9C19—C18—H18B108.6
C2—C7—H7118.9H18A—C18—H18B107.6
C9—C8—C5128.2 (3)C18—C19—H19A109.5
C9—C8—H8115.9C18—C19—H19B109.5
C5—C8—H8115.9H19A—C19—H19B109.5
C8—C9—C10128.3 (3)C18—C19—H19C109.5
C8—C9—H9115.8H19A—C19—H19C109.5
C10—C9—H9115.8H19B—C19—H19C109.5
C11—C10—C15115.6 (3)C13—N1—C18120.8 (3)
C11—C10—C9124.0 (3)C13—N1—C20121.9 (3)
C15—C10—C9120.4 (3)C18—N1—C20117.1 (4)
C12—C11—C10122.8 (3)N1—C20—C21112.6 (6)
C12—C11—H11118.6N1—C20—H20A109.1
C10—C11—H11118.6C21—C20—H20A109.1
C11—C12—C13120.9 (3)N1—C20—H20B109.1
C11—C12—H12119.5C21—C20—H20B109.1
C13—C12—H12119.5H20A—C20—H20B107.8
C14—C13—N1123.3 (3)C21'—C20'—H20C110.9
C14—C13—C12116.1 (3)C21'—C20'—H20D110.9
N1—C13—C12120.6 (3)H20C—C20'—H20D108.9
C15—C14—C13121.6 (3)C20'—C21'—H21D109.5
C15—C14—H14119.2C20'—C21'—H21E109.5
C13—C14—H14119.2H21D—C21'—H21E109.5
C14—C15—C10122.9 (3)C20'—C21'—H21F109.5
C14—C15—H15118.5H21D—C21'—H21F109.5
C10—C15—H15118.5H21E—C21'—H21F109.5
C1—O2—C16113.1 (4)
O1—C1—C2—C70.6 (5)C9—C10—C11—C12177.6 (3)
O2—C1—C2—C7179.1 (3)C10—C11—C12—C130.5 (5)
O1—C1—C2—C3178.6 (4)C11—C12—C13—C140.6 (5)
O2—C1—C2—C31.6 (5)C11—C12—C13—N1179.8 (3)
C7—C2—C3—C40.0 (5)N1—C13—C14—C15179.6 (3)
C1—C2—C3—C4179.3 (3)C12—C13—C14—C151.3 (5)
C2—C3—C4—C50.6 (6)C13—C14—C15—C101.0 (6)
C3—C4—C5—C61.5 (5)C11—C10—C15—C140.2 (5)
C3—C4—C5—C8179.2 (3)C9—C10—C15—C14178.4 (3)
C4—C5—C6—C71.9 (5)O1—C1—O2—C168.3 (8)
C8—C5—C6—C7178.8 (3)C2—C1—O2—C16172.0 (7)
C5—C6—C7—C21.4 (5)C1—O2—C16—C17168.7 (10)
C3—C2—C7—C60.5 (5)C14—C13—N1—C18167.6 (3)
C1—C2—C7—C6179.8 (3)C12—C13—N1—C1813.4 (5)
C6—C5—C8—C90.9 (5)C14—C13—N1—C206.7 (6)
C4—C5—C8—C9179.8 (3)C12—C13—N1—C20172.3 (5)
C5—C8—C9—C10179.8 (3)C19—C18—N1—C1369.5 (4)
C8—C9—C10—C114.4 (5)C19—C18—N1—C20105.0 (5)
C8—C9—C10—C15174.1 (3)C13—N1—C20—C2189.9 (6)
C15—C10—C11—C120.9 (5)C18—N1—C20—C2184.6 (6)

Experimental details

Crystal data
Chemical formulaC21H25NO2
Mr323.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)292
a, b, c (Å)7.8689 (11), 8.8441 (11), 26.404 (3)
V3)1837.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10027, 2043, 1118
Rint0.121
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 0.88
No. of reflections2043
No. of parameters261
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBoggess, T. F. Jr, Bohnert, K. M., Mansour, K., Moss, S. C. & Boyd, I. W. (1986). IEEE J. Quant. Electron. 22, 360–368.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIwase, Y., Ohta, K. & Kondo, K. (2003). J. Mater. Chem. 13, 1575–1581.  Web of Science CrossRef CAS Google Scholar
First citationMarynaoff, B. E. & Reitz, A. B. (1989). Chem. Rev. 89, 863–927.  Google Scholar
First citationReinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannan, R., Yuan, L. & He, G. S. (1998). Chem. Mater. 10, 1863–1874.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds