metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-methacrylato-bis­­[di­aquabis(meth­acryl­ato)europium(III)] methacrylic acid disolvate

aCollege of Chemistry and Life Sciences, ShenYang Normal University, ShenYang 130034, People's Republic of China
*Correspondence e-mail: zhengzhiguo@synu.edu.cn

(Received 22 November 2007; accepted 4 December 2007; online 12 December 2007)

In the title centrosymmetric complex, [Eu2(C4H5O2)6(H2O)4]·2C4H6O2, the unique EuIII cation is coordinated by seven carb­oxylate O atoms from four methacrylate ligands and two water mol­ecules in a slightly disorted tricapped trigonal–prismatic environment. Two EuIII ions are bridged by carboxyl­ate groups, forming a dinuclear complex. The formula unit also contains two mol­ecules of methacrylic acid. In the crystal structure, mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds, forming one-dimensional chains propagating along the b-axis direction

Related literature

For related literature, see: Millange et al. (2004[Millange, F., Serre, C., Marrot, J., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 642-645.]); Petrochenkova et al. (2002[Petrochenkova, N. V., Bukversky, B. V., Mirochnik, A. G. & Karasev, V. E. (2002). Koord. Khim. 28, 67-73.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C4H5O2)6(H2O)4]·2C4H6O2

  • Mr = 1058.64

  • Triclinic, [P \overline 1]

  • a = 10.008 (2) Å

  • b = 10.011 (2) Å

  • c = 12.523 (3) Å

  • α = 78.83 (3)°

  • β = 85.51 (3)°

  • γ = 61.14 (3)°

  • V = 1077.9 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 293 (2) K

  • 0.43 × 0.17 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.364, Tmax = 0.705

  • 10633 measured reflections

  • 4883 independent reflections

  • 4470 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.03

  • 4883 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O5i 2.348 (3)
Eu1—O10 2.388 (2)
Eu1—O6 2.392 (3)
Eu1—O9 2.409 (2)
Eu1—O3 2.427 (3)
Eu1—O7 2.432 (2)
Eu1—O4 2.543 (2)
Eu1—O8 2.548 (3)
Eu1—O5 2.807 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1A⋯O2ii 1.01 1.75 2.684 (4) 152
O10—H1B⋯O3i 0.96 1.79 2.700 (5) 156
O1—H1⋯O8iii 0.82 1.90 2.707 (4) 168
O9—H9B⋯O4iv 0.90 1.98 2.711 (3) 137
O9—H9A⋯O7iv 0.90 2.15 2.871 (4) 136
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) x, y, z+1; (iv) -x+1, -y, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been considerable interest in the design and synthesis of supramolecular architectures (Yaghi et al., 1998; Millange et al., 2004). In preparing target metal complexes, carboxylate ligands have been frequently employed. We present here the hydrothermal synthesis and crystal structure of a europium(III) dinuclear complex [Eu(C4H5O2)3(H2O)2]2.2(C4H6O2)] (I). In the title complex (Fig. 1), each EuIII ion is coordination by seven carboxy O atoms from four methacrylate ligands and two water molecules, with Eu—O distances ranging from 2.348 (3)–2.807 (3) Å. These values are in good agreement with those found in an other closely related structure (Petrochenkova et al., 2002). Two EuIII ions are bridged by carboxylate groups to create a discrete centrosymmetric dinuclear complex. In the crystal structure, complex molecules and solvated methacrylic acid molecules are linked via intermolecular O—H···O hydrogen bonds froming one-dimensional chains running along the b axis direction (Fig. 2).

Related literature top

For related literature, see: Millange et al. (2004); Petrochenkova et al. (2002); Yaghi et al. (1998).

Experimental top

The title complex was hydrothermally prepared from a mixture of Eu(NO3)3.6H2O (0.2 mmol), methacrylic acid (0.6 mmol), NaOH (0.6 mmol) and H2O (10 ml). The slurry was stirred for 30 min and heated at 393 K for 72 h in a Teflon-lined stainless steel autoclave (25 ml) under autogenous pressure. After cooling to room temperature, the block-shaped crystals were washed with water and dried in air.

