organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tris­(4-fluoro­phen­yl)-2-(1-pyrid­yl)-boroxine

aChemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21401, USA, and bDepartment of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, California 92110, USA
*Correspondence e-mail: wpearson@usna.edu

(Received 15 November 2007; accepted 29 November 2007; online 12 December 2007)

Crystals of the title compound, C23H17B3F3NO3, were obtained unintentionally by slow evaporation of a chloro­form solution of the preformed boroxine–pyridine adduct. The mol­ecule contains three fluoro-substituted benzene rings, each bonded to one of the three B atoms of a six-membered boroxine ring. A pyridyl ring is also bound to one of the B atoms through a Lewis acid–base inter­action. The binding of the pyridyl substituent causes the otherwise planar boroxine ring to twist, resulting in a maximum torsion angle within the ring of 17.6 (2)°.

Related literature

For related literature, see: Beckett et al. (1997[Beckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A. (1997). J. Organomet. Chem. 535, 31-41.], 1998[Beckett, M. A., Hibbs, D. E., Hursthouse, M. B., Owen, P., Malik, K. M. A. & Varma, K. S. (1998). Main Group Chem. 2, 251-258.]); Beckmann et al. (2001[Beckmann, J., Dakternieks, D., Duthie, A., Lim, A. E. K. & Tieink, E. R. T. (2001). J. Organomet. Chem. 633, 149-156.]); Frost et al. (2006[Frost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. 6, 1182-1189.]); Hall (2005[Hall, D. G. (2005). Boronic Acids, pp. 1-99. Weinheim: Wiley-VCH]); Iovine et al. (2006[Iovine, P. M., Fletcher, M. N. & Lin, S. (2006). Macromolecules, 39, 6324-6326 and references therein.]); Kua et al. (2006[Kua, J., Fletcher, M. N. & Iovine, P. M. (2006). J. Phys. Chem. A, 110, 8158-8166 and references therein.]); Perttu et al. (2005[Perttu, E. K., Arnold, M. & Iovine, P. M. (2005). Tetrahedron Lett. 46, 8753-8756.]); Sánchez et al. (2004[Sánchez, M., Sánchez, O., Höpfl, H., Ochoa, M.-E., Castillo, D., Farfán, N. & Rojas-Lima, S. (2004). J. Organomet. Chem. 689, 811-822.]); Wu et al. (1999[Wu, Q. G., Wu, G., Brancaleon, L. & Wang, S. (1999). Organometallics, 18, 2553-2556.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17B3F3NO3

  • Mr = 444.81

  • Monoclinic, P 21 /n

  • a = 11.6333 (5) Å

  • b = 14.0230 (7) Å

  • c = 14.1181 (7) Å

  • β = 109.337 (3)°

  • V = 2173.21 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 173 (1) K

  • 0.21 × 0.17 × 0.09 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4) and SADABS (Version 2007/4). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.627, Tmax = 0.925

  • 14062 measured reflections

  • 3644 independent reflections

  • 2938 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 3644 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected torsion angles (°)

B3—O3—B1—O1 6.2 (2)
B3—O3—B1—C1 −172.23 (14)
B2—O1—B1—O3 4.7 (2)
B3—O2—B2—O1 −8.1 (2)
B1—O1—B2—O2 −3.7 (2)
B1—O3—B3—O2 −16.6 (2)
B2—O2—B3—O3 17.6 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4) and SADABS (Version 2007/4). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Boroxines are cyclic trimers of organoboronic acids produced by dehydration of the acids (Hall, 2005). Arylboroxines have recently found applications in the areas of covalent organic frameworks, nanoscale molecular scaffolds, and noncovalent polymer functionalization (Iovine et al., 2006). The Lewis acidic boroxines are known to form 1:1 adducts with a variety of nitrogenous Lewis bases such as amines, pyridines, azaindoles, and salen-type ligands (Kua et al., 2006).

The structure of the title molecule (Fig. 1) contains features that are consistent with similar boroxine compounds (Beckett et al., 1997, 1998; Beckmann et al., 2001; Frost et al., 2006; Sánchez et al., 2004; Wu et al., 1999). Two of the boron atoms, B1 and B2, are centered in a trigonal planar geometry, while B3 is part of a tetrahedral geometry. The boron-oxygen bonds involving B3 are elongated, by just over 0.10 Å, compared to the other boron-oxygen bonds. As expected, the boron-carbon bonds involving the sp2 hybridized B1 and B2 are shorter than the B3—C13 bond involving the sp3 hybridized boron atom. The four-coordinate bonding of B3 causes considerable distortion in the boroxine ring. Torsion angles involving B3 average 12.1 (2)° while the torsion angles that do not contain B3 average 4.2 (2)°. The approximate Td symmetry of the molecule results in a rather open packing arrangement, as seen by viewing down the unit cell a axis (Fig. 2).

Related literature top

For related literature, see: Beckett et al. (1997, 1998); Beckmann et al. (2001); Frost et al. (2006); Hall (2005); Iovine et al. (2006); Kua et al. (2006); Perttu et al. (2005); Sánchez et al. (2004); Wu et al. (1999).

Experimental top

The title compound was synthesized by stirring 4-fluorophenylboronic acid with pyridine in CH2Cl2 in the presence of activated 4 Å molecular sieves. After decanting the reaction solution away from the sieves, the solvent was removed in vacuo and the resulting solid was dried at 323 K at atmospheric pressure (Perttu et al., 2005). Crystals of the title compound were obtained unintentionally by slow evaporation of a chloroform solution of the pre-formed boroxine:pyridine adduct (m.p. 513 decomp.).

Refinement top

Although all of the aromatic H atoms were located in difference maps, H-atoms were placed at idealized positions with C—H = 0.93 Å and refined with a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Boroxines are cyclic trimers of organoboronic acids produced by dehydration of the acids (Hall, 2005). Arylboroxines have recently found applications in the areas of covalent organic frameworks, nanoscale molecular scaffolds, and noncovalent polymer functionalization (Iovine et al., 2006). The Lewis acidic boroxines are known to form 1:1 adducts with a variety of nitrogenous Lewis bases such as amines, pyridines, azaindoles, and salen-type ligands (Kua et al., 2006).

The structure of the title molecule (Fig. 1) contains features that are consistent with similar boroxine compounds (Beckett et al., 1997, 1998; Beckmann et al., 2001; Frost et al., 2006; Sánchez et al., 2004; Wu et al., 1999). Two of the boron atoms, B1 and B2, are centered in a trigonal planar geometry, while B3 is part of a tetrahedral geometry. The boron-oxygen bonds involving B3 are elongated, by just over 0.10 Å, compared to the other boron-oxygen bonds. As expected, the boron-carbon bonds involving the sp2 hybridized B1 and B2 are shorter than the B3—C13 bond involving the sp3 hybridized boron atom. The four-coordinate bonding of B3 causes considerable distortion in the boroxine ring. Torsion angles involving B3 average 12.1 (2)° while the torsion angles that do not contain B3 average 4.2 (2)°. The approximate Td symmetry of the molecule results in a rather open packing arrangement, as seen by viewing down the unit cell a axis (Fig. 2).

For related literature, see: Beckett et al. (1997, 1998); Beckmann et al. (2001); Frost et al. (2006); Hall (2005); Iovine et al. (2006); Kua et al. (2006); Perttu et al. (2005); Sánchez et al. (2004); Wu et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing in the unit cell, viewed along the a axis.
2,4,6-Tris(4-fluorophenyl)-2-(1-pyridyl)boroxine top
Crystal data top
C23H17B3F3NO3F(000) = 912
Mr = 444.81Dx = 1.359 Mg m3
Dm = 1.337 (1) Mg m3
Dm measured by flotation
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 3658 reflections
a = 11.6333 (5) Åθ = 4.4–65.8°
b = 14.0230 (7) ŵ = 0.88 mm1
c = 14.1181 (7) ÅT = 173 K
β = 109.337 (3)°Regular parallelpiped, colorless
V = 2173.21 (18) Å30.21 × 0.17 × 0.09 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3644 independent reflections
Radiation source: fine-focus sealed tube2938 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.034
Detector resolution: 512 pixels mm-1θmax = 65.8°, θmin = 4.3°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1415
Tmin = 0.627, Tmax = 0.925l = 1616
14062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2495P]
where P = (Fo2 + 2Fc2)/3
3644 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C23H17B3F3NO3V = 2173.21 (18) Å3
Mr = 444.81Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.6333 (5) ŵ = 0.88 mm1
b = 14.0230 (7) ÅT = 173 K
c = 14.1181 (7) Å0.21 × 0.17 × 0.09 mm
β = 109.337 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
3644 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2938 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.925Rint = 0.034
14062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
3644 reflectionsΔρmin = 0.18 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.21425 (16)0.82584 (13)1.08171 (13)0.0359 (4)
B20.36099 (16)0.84177 (13)0.99727 (13)0.0363 (4)
B30.16567 (16)0.76504 (15)0.91115 (13)0.0401 (4)
C10.17805 (14)0.83897 (11)1.17787 (11)0.0358 (3)
C20.26454 (15)0.86102 (13)1.27032 (11)0.0441 (4)
C30.23264 (17)0.87064 (14)1.35604 (12)0.0513 (4)
C40.11304 (17)0.85978 (13)1.34796 (12)0.0472 (4)
C50.02435 (16)0.83801 (13)1.25904 (12)0.0498 (4)
C60.05796 (15)0.82702 (13)1.17446 (12)0.0435 (4)
C70.49109 (14)0.87074 (11)0.99830 (12)0.0373 (3)
C80.51903 (15)0.86678 (13)0.90953 (13)0.0459 (4)
C90.63189 (16)0.89261 (14)0.90573 (14)0.0530 (5)
C100.71823 (15)0.92310 (13)0.99324 (14)0.0494 (4)
C110.69654 (15)0.92824 (13)1.08238 (13)0.0476 (4)
C120.58232 (14)0.90218 (12)1.08448 (12)0.0409 (4)
C130.16258 (13)0.65162 (12)0.89309 (10)0.0382 (4)
C140.07361 (14)0.59365 (13)0.90899 (12)0.0444 (4)
C150.07124 (17)0.49535 (14)0.89499 (13)0.0541 (5)
C160.16146 (19)0.45509 (14)0.86634 (13)0.0561 (5)
C170.2526 (2)0.50777 (15)0.85120 (14)0.0601 (5)
C180.25204 (17)0.60527 (14)0.86471 (12)0.0496 (4)
C190.03505 (17)0.86020 (14)0.82476 (13)0.0509 (4)
C200.12200 (18)0.90124 (15)0.74360 (14)0.0587 (5)
C210.10989 (18)0.89522 (13)0.65028 (13)0.0529 (4)
C220.01015 (17)0.84869 (13)0.64049 (12)0.0488 (4)
C230.07340 (16)0.80916 (12)0.72425 (11)0.0440 (4)
F10.08044 (11)0.87144 (9)1.43108 (7)0.0677 (3)
F20.82939 (9)0.95033 (9)0.98983 (9)0.0696 (3)
F30.16178 (14)0.35866 (8)0.85394 (9)0.0824 (4)
N10.06137 (12)0.81444 (9)0.81514 (9)0.0386 (3)
O10.33071 (9)0.84911 (8)1.08391 (7)0.0375 (3)
O20.28014 (10)0.80708 (9)0.91196 (8)0.0452 (3)
O30.13168 (10)0.78966 (8)0.99819 (7)0.0421 (3)
H20.34540.86951.27460.053*
H30.29120.88421.41770.062*
H50.05640.83081.25560.060*
H60.00110.81121.11380.052*
H80.45970.84610.85110.055*
H90.64910.88950.84600.064*
H110.75690.94871.14040.057*
H120.56620.90581.14470.049*
H140.01350.62160.92980.053*
H150.01000.45820.90490.065*
H170.31350.47870.83230.072*
H180.31390.64150.85450.060*
H190.04360.86440.88780.061*
H200.18830.93280.75200.070*
H210.16800.92210.59460.063*
H220.00050.84410.57820.059*
H230.14060.77770.71750.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0377 (9)0.0344 (10)0.0351 (9)0.0012 (7)0.0115 (7)0.0014 (7)
B20.0382 (9)0.0332 (9)0.0379 (9)0.0002 (7)0.0131 (7)0.0012 (7)
B30.0352 (9)0.0529 (12)0.0333 (9)0.0059 (8)0.0128 (7)0.0055 (8)
C10.0381 (8)0.0357 (8)0.0331 (8)0.0019 (6)0.0111 (6)0.0004 (6)
C20.0379 (8)0.0573 (11)0.0366 (8)0.0016 (8)0.0117 (7)0.0043 (7)
C30.0482 (10)0.0710 (13)0.0315 (8)0.0040 (9)0.0088 (7)0.0072 (8)
C40.0570 (10)0.0548 (11)0.0357 (8)0.0021 (8)0.0233 (7)0.0041 (7)
C50.0426 (9)0.0658 (12)0.0449 (10)0.0041 (8)0.0199 (7)0.0031 (8)
C60.0385 (8)0.0557 (11)0.0352 (8)0.0025 (7)0.0105 (6)0.0038 (7)
C70.0373 (8)0.0323 (8)0.0423 (8)0.0027 (6)0.0130 (6)0.0026 (6)
C80.0413 (9)0.0516 (10)0.0463 (9)0.0015 (8)0.0165 (7)0.0039 (7)
C90.0487 (10)0.0624 (12)0.0557 (11)0.0008 (9)0.0278 (8)0.0003 (9)
C100.0326 (8)0.0518 (11)0.0670 (11)0.0018 (8)0.0207 (8)0.0092 (8)
C110.0341 (8)0.0497 (11)0.0532 (10)0.0008 (7)0.0069 (7)0.0059 (8)
C120.0388 (8)0.0407 (9)0.0409 (9)0.0018 (7)0.0101 (7)0.0045 (7)
C130.0330 (8)0.0525 (10)0.0261 (7)0.0010 (7)0.0059 (6)0.0006 (6)
C140.0361 (8)0.0536 (11)0.0396 (9)0.0005 (7)0.0073 (7)0.0014 (7)
C150.0519 (11)0.0556 (12)0.0475 (10)0.0066 (9)0.0068 (8)0.0070 (8)
C160.0768 (13)0.0442 (11)0.0401 (10)0.0067 (9)0.0095 (9)0.0036 (7)
C170.0695 (13)0.0623 (13)0.0520 (11)0.0206 (10)0.0250 (9)0.0043 (9)
C180.0492 (10)0.0592 (12)0.0445 (9)0.0028 (9)0.0210 (8)0.0005 (8)
C190.0549 (10)0.0566 (11)0.0452 (10)0.0053 (9)0.0219 (8)0.0004 (8)
C200.0568 (11)0.0645 (13)0.0548 (11)0.0121 (10)0.0186 (9)0.0064 (9)
C210.0602 (11)0.0459 (11)0.0454 (10)0.0024 (9)0.0079 (8)0.0023 (8)
C220.0645 (11)0.0457 (10)0.0347 (9)0.0103 (9)0.0143 (8)0.0045 (7)
C230.0520 (10)0.0451 (10)0.0377 (8)0.0067 (8)0.0185 (7)0.0058 (7)
F10.0732 (7)0.0978 (9)0.0428 (6)0.0116 (7)0.0336 (5)0.0133 (6)
F20.0372 (6)0.0859 (9)0.0901 (8)0.0050 (6)0.0269 (6)0.0086 (7)
F30.1228 (12)0.0477 (8)0.0700 (8)0.0105 (7)0.0230 (7)0.0021 (6)
N10.0419 (7)0.0398 (8)0.0353 (7)0.0067 (6)0.0145 (6)0.0049 (5)
O10.0352 (5)0.0430 (6)0.0341 (6)0.0018 (5)0.0110 (4)0.0021 (4)
O20.0411 (6)0.0601 (8)0.0371 (6)0.0141 (5)0.0168 (5)0.0105 (5)
O30.0377 (6)0.0569 (7)0.0330 (6)0.0074 (5)0.0136 (5)0.0086 (5)
Geometric parameters (Å, º) top
O3—B11.349 (2)C11—C101.365 (2)
O3—B31.4517 (19)C11—H110.9300
F1—C41.3574 (17)C3—H30.9300
F2—C101.3645 (18)C10—C91.377 (3)
F3—C161.364 (2)C6—H60.9300
O1—B11.384 (2)C9—H90.9300
O1—B21.3842 (19)C14—C151.391 (3)
O2—B21.350 (2)C14—C131.392 (2)
O2—B31.453 (2)C14—H140.9300
B1—C11.560 (2)C18—C171.381 (3)
B2—C71.563 (2)C18—C131.394 (2)
B3—C131.609 (3)C18—H180.9300
B3—N11.643 (2)C16—C151.366 (3)
C1—C61.392 (2)C16—C171.366 (3)
C1—C21.394 (2)C17—H170.9300
C8—C91.380 (2)C15—H150.9300
C8—C71.396 (2)C23—N11.3382 (18)
C8—H80.9300C23—C221.374 (2)
C12—C111.388 (2)C23—H230.9300
C12—C71.395 (2)C22—C211.377 (3)
C12—H120.9300C22—H220.9300
C4—C31.366 (2)C21—C201.373 (2)
C4—C51.370 (2)C21—H210.9300
C5—C61.383 (2)C19—N11.338 (2)
C5—H50.9300C19—C201.378 (3)
C2—C31.385 (2)C19—H190.9300
C2—H20.9300C20—H200.9300
B1—O3—B3120.97 (13)C11—C10—C9122.76 (16)
B1—O1—B2119.75 (13)C5—C6—C1121.63 (15)
B2—O2—B3121.28 (12)C5—C6—H6119.2
O3—B1—O1121.11 (14)C1—C6—H6119.2
O3—B1—C1119.07 (14)C10—C9—C8117.86 (16)
O1—B1—C1119.81 (14)C10—C9—H9121.1
O2—B2—O1120.62 (14)C8—C9—H9121.1
O2—B2—C7119.24 (14)C15—C14—C13122.45 (17)
O1—B2—C7120.11 (14)C15—C14—H14118.8
O3—B3—O2113.75 (13)C13—C14—H14118.8
O3—B3—C13111.78 (14)C17—C18—C13122.66 (18)
O2—B3—C13111.99 (14)C17—C18—H18118.7
O3—B3—N1105.32 (13)C13—C18—H18118.7
O2—B3—N1105.07 (13)F3—C16—C15118.89 (19)
C13—B3—N1108.32 (12)F3—C16—C17118.75 (18)
C6—C1—C2117.65 (14)C15—C16—C17122.35 (19)
C6—C1—B1120.85 (14)C14—C13—C18116.10 (17)
C2—C1—B1121.48 (14)C14—C13—B3122.04 (14)
C9—C8—C7122.12 (16)C18—C13—B3121.80 (15)
C9—C8—H8118.9C16—C17—C18118.34 (18)
C7—C8—H8118.9C16—C17—H17120.8
C11—C12—C7121.45 (15)C18—C17—H17120.8
C11—C12—H12119.3C16—C15—C14118.08 (18)
C7—C12—H12119.3C16—C15—H15121.0
F1—C4—C3118.86 (15)C14—C15—H15121.0
F1—C4—C5118.55 (16)N1—C23—C22122.28 (16)
C3—C4—C5122.59 (14)N1—C23—H23118.9
C4—C5—C6118.28 (16)C22—C23—H23118.9
C4—C5—H5120.9C23—C22—C21118.94 (15)
C6—C5—H5120.9C23—C22—H22120.5
C12—C7—C8117.36 (15)C21—C22—H22120.5
C12—C7—B2123.03 (14)C20—C21—C22118.87 (17)
C8—C7—B2119.61 (14)C20—C21—H21120.6
C3—C2—C1121.39 (16)C22—C21—H21120.6
C3—C2—H2119.3N1—C19—C20121.68 (16)
C1—C2—H2119.3N1—C19—H19119.2
C10—C11—C12118.45 (16)C20—C19—H19119.2
C10—C11—H11120.8C21—C20—C19119.46 (18)
C12—C11—H11120.8C21—C20—H20120.3
C4—C3—C2118.44 (15)C19—C20—H20120.3
C4—C3—H3120.8C19—N1—C23118.77 (15)
C2—C3—H3120.8C19—N1—B3122.24 (13)
F2—C10—C11118.98 (16)C23—N1—B3118.99 (13)
F2—C10—C9118.26 (16)
B3—O3—B1—O16.2 (2)C4—C5—C6—C11.0 (3)
B3—O3—B1—C1172.23 (14)C2—C1—C6—C51.0 (3)
B2—O1—B1—O34.7 (2)B1—C1—C6—C5179.74 (15)
B2—O1—B1—C1176.90 (14)F2—C10—C9—C8178.89 (16)
B3—O2—B2—O18.1 (2)C11—C10—C9—C80.3 (3)
B3—O2—B2—C7170.01 (15)C7—C8—C9—C100.0 (3)
B1—O1—B2—O23.7 (2)C15—C14—C13—C181.7 (2)
B1—O1—B2—C7178.20 (14)C15—C14—C13—B3179.04 (15)
B1—O3—B3—O216.6 (2)C17—C18—C13—C141.0 (2)
B1—O3—B3—C13111.45 (16)C17—C18—C13—B3178.41 (16)
B1—O3—B3—N1131.13 (14)O3—B3—C13—C1438.0 (2)
B2—O2—B3—O317.6 (2)O2—B3—C13—C14167.00 (13)
B2—O2—B3—C13110.35 (16)N1—B3—C13—C1477.59 (17)
B2—O2—B3—N1132.28 (15)O3—B3—C13—C18139.19 (15)
O3—B1—C1—C69.3 (2)O2—B3—C13—C1810.2 (2)
O1—B1—C1—C6172.27 (15)N1—B3—C13—C18105.20 (16)
O3—B1—C1—C2169.37 (15)F3—C16—C17—C18179.49 (16)
O1—B1—C1—C29.1 (2)C15—C16—C17—C180.6 (3)
F1—C4—C5—C6179.47 (16)C13—C18—C17—C160.0 (3)
C3—C4—C5—C60.2 (3)F3—C16—C15—C14178.88 (15)
C11—C12—C7—C80.2 (2)C17—C16—C15—C140.0 (3)
C11—C12—C7—B2179.35 (15)C13—C14—C15—C161.2 (3)
C9—C8—C7—C120.0 (3)N1—C23—C22—C210.1 (3)
C9—C8—C7—B2179.20 (17)C23—C22—C21—C200.5 (3)
O2—B2—C7—C12176.35 (15)C22—C21—C20—C190.5 (3)
O1—B2—C7—C121.8 (2)N1—C19—C20—C210.0 (3)
O2—B2—C7—C84.5 (2)C20—C19—N1—C230.4 (3)
O1—B2—C7—C8177.37 (15)C20—C19—N1—B3179.92 (17)
C6—C1—C2—C30.1 (3)C22—C23—N1—C190.3 (2)
B1—C1—C2—C3178.59 (16)C22—C23—N1—B3179.95 (15)
C7—C12—C11—C100.4 (3)O3—B3—N1—C194.1 (2)
F1—C4—C3—C2178.37 (16)O2—B3—N1—C19124.55 (16)
C5—C4—C3—C21.3 (3)C13—B3—N1—C19115.61 (16)
C1—C2—C3—C41.2 (3)O3—B3—N1—C23175.57 (13)
C12—C11—C10—F2178.71 (16)O2—B3—N1—C2355.15 (18)
C12—C11—C10—C90.4 (3)C13—B3—N1—C2364.69 (17)

Experimental details

Crystal data
Chemical formulaC23H17B3F3NO3
Mr444.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.6333 (5), 14.0230 (7), 14.1181 (7)
β (°) 109.337 (3)
V3)2173.21 (18)
Z4
Radiation typeCu Kα
µ (mm1)0.88
Crystal size (mm)0.21 × 0.17 × 0.09
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.627, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
14062, 3644, 2938
Rint0.034
(sin θ/λ)max1)0.591
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections3644
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2007), APEX2, SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O3—B11.349 (2)O2—B31.453 (2)
O3—B31.4517 (19)B1—C11.560 (2)
O1—B11.384 (2)B2—C71.563 (2)
O1—B21.3842 (19)B3—C131.609 (3)
O2—B21.350 (2)B3—N11.643 (2)
B1—O3—B3120.97 (13)O1—B2—C7120.11 (14)
B1—O1—B2119.75 (13)O3—B3—O2113.75 (13)
B2—O2—B3121.28 (12)O3—B3—C13111.78 (14)
O3—B1—O1121.11 (14)O2—B3—C13111.99 (14)
O3—B1—C1119.07 (14)O3—B3—N1105.32 (13)
O1—B1—C1119.81 (14)O2—B3—N1105.07 (13)
O2—B2—O1120.62 (14)C13—B3—N1108.32 (12)
O2—B2—C7119.24 (14)
B3—O3—B1—O16.2 (2)B1—O1—B2—O23.7 (2)
B3—O3—B1—C1172.23 (14)B1—O3—B3—O216.6 (2)
B2—O1—B1—O34.7 (2)B2—O2—B3—O317.6 (2)
B3—O2—B2—O18.1 (2)
 

Acknowledgements

This research was supported by Cottrell College Science Awards from Research Corporation (to SL and PMI).

References

First citationBeckett, M. A., Hibbs, D. E., Hursthouse, M. B., Owen, P., Malik, K. M. A. & Varma, K. S. (1998). Main Group Chem. 2, 251–258.  Web of Science CrossRef CAS Google Scholar
First citationBeckett, M. A., Strickland, G. C., Varma, K. S., Hibbs, D. E., Hursthouse, M. B. & Malik, K. M. A. (1997). J. Organomet. Chem. 535, 31–41.  CSD CrossRef Web of Science Google Scholar
First citationBeckmann, J., Dakternieks, D., Duthie, A., Lim, A. E. K. & Tieink, E. R. T. (2001). J. Organomet. Chem. 633, 149–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 (Version 2.1-4) and SADABS (Version 2007/4). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrost, B. J., Mebi, C. A. & Gingrich, P. W. (2006). Eur. J. Inorg. Chem. 6, 1182–1189.  Web of Science CSD CrossRef Google Scholar
First citationHall, D. G. (2005). Boronic Acids, pp. 1–99. Weinheim: Wiley-VCH  Google Scholar
First citationIovine, P. M., Fletcher, M. N. & Lin, S. (2006). Macromolecules, 39, 6324–6326 and references therein.  Google Scholar
First citationKua, J., Fletcher, M. N. & Iovine, P. M. (2006). J. Phys. Chem. A, 110, 8158–8166 and references therein.  Google Scholar
First citationPerttu, E. K., Arnold, M. & Iovine, P. M. (2005). Tetrahedron Lett. 46, 8753–8756.  Web of Science CrossRef CAS Google Scholar
First citationSánchez, M., Sánchez, O., Höpfl, H., Ochoa, M.-E., Castillo, D., Farfán, N. & Rojas-Lima, S. (2004). J. Organomet. Chem. 689, 811–822.  Google Scholar
First citationWu, Q. G., Wu, G., Brancaleon, L. & Wang, S. (1999). Organometallics, 18, 2553–2556.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds