organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Meth­oxy­meth­­oxy)-1-(4-oxobi­cyclo­[3.1.0]hexan-1-yl)ethyl 4-nitro­benzoate

aAlberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada, and bX-ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
*Correspondence e-mail: michael.ferguson@ualberta.ca

(Received 7 December 2007; accepted 13 December 2007; online 21 December 2007)

In the title compound, C17H19NO7, the cyclo­pentane ring is in an envelope conformation in which the methyl­ene group forming the flap is cis to the cyclo­propane group. The relative configuration between the 4-nitro­benzo­yloxy substituent on the side chain and the cyclo­propane ring is trans and the methoxy­lmethyl group adopts the expected conformation in which the two O atoms are gauche to one another.

Related literature

For the synthesis of mimetics of biologically important furan­oside rings, see: Callam & Lowary (2000[Callam, C. S. & Lowary, T. L. (2000). Org. Lett. 2, 167-169.], 2001[Callam, C. S. & Lowary, T. L. (2001). J. Org. Chem. 66, 8961-8972.]); Callam et al. (2001[Callam, C. S., Gadikota, R. R. & Lowary, T. L. (2001). J. Org. Chem. 66, 4549-4558.]); Centrone & Lowary (2002[Centrone, C. A. & Lowary, T. L. (2002). J. Org. Chem. 67, 8862-8870.]). For examples of crystal structures of bicyclo­[3.1.0]hexane systems, see; Gurskaya et al. (1990[Gurskaya, G. V., Bochkarev, A. V., Zdanov, A. S., Papchikhin, A. A., Purygin, P. P. & Krayevsky, A. (1990). FEBS Lett. 265, 63-66.], 1996[Gurskaya, G. V., Zavodnik, V. E. & Surzhikov, S. A. (1996). Mol. Biol. 30, 540-546.]); Gallucci et al. (2000[Gallucci, J. C., Gadikota, R. R. & Lowary, T. L. (2000). Acta Cryst. C56, e365.]); Garcia et al. (1992[Garcia, J. G., Voll, R. J., Fronczek, F. R. & Younathan, E. S. (1992). Acta Cryst. C48, 1692-1694.]); Guthrie et al. (1981[Guthrie, R. D., Jenkins, I. S., Yamasaki, R., Skelton, B. W. & White, A. H. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2328-2334.]); Màrton-Merész et al. (1983[Màrton-Merész, M., Kuszmann, J., Pelczer, I., Pàrkànyi, L., Koritsànszky, T. & Kàlmàn, A. (1983). Tetrahedron, 39, 275-285.]); Biswas et al. (1996[Biswas, G., Chandra, T., Garg, N., Bhakuni, D. S., Pramanik, A., Avasthi, K. & Maulik, P. R. (1996). Acta Cryst. C52, 2563-2566.]); Bai et al. (2004[Bai, Y., Lowary, T. L. & Ferguson, M. J. (2004). Acta Cryst. E60, o2201-o2203.]). For related literature, see: Hamon & Shirley (1988[Hamon, D. P. G. & Shirley, N. J. (1988). J. Chem. Soc. Chem. Commun. pp. 425-426.]); Li & Lowary (2008[Li, J. & Lowary, T. L. (2008). Org. Lett. Submitted.]); Wolfe (1972[Wolfe, S. (1972). Acc. Chem. Res. 5, 102-111.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO7

  • Mr = 349.33

  • Triclinic, [P \overline 1]

  • a = 8.3387 (5) Å

  • b = 10.1389 (6) Å

  • c = 10.4935 (6) Å

  • α = 98.5259 (8)°

  • β = 100.4967 (8)°

  • γ = 101.1562 (7)°

  • V = 840.22 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 193 (2) K

  • 0.52 × 0.50 × 0.47 mm

Data collection
  • Bruker PLATFORM diffractometer SMART 1000 CCD area-detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.951

  • 7436 measured reflections

  • 3825 independent reflections

  • 3476 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.05

  • 3825 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.0) and SAINT (Version 7.06A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.0) and SAINT (Version 7.06A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the course of our studies on the synthesis of mimetics of biologically important furanoside rings (Callam & Lowary, 2000; Callam & Lowary, 2001; Callam et al., 2001; Centrone & Lowary, 2002), we targeted compounds of the general structure (I) for synthesis. A key step in the route to these compounds (Li & Lowary, 2008) was a base-promoted ring contraction of epoxyketone (II) [see Fig. 1] (Hamon & Shirley, 1988), which gave a 1:1 mixture of two steroisomeric products (III) and (IV), both as racemic mixtures. In these products, it was critical to determine the relative configuration of the carbon bearing the OH group and the cyclopropane ring and doing so by spectroscopic methods was not possible. Therefore, derivatives of both (III) and (IV) were prepared in hopes of obtaining a crystalline material. We were pleased to discover that esterification of (IV) with 4-nitrobenzoyl chloride gave a crystalline product (V) from which the relative configuration of these two groups could be established by X-ray crystallography.

The molecular structure of (V) is shown in Fig. 2. In common with other bicyclo[3.1.0]hexane systems for which crystal structures have been reported (examples: Gurskaya et al., 1990; Gurskaya et al., 1996; Gallucci et al., 2000; Garcia et al., 1992; Guthrie et al., 1981; Màrton-Merész et al., 1983; Biswas et al., 1996; Bai et al., 2004), the five-membered ring is puckered into an envelope in which C3 is above the plane formed by C1, C2, C4 and C5. This places C3 cis to the cyclopropane moiety that is fused to the cyclopentane ring. As can clearly be seen, the relative configuration of the stereogenic centre substituted with the 4-nitrobenzoyloxy group and the cyclopropane is trans. Thus, it is possible to establish the structure of (IV) and, by inference, (III). The methoxymethoxy group present in the side chain adopted the expected conformation (Wolfe, 1972) in which the two O atoms are gauche to each other.

Related literature top

For the synthesis of mimetics of biologically important furanoside rings, see: Callam & Lowary (2000, 2001); Callam et al. (2001); Centrone & Lowary (2002). For examples of crystal structures of bicyclo[3.1.0]hexane systems, see; Gurskaya et al. (1990, 1996); Gallucci et al. (2000); Garcia et al. (1992); Guthrie et al. (1981); Màrton-Merész et al. (1983); Biswas, et al. (1996); Bai et al. (2004).

For related literature, see: Hamon & Shirley (1988); Li & Lowary (2008); Wolfe (1972).

Experimental top

1-[2'-(methoxymethoxy)-1'-4-nitrobenzoyloxyethyl]bicyclo[3.1.0]hexan-4-one (V). To a stirred solution of (IV) (1.23 g, 6.15 mmol) in CH2Cl2-pyridine (10:1, 8.8 ml) was added 4-nitrobenzoyl chloride (1.36 g, 7.38 mmol) at 273 K. The mixture was then warmed to room temperature and stirred for 1 h. The reaction mixture was quenched by adding CH3OH, and then diluted with CH2Cl2. The solution was washed with 1 M HCl and water. The organic layer was dried (Na2SO4), filtered, concentrated, and the residue was purified by chromatography (1:1 EtOAc-hexane) to provide the product (V) as a light yellow solid (yield 1.60 g, 76%). This material was recrystallized from CH2Cl2 to provide a crystalline solid (m.p. 380–382 K). Rf 0.36 (1:1 EtOAc-Hexane); 1H NMR (500 MHz, CDCl3, δH) 8.32–8.30 (m, 2 H, Ar), 8.23–8.21 (m, 2 H, Ar), 5.11 (dd, 1 H, J = 4.7, 7.0 Hz, H-7), 4.67–4.64 (m, 2 H, OCH2O), 3.95–3.88 (m, 2 H, MOMOCH2), 3.35 (s, 3 H, OCH3), 2.40–2.32 (m, 1 H, H-3), 2.16–2.13 (m, 3 H, H-2, H-3), 2.00 (dd, 1 H, J = 3.6, 9.4 Hz, H-5), 1.47 (dd, 1 H, J = 5.2, 9.4 Hz, H-6), 1.28 (dd, 1 H, J = 3.6, 5.2 Hz, H-6); 13C NMR (125 MHz, CDCl3, δC) 212.3 (C-4), 163.9 (C-11), 150.7 (Ar), 135.2 (Ar), 130.4 (Ar x 2), 123.6 (Ar x 2), 96.6 (C-9), 76.2 (C-7), 67.3 (C-8), 55.5 (C-10), 34.3 (C-1), 32.8 (C-5), 32.6 (C-3), 22.7 (C-2), 17.9 (C-6). HRMS (ESI) m/z calculated for C17H19NO7 + Na: 372.1054, found: 372.1055.