Refinement top

All H atoms were treated as riding, with C—H = 0.93–0.96 Å, O—H = 0.8199–1.011 (as found positions) Å, and Uiso(H) = 1.2Ueq (aryl C and O) or 1.5Ueq (methyl C). The terminal C atoms of the methacrylate ligands and the methacrylic acid molecules have larger than normal anisotropic displacement parameters. This may be the effect from data collected at room temperature or the result of very slight disorder which has not been modelled.

Structure description top

There has been considerable interest in the design and synthesis of supramolecular architectures (Yaghi et al., 1998; Millange et al., 2004). In preparing target metal complexes, carboxylate ligands have been frequently employed. We present here the hydrothermal synthesis and crystal structure of a europium(III) dinuclear complex [Eu(C4H5O2)3(H2O)2]2.2(C4H6O2)] (I). In the title complex (Fig. 1), each EuIII ion is coordination by seven carboxy O atoms from four methacrylate ligands and two water molecules, with Eu—O distances ranging from 2.348 (3)–2.807 (3) Å. These values are in good agreement with those found in an other closely related structure (Petrochenkova et al., 2002). Two EuIII ions are bridged by carboxylate groups to create a discrete centrosymmetric dinuclear complex. In the crystal structure, complex molecules and solvated methacrylic acid molecules are linked via intermolecular O—H···O hydrogen bonds froming one-dimensional chains running along the b axis direction (Fig. 2).

For related literature, see: Millange et al. (2004); Petrochenkova et al. (2002); Yaghi et al. (1998).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure showing displacement ellipsoids at the 30% probability level [symmetry code: (a) -x + 1,-y + 1,-z]. Only the unique methacrylic acid of the symmetric unit has been shown.
[Figure 2] Fig. 2. The packing of the title compound. Dashed lines indicate hydrogen bonds.
Di-µ-methacrylato-bis[diaquabis(methacrylato)europium(III)] methacrylic acid disolvate top
Crystal data top
[Eu2(C4H5O2)6(H2O)4]·2C4H6O2Z = 1
Mr = 1058.64F(000) = 528
Triclinic, P1Dx = 1.631 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.008 (2) ÅCell parameters from 9849 reflections
b = 10.011 (2) Åθ = 3.1–27.5°
c = 12.523 (3) ŵ = 2.96 mm1
α = 78.83 (3)°T = 293 K
β = 85.51 (3)°Needle, colorless
γ = 61.14 (3)°0.43 × 0.17 × 0.13 mm
V = 1077.9 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4883 independent reflections
Radiation source: fine-focus sealed tube4470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scanh = 1212
Absorption correction: multi-scan
(Higashi, 1995)
k = 1211
Tmin = 0.364, Tmax = 0.705l = 1616
10633 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0286P)2 + 1.0172P]
where P = (Fo2 + 2Fc2)/3
4883 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Eu2(C4H5O2)6(H2O)4]·2C4H6O2γ = 61.14 (3)°
Mr = 1058.64V = 1077.9 (5) Å3
Triclinic, P1Z = 1
a = 10.008 (2) ÅMo Kα radiation
b = 10.011 (2) ŵ = 2.96 mm1
c = 12.523 (3) ÅT = 293 K
α = 78.83 (3)°0.43 × 0.17 × 0.13 mm
β = 85.51 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4883 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
4470 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.705Rint = 0.023
10633 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 1.21 e Å3
4883 reflectionsΔρmin = 0.67 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.496997 (17)0.298680 (17)0.024157 (12)0.03420 (6)
O10.5258 (4)0.3096 (4)0.5855 (2)0.0745 (9)
H10.50080.31000.64940.089*
O20.7431 (4)0.2686 (5)0.6523 (3)0.0849 (11)
O30.3543 (3)0.3761 (3)0.1388 (2)0.0519 (6)
O40.4607 (3)0.1270 (3)0.1408 (2)0.0469 (5)
O50.6467 (3)0.4299 (3)0.06309 (19)0.0446 (5)
O60.7243 (3)0.1818 (3)0.0854 (2)0.0538 (6)
O70.2929 (3)0.2521 (3)0.06968 (19)0.0473 (5)
O80.4088 (3)0.3083 (3)0.2123 (2)0.0531 (6)
O90.6445 (3)0.0403 (3)0.0634 (2)0.0445 (5)
H9A0.70230.03940.01140.053*
H9B0.61810.01420.11990.053*
O100.6665 (3)0.3480 (3)0.1503 (2)0.0481 (6)
H1A0.72590.31530.21810.058*
H1B0.68910.42880.14250.058*
C10.6667 (5)0.2842 (5)0.5769 (3)0.0576 (9)
C20.7280 (6)0.2703 (7)0.4668 (4)0.0808 (14)
C30.6410 (8)0.2790 (12)0.3849 (5)0.153 (4)
H3A0.67900.27280.31490.184*
H3B0.54350.29110.39900.184*
C40.8794 (8)0.2517 (12)0.4530 (6)0.159 (4)
H4A0.90120.26440.37680.238*
H4B0.95160.15000.48860.238*
H4C0.88670.32820.48440.238*
C50.3815 (4)0.2424 (4)0.1872 (3)0.0411 (7)
C60.3183 (5)0.2225 (5)0.2970 (3)0.0557 (9)
C70.2164 (6)0.3603 (6)0.3392 (4)0.0829 (14)
H7A0.16900.33370.40340.124*
H7B0.13940.43120.28530.124*
H7C0.27280.40830.35720.124*
C80.3595 (8)0.0754 (7)0.3509 (5)0.114 (2)
H8A0.32090.05980.41940.137*
H8B0.42610.00910.31900.137*
C90.7497 (3)0.2914 (4)0.0900 (2)0.0386 (7)
C100.9501 (5)0.3596 (6)0.1039 (5)0.0779 (14)
H10A1.04920.33400.12160.094*
H10B0.88270.46010.07100.094*
C111.0032 (5)0.0918 (6)0.1773 (5)0.0807 (15)
H11A1.09610.08220.20240.121*
H11B1.02630.02480.12540.121*
H11C0.95170.06300.23790.121*
C120.9047 (4)0.2524 (4)0.1257 (3)0.0452 (7)
C130.3057 (4)0.2764 (4)0.1712 (3)0.0451 (7)
C140.0810 (6)0.2365 (7)0.1881 (5)0.0894 (17)
H14A0.01420.24210.24180.134*
H14B0.02320.31080.14190.134*
H14C0.12820.13420.14500.134*
C150.1952 (4)0.2696 (5)0.2407 (3)0.0595 (10)
C160.2013 (7)0.3045 (13)0.3493 (5)0.169 (5)
H16A0.12870.30780.39330.203*
H16B0.27810.32550.38060.203*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.04010 (9)0.03521 (9)0.03404 (9)0.02243 (7)0.00397 (6)0.00989 (6)
O10.0741 (19)0.111 (3)0.0470 (16)0.0522 (19)0.0110 (14)0.0135 (16)
O20.079 (2)0.136 (3)0.0553 (19)0.055 (2)0.0165 (16)0.046 (2)
O30.0736 (16)0.0468 (14)0.0465 (14)0.0376 (13)0.0186 (12)0.0149 (11)
O40.0618 (14)0.0430 (13)0.0452 (13)0.0321 (12)0.0033 (11)0.0091 (10)
O50.0417 (12)0.0444 (14)0.0432 (13)0.0171 (11)0.0011 (9)0.0075 (10)
O60.0541 (14)0.0451 (14)0.0685 (17)0.0288 (12)0.0140 (12)0.0035 (12)
O70.0515 (13)0.0583 (15)0.0404 (13)0.0330 (12)0.0013 (10)0.0082 (11)
O80.0550 (14)0.0765 (18)0.0386 (13)0.0395 (14)0.0067 (10)0.0137 (12)
O90.0489 (12)0.0378 (12)0.0490 (14)0.0208 (10)0.0034 (10)0.0135 (10)
O100.0625 (14)0.0554 (15)0.0466 (13)0.0419 (13)0.0186 (11)0.0221 (11)
C10.068 (2)0.063 (2)0.048 (2)0.036 (2)0.0153 (18)0.0186 (18)
C20.086 (3)0.124 (5)0.049 (2)0.062 (3)0.017 (2)0.025 (3)
C30.123 (5)0.315 (12)0.054 (3)0.126 (7)0.028 (3)0.055 (5)
C40.137 (6)0.315 (13)0.095 (5)0.152 (8)0.063 (5)0.092 (7)
C50.0493 (17)0.051 (2)0.0357 (16)0.0336 (16)0.0013 (13)0.0091 (14)
C60.070 (2)0.070 (3)0.0378 (19)0.043 (2)0.0078 (16)0.0078 (17)
C70.093 (3)0.095 (4)0.055 (3)0.043 (3)0.026 (2)0.017 (3)
C80.185 (7)0.084 (4)0.065 (3)0.068 (4)0.036 (4)0.004 (3)
C90.0392 (15)0.0477 (19)0.0302 (15)0.0215 (15)0.0029 (12)0.0088 (13)
C100.048 (2)0.080 (3)0.121 (4)0.039 (2)0.004 (2)0.027 (3)
C110.043 (2)0.069 (3)0.117 (4)0.019 (2)0.015 (2)0.002 (3)
C120.0347 (15)0.051 (2)0.0480 (19)0.0174 (15)0.0017 (13)0.0136 (15)
C130.0441 (17)0.0443 (19)0.048 (2)0.0193 (15)0.0020 (14)0.0154 (15)
C140.091 (4)0.103 (4)0.095 (4)0.069 (3)0.035 (3)0.015 (3)
C150.0461 (19)0.073 (3)0.059 (2)0.0237 (19)0.0103 (17)0.020 (2)
C160.105 (5)0.394 (15)0.060 (4)0.155 (7)0.008 (3)0.057 (6)
Geometric parameters (Å, º) top
Eu1—O5i2.348 (3)C3—H3A0.9300
Eu1—O102.388 (2)C3—H3B0.9300
Eu1—O62.392 (3)C4—H4A0.9600
Eu1—O92.409 (2)C4—H4B0.9600
Eu1—O32.427 (3)C4—H4C0.9600
Eu1—O72.432 (2)C5—C61.486 (5)
Eu1—O42.543 (2)C6—C81.366 (6)
Eu1—O82.548 (3)C6—C71.436 (6)
Eu1—O52.807 (2)C7—H7A0.9600
Eu1—C132.869 (3)C7—H7B0.9600
Eu1—C52.869 (3)C7—H7C0.9600
Eu1—C92.965 (3)C8—H8A0.9300
O1—C11.306 (5)C8—H8B0.9300
O1—H10.8199C9—C121.489 (4)
O2—C11.201 (5)C10—C121.330 (6)
O3—C51.262 (4)C10—H10A0.9300
O4—C51.267 (4)C10—H10B0.9300
O5—C91.262 (4)C11—C121.463 (6)
O5—Eu1i2.348 (3)C11—H11A0.9600
O6—C91.251 (4)C11—H11B0.9600
O7—C131.256 (4)C11—H11C0.9600
O8—C131.265 (4)C13—C151.494 (5)
O9—H9A0.8987C14—C151.419 (6)
O9—H9B0.8986C14—H14A0.9600
O10—H1A1.0110C14—H14B0.9600
O10—H1B0.9620C14—H14C0.9600
C1—C21.467 (6)C15—C161.341 (7)
C2—C31.360 (8)C16—H16A0.9300
C2—C41.435 (7)C16—H16B0.9300
O5i—Eu1—O1081.90 (9)Eu1—O9—H9A120.9
O5i—Eu1—O6119.10 (9)Eu1—O9—H9B120.1
O10—Eu1—O679.03 (9)H9A—O9—H9B115.3
O5i—Eu1—O9156.71 (8)Eu1—O10—H1A141.7
O10—Eu1—O982.67 (8)Eu1—O10—H1B118.3
O6—Eu1—O974.59 (9)H1A—O10—H1B99.9
O5i—Eu1—O373.91 (9)O2—C1—O1123.7 (4)
O10—Eu1—O3141.94 (8)O2—C1—C2121.8 (4)
O6—Eu1—O387.49 (10)O1—C1—C2114.4 (4)
O9—Eu1—O3127.81 (8)C3—C2—C4124.0 (5)
O5i—Eu1—O795.23 (9)C3—C2—C1120.1 (5)
O10—Eu1—O7125.78 (8)C4—C2—C1115.9 (5)
O6—Eu1—O7141.54 (8)C2—C3—H3A120.0
O9—Eu1—O779.87 (9)C2—C3—H3B120.0
O3—Eu1—O785.95 (9)H3A—C3—H3B120.0
O5i—Eu1—O4124.80 (8)C2—C4—H4A109.5
O10—Eu1—O4148.55 (9)C2—C4—H4B109.5
O6—Eu1—O473.37 (9)H4A—C4—H4B109.5
O9—Eu1—O475.78 (8)C2—C4—H4C109.5
O3—Eu1—O452.07 (8)H4A—C4—H4C109.5
O7—Eu1—O472.79 (8)H4B—C4—H4C109.5
O5i—Eu1—O885.16 (9)O3—C5—O4119.5 (3)
O10—Eu1—O873.95 (8)O3—C5—C6119.7 (3)
O6—Eu1—O8140.49 (9)O4—C5—C6120.8 (3)
O9—Eu1—O873.85 (9)O3—C5—Eu157.10 (17)
O3—Eu1—O8131.04 (9)O4—C5—Eu162.36 (17)
O7—Eu1—O851.92 (8)C6—C5—Eu1176.8 (3)
O4—Eu1—O8120.10 (8)C8—C6—C7124.2 (4)
O5i—Eu1—O570.43 (9)C8—C6—C5118.3 (4)
O10—Eu1—O567.57 (7)C7—C6—C5117.5 (4)
O6—Eu1—O548.79 (8)C6—C7—H7A109.5
O9—Eu1—O5118.84 (8)C6—C7—H7B109.5
O3—Eu1—O576.73 (8)H7A—C7—H7B109.5
O7—Eu1—O5159.92 (8)C6—C7—H7C109.5
O4—Eu1—O5103.32 (7)H7A—C7—H7C109.5
O8—Eu1—O5136.54 (8)H7B—C7—H7C109.5
O5i—Eu1—C1389.82 (10)C6—C8—H8A120.0
O10—Eu1—C13100.09 (9)C6—C8—H8B120.0
O6—Eu1—C13150.28 (9)H8A—C8—H8B120.0
O9—Eu1—C1375.84 (9)O6—C9—O5120.3 (3)
O3—Eu1—C13108.63 (10)O6—C9—C12117.9 (3)
O7—Eu1—C1325.76 (9)O5—C9—C12121.8 (3)
O4—Eu1—C1396.56 (9)O6—C9—Eu151.37 (16)
O8—Eu1—C1326.16 (9)O5—C9—Eu170.44 (17)
O5—Eu1—C13157.60 (9)C12—C9—Eu1162.5 (2)
O5i—Eu1—C599.33 (10)C12—C10—H10A120.0
O10—Eu1—C5155.54 (9)C12—C10—H10B120.0
O6—Eu1—C579.14 (10)H10A—C10—H10B120.0
O9—Eu1—C5101.94 (10)C12—C11—H11A109.5
O3—Eu1—C525.89 (9)C12—C11—H11B109.5
O7—Eu1—C578.59 (9)H11A—C11—H11B109.5
O4—Eu1—C526.19 (9)C12—C11—H11C109.5
O8—Eu1—C5130.48 (8)H11A—C11—H11C109.5
O5—Eu1—C589.66 (8)H11B—C11—H11C109.5
C13—Eu1—C5104.33 (10)C10—C12—C11123.5 (4)
O5i—Eu1—C995.46 (9)C10—C12—C9119.6 (4)
O10—Eu1—C968.69 (8)C11—C12—C9116.8 (3)
O6—Eu1—C924.12 (9)O7—C13—O8119.9 (3)
O9—Eu1—C995.06 (9)O7—C13—C15118.4 (3)
O3—Eu1—C984.62 (9)O8—C13—C15121.7 (3)
O7—Eu1—C9163.21 (8)O7—C13—Eu157.33 (16)
O4—Eu1—C990.47 (9)O8—C13—Eu162.64 (17)
O8—Eu1—C9142.12 (8)C15—C13—Eu1175.0 (3)
O5—Eu1—C925.07 (8)C15—C14—H14A109.5
C13—Eu1—C9166.67 (9)C15—C14—H14B109.5
C5—Eu1—C986.92 (9)H14A—C14—H14B109.5
C1—O1—H1109.4C15—C14—H14C109.5
C5—O3—Eu197.0 (2)H14A—C14—H14C109.5
C5—O4—Eu191.45 (19)H14B—C14—H14C109.5
C9—O5—Eu1i165.5 (2)C16—C15—C14122.7 (4)
C9—O5—Eu184.49 (18)C16—C15—C13119.1 (4)
Eu1i—O5—Eu1109.57 (9)C14—C15—C13118.0 (4)
C9—O6—Eu1104.5 (2)C15—C16—H16A120.0
C13—O7—Eu196.9 (2)C15—C16—H16B120.0
C13—O8—Eu191.2 (2)H16A—C16—H16B120.0
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1A···O2ii1.011.752.684 (4)152
O10—H1B···O3i0.961.792.700 (5)156
O1—H1···O8iii0.821.902.707 (4)168
O9—H9B···O4iv0.901.982.711 (3)137
O9—H9A···O7iv0.902.152.871 (4)136
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Eu2(C4H5O2)6(H2O)4]·2C4H6O2
Mr1058.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.008 (2), 10.011 (2), 12.523 (3)
α, β, γ (°)78.83 (3), 85.51 (3), 61.14 (3)
V3)1077.9 (5)
Z1
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.43 × 0.17 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.364, 0.705
No. of measured, independent and
observed [I > 2σ(I)] reflections
10633, 4883, 4470
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.03
No. of reflections4883
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 0.67

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Eu1—O5i2.348 (3)Eu1—O72.432 (2)
Eu1—O102.388 (2)Eu1—O42.543 (2)
Eu1—O62.392 (3)Eu1—O82.548 (3)
Eu1—O92.409 (2)Eu1—O52.807 (2)
Eu1—O32.427 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1A···O2ii1.011.752.684 (4)152
O10—H1B···O3i0.961.792.700 (5)156
O1—H1···O8iii0.821.902.707 (4)168
O9—H9B···O4iv0.901.982.711 (3)137
O9—H9A···O7iv0.902.152.871 (4)136
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x, y, z+1; (iv) x+1, y, z.
 

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMillange, F., Serre, C., Marrot, J., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 642–645.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetrochenkova, N. V., Bukversky, B. V., Mirochnik, A. G. & Karasev, V. E. (2002). Koord. Khim. 28, 67–73.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds