organic compounds
(4,6-Dibromo-m-phenylenedimethylidyne) tetraacetate
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn
The title molecule, C16H16Br2O8, lies on a crystallographic twofold axis. Weak intramolecular C—H⋯O hydrogen bonds may, in part, control the conformation of the molecule. In the molecules are connected into a two-dimensional network via weak intermolecular C—H⋯O hydrogen bonds.
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807063581/lh2578sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063581/lh2578Isup2.hkl
The title compound was prepared by a previously reported method (Mitchell et al., 1995).
The crystals of the title compound, were obtained by dissolving (I) (2.00 g, 4.03 mmol) into acetone (50 ml), and evaporating the solvent slowly at room temperature for about 3 d.
H atoms were positioned geometrically, with C—H = 0.93 - 0.98Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).
The
contains one half-molecule; the full molecule being generated by a crystallographic twofold rotation axis. Weak intramolecular C—H···O hydrogen bonds may, in part, control the conformation of the molecule. In the molecules are connected into a two-dimensional network via weak intermolecular C—H···O hydrogen bonds. (Fig. 2).For related literature, see: Allen et al. (1987); Mitchell et al. (1995).
Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell
CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).C16H16Br2O8 | F(000) = 984 |
Mr = 496.09 | Dx = 1.731 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 25 reflections |
a = 20.639 (4) Å | θ = 10–14° |
b = 10.150 (2) Å | µ = 4.30 mm−1 |
c = 9.0880 (18) Å | T = 298 K |
V = 1903.8 (6) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 805 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 26.0°, θmin = 2.0° |
ω/2θ scans | h = 0→25 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→12 |
Tmin = 0.278, Tmax = 0.480 | l = 0→11 |
3687 measured reflections | 3 standard reflections every 200 reflections |
1877 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.02P)2 + 0.0P] where P = (Fo2 + 2Fc2)/3 |
1877 reflections | (Δ/σ)max = 0.001 |
107 parameters | Δρmax = 0.58 e Å−3 |
29 restraints | Δρmin = −0.49 e Å−3 |
C16H16Br2O8 | V = 1903.8 (6) Å3 |
Mr = 496.09 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 20.639 (4) Å | µ = 4.30 mm−1 |
b = 10.150 (2) Å | T = 298 K |
c = 9.0880 (18) Å | 0.40 × 0.30 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 805 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.054 |
Tmin = 0.278, Tmax = 0.480 | 3 standard reflections every 200 reflections |
3687 measured reflections | intensity decay: none |
1877 independent reflections |
R[F2 > 2σ(F2)] = 0.067 | 29 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.58 e Å−3 |
1877 reflections | Δρmin = −0.49 e Å−3 |
107 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.61944 (4) | 0.39329 (6) | 0.10603 (9) | 0.0671 (3) | |
O1 | 0.6622 (2) | 0.6733 (4) | 0.2433 (6) | 0.0456 (11) | |
O2 | 0.7386 (3) | 0.6717 (7) | 0.0680 (7) | 0.0852 (19) | |
O3 | 0.6065 (2) | 0.8406 (5) | 0.1438 (5) | 0.049 | |
O4 | 0.5702 (3) | 0.8387 (5) | −0.0882 (6) | 0.0750 (17) | |
C1 | 0.5000 | 0.4229 (8) | 0.2500 | 0.042 (2) | |
H1A | 0.5000 | 0.3313 | 0.2500 | 0.051* | |
C2 | 0.5520 (3) | 0.4888 (6) | 0.1917 (7) | 0.0390 (16) | |
C3 | 0.5535 (3) | 0.6316 (6) | 0.1962 (7) | 0.0414 (17) | |
C4 | 0.5000 | 0.6958 (9) | 0.2500 | 0.037 (2) | |
H4A | 0.5000 | 0.7874 | 0.2500 | 0.044* | |
C5 | 0.6135 (3) | 0.6973 (7) | 0.1474 (7) | 0.041 | |
H5A | 0.6256 | 0.6652 | 0.0494 | 0.049* | |
C6 | 0.7244 (4) | 0.6543 (8) | 0.1961 (9) | 0.052 (2) | |
C7 | 0.7671 (4) | 0.6004 (9) | 0.3066 (9) | 0.084 (3) | |
H7A | 0.8098 | 0.5906 | 0.2661 | 0.126* | |
H7B | 0.7513 | 0.5159 | 0.3375 | 0.126* | |
H7C | 0.7688 | 0.6588 | 0.3896 | 0.126* | |
C8 | 0.5877 (3) | 0.8970 (7) | 0.0164 (10) | 0.063 (2) | |
C9 | 0.5899 (4) | 1.0491 (6) | 0.0331 (9) | 0.060 (2) | |
H9A | 0.5761 | 1.0896 | −0.0571 | 0.090* | |
H9B | 0.6334 | 1.0762 | 0.0552 | 0.090* | |
H9C | 0.5616 | 1.0757 | 0.1116 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0785 (5) | 0.0252 (4) | 0.0977 (6) | 0.0028 (4) | 0.0283 (5) | −0.0106 (5) |
O1 | 0.055 (3) | 0.033 (2) | 0.049 (3) | 0.001 (2) | −0.007 (2) | −0.009 (3) |
O2 | 0.064 (4) | 0.107 (5) | 0.084 (4) | −0.006 (4) | 0.024 (3) | −0.001 (4) |
O3 | 0.049 | 0.049 | 0.049 | 0.000 | 0.000 | 0.000 |
O4 | 0.095 (4) | 0.051 (3) | 0.080 (4) | −0.008 (3) | −0.023 (3) | 0.005 (4) |
C1 | 0.058 (5) | 0.019 (4) | 0.049 (5) | 0.000 | 0.010 (5) | 0.000 |
C2 | 0.051 (3) | 0.013 (3) | 0.053 (4) | −0.004 (3) | −0.011 (3) | −0.016 (3) |
C3 | 0.058 (4) | 0.022 (3) | 0.045 (4) | −0.005 (3) | −0.008 (3) | −0.010 (3) |
C4 | 0.051 (5) | 0.021 (4) | 0.040 (5) | 0.000 | 0.005 (4) | 0.000 |
C5 | 0.041 | 0.041 | 0.041 | 0.000 | 0.000 | 0.000 |
C6 | 0.058 (5) | 0.052 (5) | 0.046 (5) | −0.010 (4) | 0.010 (4) | −0.018 (4) |
C7 | 0.067 (5) | 0.095 (8) | 0.090 (7) | 0.020 (6) | 0.000 (5) | −0.012 (6) |
C8 | 0.037 (3) | 0.059 (5) | 0.094 (6) | 0.009 (4) | −0.011 (4) | −0.055 (6) |
C9 | 0.077 (5) | 0.018 (3) | 0.084 (5) | −0.005 (4) | 0.004 (5) | −0.001 (5) |
Br—C2 | 1.866 (6) | C3—C5 | 1.476 (9) |
O1—C5 | 1.353 (7) | C4—C3i | 1.372 (8) |
O1—C6 | 1.366 (8) | C4—H4A | 0.9300 |
O2—C6 | 1.213 (9) | C5—H5A | 0.9800 |
O3—C8 | 1.349 (9) | C6—C7 | 1.445 (10) |
O3—C5 | 1.461 (9) | C7—H7A | 0.9600 |
O4—C8 | 1.177 (8) | C7—H7B | 0.9600 |
C1—C2 | 1.371 (7) | C7—H7C | 0.9600 |
C1—C2i | 1.371 (7) | C8—C9 | 1.552 (8) |
C1—H1A | 0.9300 | C9—H9A | 0.9600 |
C2—C3 | 1.450 (8) | C9—H9B | 0.9600 |
C3—C4 | 1.372 (8) | C9—H9C | 0.9600 |
C5—O1—C6 | 121.4 (6) | C3—C5—H5A | 109.6 |
C8—O3—C5 | 118.0 (5) | O2—C6—O1 | 120.5 (7) |
C2—C1—C2i | 121.6 (8) | O2—C6—C7 | 125.0 (7) |
C2—C1—H1A | 119.2 | O1—C6—C7 | 114.1 (6) |
C2i—C1—H1A | 119.2 | C6—C7—H7A | 109.5 |
C1—C2—C3 | 119.6 (6) | C6—C7—H7B | 109.5 |
C1—C2—Br | 119.4 (4) | H7A—C7—H7B | 109.5 |
C3—C2—Br | 121.0 (5) | C6—C7—H7C | 109.5 |
C4—C3—C2 | 117.9 (6) | H7A—C7—H7C | 109.5 |
C4—C3—C5 | 124.6 (6) | H7B—C7—H7C | 109.5 |
C2—C3—C5 | 117.5 (6) | O4—C8—O3 | 124.6 (7) |
C3i—C4—C3 | 123.3 (8) | O4—C8—C9 | 126.0 (8) |
C3i—C4—H4A | 118.4 | O3—C8—C9 | 109.3 (6) |
C3—C4—H4A | 118.4 | C8—C9—H9A | 109.5 |
O1—C5—O3 | 105.5 (5) | C8—C9—H9B | 109.5 |
O1—C5—C3 | 110.4 (5) | H9A—C9—H9B | 109.5 |
O3—C5—C3 | 112.0 (5) | C8—C9—H9C | 109.5 |
O1—C5—H5A | 109.6 | H9A—C9—H9C | 109.5 |
O3—C5—H5A | 109.6 | H9B—C9—H9C | 109.5 |
C2i—C1—C2—C3 | 2.3 (4) | C8—O3—C5—O1 | 147.6 (5) |
C2i—C1—C2—Br | −177.1 (5) | C8—O3—C5—C3 | −92.3 (7) |
C1—C2—C3—C4 | −4.6 (9) | C4—C3—C5—O1 | 109.4 (6) |
Br—C2—C3—C4 | 174.8 (3) | C2—C3—C5—O1 | −68.3 (8) |
C1—C2—C3—C5 | 173.3 (5) | C4—C3—C5—O3 | −7.8 (8) |
Br—C2—C3—C5 | −7.3 (9) | C2—C3—C5—O3 | 174.5 (6) |
C2—C3—C4—C3i | 2.2 (4) | C5—O1—C6—O2 | 7.5 (12) |
C5—C3—C4—C3i | −175.5 (7) | C5—O1—C6—C7 | −166.4 (6) |
C6—O1—C5—O3 | −96.1 (7) | C5—O3—C8—O4 | 7.9 (10) |
C6—O1—C5—C3 | 142.8 (6) | C5—O3—C8—C9 | −174.6 (6) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O3 | 0.93 | 2.46 | 2.815 (7) | 103 |
C5—H5A···O2 | 0.98 | 2.34 | 2.693 (9) | 100 |
C7—H7C···O2ii | 0.96 | 2.37 | 3.318 (11) | 170 |
Symmetry code: (ii) −x+3/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H16Br2O8 |
Mr | 496.09 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 298 |
a, b, c (Å) | 20.639 (4), 10.150 (2), 9.0880 (18) |
V (Å3) | 1903.8 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.30 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.278, 0.480 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3687, 1877, 805 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.130, 0.96 |
No. of reflections | 1877 |
No. of parameters | 107 |
No. of restraints | 29 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.49 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O3 | 0.9300 | 2.4600 | 2.815 (7) | 103.00 |
C5—H5A···O2 | 0.9800 | 2.3400 | 2.693 (9) | 100.00 |
C7—H7C···O2i | 0.9600 | 2.3700 | 3.318 (11) | 170.00 |
Symmetry code: (i) −x+3/2, −y+3/2, z+1/2. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Enraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Mitchell, R. H., Iyer, V. S., Khalifa, N., Mahadevan, R., Venugopalan, S., Weerawarna, S. A. & Zhou, P. Z. (1995). J. Am. Chem. Soc. 117, 1514–1532. CSD CrossRef CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).
The asymmetric unit contains one half-molecule; the full molecule being generated by a crystallographic twofold rotation axis. Weak intramolecular C—H···O hydrogen bonds may, in part, control the conformation of the molecule. In the crystal structure, molecules are connected into a two-dimensional network via weak intermolecular C—H···O hydrogen bonds. (Fig. 2).