Refinement top

Hydrogen atoms were generated in idealized positions (according to the sp2 or sp3 geometries of their parent carbon or oxygen atoms), and then refined using a riding model with fixed C—H distances (C—H = 0.95–1.00 Å) and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our studies on the synthesis of mimetics of biologically important furanoside rings (Callam & Lowary, 2000; Callam & Lowary, 2001; Callam et al., 2001; Centrone & Lowary, 2002), we targeted compounds of the general structure (I) for synthesis. A key step in the route to these compounds (Li & Lowary, 2008) was a base-promoted ring contraction of epoxyketone (II) [see Fig. 1] (Hamon & Shirley, 1988), which gave a 1:1 mixture of two steroisomeric products (III) and (IV), both as racemic mixtures. In these products, it was critical to determine the relative configuration of the carbon bearing the OH group and the cyclopropane ring and doing so by spectroscopic methods was not possible. Therefore, derivatives of both (III) and (IV) were prepared in hopes of obtaining a crystalline material. We were pleased to discover that esterification of (IV) with 4-nitrobenzoyl chloride gave a crystalline product (V) from which the relative configuration of these two groups could be established by X-ray crystallography.

The molecular structure of (V) is shown in Fig. 2. In common with other bicyclo[3.1.0]hexane systems for which crystal structures have been reported (examples: Gurskaya et al., 1990; Gurskaya et al., 1996; Gallucci et al., 2000; Garcia et al., 1992; Guthrie et al., 1981; Màrton-Merész et al., 1983; Biswas et al., 1996; Bai et al., 2004), the five-membered ring is puckered into an envelope in which C3 is above the plane formed by C1, C2, C4 and C5. This places C3 cis to the cyclopropane moiety that is fused to the cyclopentane ring. As can clearly be seen, the relative configuration of the stereogenic centre substituted with the 4-nitrobenzoyloxy group and the cyclopropane is trans. Thus, it is possible to establish the structure of (IV) and, by inference, (III). The methoxymethoxy group present in the side chain adopted the expected conformation (Wolfe, 1972) in which the two O atoms are gauche to each other.

For the synthesis of mimetics of biologically important furanoside rings, see: Callam & Lowary (2000, 2001); Callam et al. (2001); Centrone & Lowary (2002). For examples of crystal structures of bicyclo[3.1.0]hexane systems, see; Gurskaya et al. (1990, 1996); Gallucci et al. (2000); Garcia et al. (1992); Guthrie et al. (1981); Màrton-Merész et al. (1983); Biswas, et al. (1996); Bai et al. (2004).

For related literature, see: Hamon & Shirley (1988); Li & Lowary (2008); Wolfe (1972).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. Schemes of title (IV) and related compounds.
[Figure 2] Fig. 2. Perspective view of (V), showing the atom labelling scheme. Non- hydrogen atoms are represented by ellipsoids at the 50% probability level. Hydrogen atoms are shown with arbitrarily small radii.
2-(Methoxymethoxy)-1-(4-oxobicyclo[3.1.0]hexan-1-yl)ethyl 4-nitrobenzoate top
Crystal data top
C17H19NO7Z = 2
Mr = 349.33F(000) = 368
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3387 (5) ÅCell parameters from 7818 reflections
b = 10.1389 (6) Åθ = 2.6–27.5°
c = 10.4935 (6) ŵ = 0.11 mm1
α = 98.5259 (8)°T = 193 K
β = 100.4967 (8)°Fragment, colourless
γ = 101.1562 (7)°0.52 × 0.50 × 0.47 mm
V = 840.22 (9) Å3
Data collection top
Bruker PLATFORM
diffractometer/SMART 1000 CCD area-detector
3825 independent reflections
Radiation source: fine-focus sealed tube3476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.946, Tmax = 0.951l = 1313
7436 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.1568P]
where P = (Fo2 + 2Fc2)/3
3825 reflections(Δ/σ)max = 0.013
227 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H19NO7γ = 101.1562 (7)°
Mr = 349.33V = 840.22 (9) Å3
Triclinic, P1Z = 2
a = 8.3387 (5) ÅMo Kα radiation
b = 10.1389 (6) ŵ = 0.11 mm1
c = 10.4935 (6) ÅT = 193 K
α = 98.5259 (8)°0.52 × 0.50 × 0.47 mm
β = 100.4967 (8)°
Data collection top
Bruker PLATFORM
diffractometer/SMART 1000 CCD area-detector
3825 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3476 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.951Rint = 0.009
7436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3825 reflectionsΔρmin = 0.17 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09546 (12)0.07242 (11)0.73892 (11)0.0553 (3)
O20.27720 (9)0.22849 (8)0.35099 (8)0.03307 (19)
O30.36653 (10)0.48159 (9)0.28812 (8)0.0367 (2)
O40.19060 (11)0.53166 (10)0.10951 (9)0.0469 (2)
O50.54644 (13)0.22855 (12)0.42875 (11)0.0650 (3)
O60.43439 (13)0.32377 (10)0.08313 (10)0.0534 (3)
O70.18678 (14)0.29604 (11)0.15763 (10)0.0602 (3)
N0.32018 (14)0.26560 (10)0.07714 (10)0.0398 (2)
C10.16536 (13)0.31828 (10)0.53155 (10)0.0302 (2)
C20.01745 (14)0.24464 (13)0.47296 (12)0.0384 (3)
H2A0.02670.17880.39080.046*
H2B0.08640.31120.45270.046*
C30.07499 (15)0.16936 (15)0.57953 (14)0.0458 (3)
H3A0.13920.22200.62980.055*
H3B0.14660.07750.53890.055*
C40.08438 (15)0.15744 (12)0.66935 (12)0.0391 (3)
C50.22604 (14)0.26104 (11)0.65309 (11)0.0344 (2)
H50.34210.24530.67170.041*
C60.19962 (16)0.40686 (12)0.66433 (11)0.0379 (3)
H6A0.10240.42640.69940.046*
H6B0.30030.48310.68900.046*
C70.28480 (13)0.35255 (10)0.44415 (10)0.0294 (2)
H70.40110.38730.49900.035*
C80.24071 (13)0.45645 (11)0.36257 (11)0.0331 (2)
H8A0.12910.42030.30280.040*
H8B0.23840.54220.42060.040*
C90.34064 (15)0.57459 (13)0.20414 (12)0.0414 (3)
H9A0.34150.66360.25820.050*
H9B0.43480.58920.15860.050*
C100.18474 (19)0.41015 (17)0.01905 (14)0.0547 (4)
H10A0.07770.38490.04540.066*
H10B0.19560.33560.06740.066*
H10C0.27690.42640.02700.066*
C110.41618 (14)0.18250 (11)0.35071 (11)0.0332 (2)
C120.38783 (13)0.06385 (10)0.23884 (10)0.0297 (2)
C130.52157 (14)0.00427 (11)0.22180 (11)0.0328 (2)
H130.62740.03810.28110.039*
C140.50030 (14)0.10469 (11)0.11803 (11)0.0328 (2)
H140.59050.14610.10510.039*
C150.34449 (14)0.15100 (10)0.03447 (10)0.0317 (2)
C160.20974 (15)0.09435 (12)0.04924 (12)0.0385 (3)
H160.10410.12900.01010.046*
C170.23241 (14)0.01446 (12)0.15285 (12)0.0361 (2)
H170.14160.05530.16510.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (5)0.0566 (6)0.0701 (7)0.0130 (4)0.0196 (5)0.0295 (5)
O20.0283 (4)0.0314 (4)0.0349 (4)0.0070 (3)0.0051 (3)0.0062 (3)
O30.0310 (4)0.0466 (5)0.0339 (4)0.0100 (3)0.0069 (3)0.0108 (3)
O40.0386 (5)0.0592 (6)0.0436 (5)0.0144 (4)0.0021 (4)0.0154 (4)
O50.0436 (5)0.0701 (7)0.0627 (6)0.0286 (5)0.0171 (5)0.0310 (5)
O60.0586 (6)0.0459 (5)0.0544 (6)0.0203 (4)0.0154 (5)0.0091 (4)
O70.0642 (7)0.0551 (6)0.0463 (5)0.0174 (5)0.0092 (5)0.0168 (4)
N0.0500 (6)0.0325 (5)0.0347 (5)0.0094 (4)0.0092 (4)0.0001 (4)
C10.0295 (5)0.0306 (5)0.0287 (5)0.0084 (4)0.0044 (4)0.0006 (4)
C20.0277 (5)0.0490 (6)0.0357 (6)0.0080 (5)0.0045 (4)0.0033 (5)
C30.0306 (6)0.0577 (8)0.0489 (7)0.0069 (5)0.0108 (5)0.0110 (6)
C40.0372 (6)0.0409 (6)0.0414 (6)0.0102 (5)0.0132 (5)0.0075 (5)
C50.0317 (5)0.0365 (5)0.0335 (5)0.0081 (4)0.0040 (4)0.0052 (4)
C60.0446 (6)0.0356 (6)0.0311 (5)0.0095 (5)0.0081 (5)0.0018 (4)
C70.0277 (5)0.0277 (5)0.0292 (5)0.0063 (4)0.0042 (4)0.0033 (4)
C80.0310 (5)0.0350 (5)0.0332 (5)0.0091 (4)0.0075 (4)0.0035 (4)
C90.0384 (6)0.0440 (6)0.0402 (6)0.0055 (5)0.0052 (5)0.0126 (5)
C100.0476 (7)0.0665 (9)0.0422 (7)0.0082 (6)0.0013 (6)0.0063 (6)
C110.0316 (5)0.0335 (5)0.0326 (5)0.0104 (4)0.0040 (4)0.0004 (4)
C120.0307 (5)0.0282 (5)0.0294 (5)0.0071 (4)0.0065 (4)0.0028 (4)
C130.0304 (5)0.0332 (5)0.0332 (5)0.0096 (4)0.0033 (4)0.0024 (4)
C140.0354 (5)0.0314 (5)0.0345 (5)0.0128 (4)0.0099 (4)0.0057 (4)
C150.0400 (6)0.0260 (5)0.0285 (5)0.0068 (4)0.0089 (4)0.0025 (4)
C160.0314 (5)0.0375 (6)0.0395 (6)0.0054 (4)0.0012 (4)0.0040 (5)
C170.0292 (5)0.0366 (5)0.0397 (6)0.0095 (4)0.0057 (4)0.0018 (4)
Geometric parameters (Å, º) top
O1—C41.2155 (16)C5—H51.0000
O2—C111.3306 (13)C6—H6A0.9900
O2—C71.4573 (11)C6—H6B0.9900
O3—C91.4029 (14)C7—C81.5100 (15)
O3—C81.4249 (13)C7—H71.0000
O4—C91.3962 (14)C8—H8A0.9900
O4—C101.4262 (18)C8—H8B0.9900
O5—C111.1978 (14)C9—H9A0.9900
O6—N1.2194 (14)C9—H9B0.9900
O7—N1.2222 (14)C10—H10A0.9800
N—C151.4771 (13)C10—H10B0.9800
C1—C61.4880 (14)C10—H10C0.9800
C1—C71.4991 (15)C11—C121.5005 (14)
C1—C51.5223 (15)C12—C171.3905 (15)
C1—C21.5301 (15)C12—C131.3936 (15)
C2—C31.5395 (18)C13—C141.3909 (15)
C2—H2A0.9900C13—H130.9500
C2—H2B0.9900C14—C151.3799 (15)
C3—C41.5194 (17)C14—H140.9500
C3—H3A0.9900C15—C161.3796 (16)
C3—H3B0.9900C16—C171.3870 (15)
C4—C51.4746 (16)C16—H160.9500
C5—C61.5271 (16)C17—H170.9500
C11—O2—C7118.68 (8)O2—C7—H7109.6
C9—O3—C8113.65 (9)C1—C7—H7109.6
C9—O4—C10112.74 (10)C8—C7—H7109.6
O6—N—O7124.19 (10)O3—C8—C7106.79 (8)
O6—N—C15117.96 (10)O3—C8—H8A110.4
O7—N—C15117.85 (10)C7—C8—H8A110.4
C6—C1—C7117.45 (9)O3—C8—H8B110.4
C6—C1—C560.96 (7)C7—C8—H8B110.4
C7—C1—C5118.28 (9)H8A—C8—H8B108.6
C6—C1—C2116.10 (9)O4—C9—O3113.68 (10)
C7—C1—C2120.97 (9)O4—C9—H9A108.8
C5—C1—C2108.03 (9)O3—C9—H9A108.8
C1—C2—C3105.52 (9)O4—C9—H9B108.8
C1—C2—H2A110.6O3—C9—H9B108.8
C3—C2—H2A110.6H9A—C9—H9B107.7
C1—C2—H2B110.6O4—C10—H10A109.5
C3—C2—H2B110.6O4—C10—H10B109.5
H2A—C2—H2B108.8H10A—C10—H10B109.5
C4—C3—C2105.68 (9)O4—C10—H10C109.5
C4—C3—H3A110.6H10A—C10—H10C109.5
C2—C3—H3A110.6H10B—C10—H10C109.5
C4—C3—H3B110.6O5—C11—O2125.11 (10)
C2—C3—H3B110.6O5—C11—C12124.22 (10)
H3A—C3—H3B108.7O2—C11—C12110.68 (9)
O1—C4—C5125.17 (11)C17—C12—C13120.31 (10)
O1—C4—C3125.78 (11)C17—C12—C11121.15 (9)
C5—C4—C3108.97 (10)C13—C12—C11118.53 (9)
C4—C5—C1107.41 (9)C14—C13—C12120.05 (10)
C4—C5—C6115.41 (10)C14—C13—H13120.0
C1—C5—C658.41 (7)C12—C13—H13120.0
C4—C5—H5119.9C15—C14—C13118.12 (10)
C1—C5—H5119.9C15—C14—H14120.9
C6—C5—H5119.9C13—C14—H14120.9
C1—C6—C560.63 (7)C16—C15—C14123.09 (10)
C1—C6—H6A117.7C16—C15—N118.07 (10)
C5—C6—H6A117.7C14—C15—N118.84 (10)
C1—C6—H6B117.7C15—C16—C17118.32 (10)
C5—C6—H6B117.7C15—C16—H16120.8
H6A—C6—H6B114.8C17—C16—H16120.8
O2—C7—C1108.39 (8)C16—C17—C12120.11 (10)
O2—C7—C8106.47 (8)C16—C17—H17119.9
C1—C7—C8113.09 (8)C12—C17—H17119.9
C6—C1—C2—C352.63 (13)C9—O3—C8—C7178.58 (9)
C7—C1—C2—C3154.16 (10)O2—C7—C8—O362.70 (10)
C5—C1—C2—C313.23 (12)C1—C7—C8—O3178.37 (8)
C1—C2—C3—C420.30 (13)C10—O4—C9—O363.98 (14)
C2—C3—C4—O1156.31 (13)C8—O3—C9—O460.59 (13)
C2—C3—C4—C520.54 (14)C7—O2—C11—O56.45 (18)
O1—C4—C5—C1164.54 (12)C7—O2—C11—C12173.72 (8)
C3—C4—C5—C112.34 (13)O5—C11—C12—C17179.13 (13)
O1—C4—C5—C6132.77 (13)O2—C11—C12—C170.71 (15)
C3—C4—C5—C650.36 (13)O5—C11—C12—C131.43 (19)
C6—C1—C5—C4109.58 (11)O2—C11—C12—C13178.73 (9)
C7—C1—C5—C4142.96 (10)C17—C12—C13—C140.32 (17)
C2—C1—C5—C40.81 (12)C11—C12—C13—C14179.12 (10)
C7—C1—C5—C6107.46 (10)C12—C13—C14—C150.23 (16)
C2—C1—C5—C6110.39 (10)C13—C14—C15—C160.01 (17)
C7—C1—C6—C5108.79 (10)C13—C14—C15—N179.31 (10)
C2—C1—C6—C597.02 (11)O6—N—C15—C16173.37 (11)
C4—C5—C6—C195.56 (11)O7—N—C15—C166.64 (16)
C11—O2—C7—C1120.22 (10)O6—N—C15—C147.28 (16)
C11—O2—C7—C8117.82 (10)O7—N—C15—C14172.71 (11)
C6—C1—C7—O2155.15 (9)C14—C15—C16—C170.16 (18)
C5—C1—C7—O285.13 (11)N—C15—C16—C17179.17 (10)
C2—C1—C7—O251.99 (12)C15—C16—C17—C120.07 (18)
C6—C1—C7—C887.05 (11)C13—C12—C17—C160.17 (18)
C5—C1—C7—C8157.06 (9)C11—C12—C17—C16179.26 (11)
C2—C1—C7—C865.82 (12)

Experimental details

Crystal data
Chemical formulaC17H19NO7
Mr349.33
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.3387 (5), 10.1389 (6), 10.4935 (6)
α, β, γ (°)98.5259 (8), 100.4967 (8), 101.1562 (7)
V3)840.22 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.52 × 0.50 × 0.47
Data collection
DiffractometerBruker PLATFORM
diffractometer/SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.946, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
7436, 3825, 3476
Rint0.009
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.05
No. of reflections3825
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

This work was supported by the Natural Science and Engineering Research Council of Canada, the Alberta Ingenuity Centre for Carbohydrate Science and the University of Alberta.

References

First citationBai, Y., Lowary, T. L. & Ferguson, M. J. (2004). Acta Cryst. E60, o2201–o2203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBiswas, G., Chandra, T., Garg, N., Bhakuni, D. S., Pramanik, A., Avasthi, K. & Maulik, P. R. (1996). Acta Cryst. C52, 2563–2566.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART (Version 5.0) and SAINT (Version 7.06A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCallam, C. S., Gadikota, R. R. & Lowary, T. L. (2001). J. Org. Chem. 66, 4549–4558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCallam, C. S. & Lowary, T. L. (2000). Org. Lett. 2, 167–169.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCallam, C. S. & Lowary, T. L. (2001). J. Org. Chem. 66, 8961–8972.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCentrone, C. A. & Lowary, T. L. (2002). J. Org. Chem. 67, 8862–8870.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGallucci, J. C., Gadikota, R. R. & Lowary, T. L. (2000). Acta Cryst. C56, e365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGarcia, J. G., Voll, R. J., Fronczek, F. R. & Younathan, E. S. (1992). Acta Cryst. C48, 1692–1694.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGurskaya, G. V., Bochkarev, A. V., Zdanov, A. S., Papchikhin, A. A., Purygin, P. P. & Krayevsky, A. (1990). FEBS Lett. 265, 63–66.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationGurskaya, G. V., Zavodnik, V. E. & Surzhikov, S. A. (1996). Mol. Biol. 30, 540–546.  Google Scholar
First citationGuthrie, R. D., Jenkins, I. S., Yamasaki, R., Skelton, B. W. & White, A. H. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 2328–2334.  CSD CrossRef Web of Science Google Scholar
First citationHamon, D. P. G. & Shirley, N. J. (1988). J. Chem. Soc. Chem. Commun. pp. 425–426.  CrossRef Web of Science Google Scholar
First citationLi, J. & Lowary, T. L. (2008). Org. Lett. Submitted.  Google Scholar
First citationMàrton-Merész, M., Kuszmann, J., Pelczer, I., Pàrkànyi, L., Koritsànszky, T. & Kàlmàn, A. (1983). Tetrahedron, 39, 275–285.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationWolfe, S. (1972). Acc. Chem. Res. 5, 102–111.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds