organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Nitro­phen­oxy­meth­yl)-1H-1,2,4-triazole

aDepartment of Mathematics and Physics, Huangshi Institute of Technology, Huangshi 435000, People's Republic of China
*Correspondence e-mail: hslijian2006@yahoo.com

(Received 16 November 2007; accepted 19 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C9H8N4O3, contains two independent mol­ecules. The dihedral angles formed by the triazole and benzene rings in the two independent mol­ecules are 83.3 (3) and 86.9 (4)°. The mol­ecular packing involves weak C—H⋯N and C—H⋯O inter­actions, and ππ stacking inter­actions [centroid-to-centroid distance 3.745 (1) Å] between the aromatic rings of pairs of mol­ecules.

Related literature

For the synthesis of related energetic polynitro and heterocyclic compounds, see: Jin et al. (2005[Jin, C. M., Ye, C., Piekarski, C., Twamley, B. & Shreeve, J. M. (2005). Eur. J. Inorg. Chem. pp. 3760-3767.], 2006[Jin, C.-M., Chen, C.-Y., Wang, W.-D. & Zhou, X.-W. (2006). Acta Cryst. E62, o5381-o5382.]); Wang et al. (2007[Wang, R., Gao, H., Ye, C. & Shreeve, J. M. (2007). Chem. Mater. 19, 144-152.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N4O3

  • Mr = 220.19

  • Monoclinic, P 21 /n

  • a = 11.2344 (4) Å

  • b = 7.7197 (3) Å

  • c = 22.789 (1) Å

  • β = 94.730 (1)°

  • V = 1969.65 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 18061 measured reflections

  • 3863 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.134

  • S = 1.07

  • 3863 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.59 3.367 (3) 141
C14—H14⋯O3i 0.93 2.41 3.249 (3) 150
C17—H17⋯N4ii 0.93 2.56 3.351 (3) 144
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SAINT-Plus, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of 1,2,4-triazole are of great significance as pharmaceuticals, pesticides and high energetic materials. In recent years, the synthesis of energetic, polynitro and heterocyclic compounds have attracted considerable interest (Wang et al., 2007; Jin et al., 2005, 2006). This paper reports the crystal structure of the title 1,3,4-triazole derivative, (I).

The asymmetric unit of the title compound contains two independent molecules (Fig. 1). The dihedral angles formed by the triazole and benzene rings in the two independent molecules are 83.3 (3)° and 86.9 (4)°, respectively. The molecular packing involves weak C—H···N and C—H···O interactions (Table 1), and π···π stacking interactions of aromatic rings with the centroid to centroid distance being 3.745 (1) Å for adjacent benzene rings in pairs of molecules.

Related literature top

For the synthesis of energetic, polynitro and heterocyclic compounds, see: Jin et al. (2005, 2006); Wang et al. (2007).

Experimental top

Anhydrous K2CO3(420 mg, 3.0 mmol) was added to a solution of p-nitrophenol (139 mg, 1.0 mmol) in anhydrous acetonitrile (30 ml). After stirring for 30 min at 333 K, 1-chloromethyl-1H-1, 2, 4-triazole (117 mg, 1.0 mmol) was added. The mixture was refluxed for 12 h. After cooling, a small amount of precipitate was removed by filtration. The residue was purified by column chromatography to obtain a white solid (yield 86.2%, m.p. 465 K decomp.). Suitable crystals were obtained by evaporation of an ethyl acetate solution of the product.

Refinement top

H atoms were positioned geometrically at distances of 0.93 Å (CH) and 0.97 Å (CH2) from the parent C atoms; a riding model was used during the refinement process. The Uiso values were constrained to be 1.2Ueq of the carrier atom.

Structure description top

The derivatives of 1,2,4-triazole are of great significance as pharmaceuticals, pesticides and high energetic materials. In recent years, the synthesis of energetic, polynitro and heterocyclic compounds have attracted considerable interest (Wang et al., 2007; Jin et al., 2005, 2006). This paper reports the crystal structure of the title 1,3,4-triazole derivative, (I).

The asymmetric unit of the title compound contains two independent molecules (Fig. 1). The dihedral angles formed by the triazole and benzene rings in the two independent molecules are 83.3 (3)° and 86.9 (4)°, respectively. The molecular packing involves weak C—H···N and C—H···O interactions (Table 1), and π···π stacking interactions of aromatic rings with the centroid to centroid distance being 3.745 (1) Å for adjacent benzene rings in pairs of molecules.

For the synthesis of energetic, polynitro and heterocyclic compounds, see: Jin et al. (2005, 2006); Wang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
1-(4-Nitrophenoxymethyl)-1H-1,2,4-triazole top
Crystal data top
C9H8N4O3F(000) = 912
Mr = 220.19Dx = 1.485 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2528 reflections
a = 11.2344 (4) Åθ = 3.1–21.4°
b = 7.7197 (3) ŵ = 0.12 mm1
c = 22.789 (1) ÅT = 296 K
β = 94.730 (1)°Block, colorless
V = 1969.65 (14) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3863 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.977, Tmax = 0.989k = 99
18061 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.063P)2 + 0.0478P]
where P = (Fo2 + 2Fc2)/3
3863 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H8N4O3V = 1969.65 (14) Å3
Mr = 220.19Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.2344 (4) ŵ = 0.12 mm1
b = 7.7197 (3) ÅT = 296 K
c = 22.789 (1) Å0.20 × 0.10 × 0.10 mm
β = 94.730 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3863 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2540 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.056
18061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.07Δρmax = 0.19 e Å3
3863 reflectionsΔρmin = 0.17 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81377 (17)0.3196 (3)1.03182 (8)0.0408 (5)
C20.93247 (17)0.3426 (3)1.04813 (8)0.0458 (5)
H20.96700.45171.04610.055*
C31.00048 (18)0.2022 (3)1.06769 (9)0.0462 (5)
H31.08170.21551.07830.055*
C40.94708 (17)0.0410 (3)1.07144 (8)0.0413 (5)
C50.82669 (17)0.0197 (3)1.05410 (9)0.0465 (5)
H50.79160.08901.05590.056*
C60.75967 (18)0.1595 (3)1.03423 (9)0.0452 (5)
H60.67890.14661.02250.054*
C71.12463 (17)0.0840 (3)1.11700 (10)0.0521 (6)
H7A1.13010.01341.14400.063*
H7B1.17680.06231.08600.063*
C81.15858 (19)0.2774 (3)1.20432 (10)0.0543 (6)
H81.13360.20111.23240.065*
C91.22169 (18)0.4899 (3)1.16231 (11)0.0572 (6)
H91.25150.60031.15630.069*
C100.1692 (2)0.7068 (3)0.80842 (8)0.0473 (5)
C110.2882 (2)0.7309 (3)0.82472 (9)0.0533 (6)
H110.32130.84130.82430.064*
C120.35811 (18)0.5906 (3)0.84169 (9)0.0494 (6)
H120.43900.60500.85290.059*
C130.30677 (17)0.4276 (3)0.84194 (9)0.0440 (5)
C140.18569 (18)0.4057 (3)0.82638 (10)0.0529 (6)
H140.15150.29620.82780.064*
C150.11677 (19)0.5457 (3)0.80901 (10)0.0536 (6)
H150.03580.53230.79780.064*
C160.49184 (17)0.2917 (3)0.87293 (10)0.0522 (6)
H16A0.50600.35870.90880.063*
H16B0.53220.34790.84210.063*
C170.58384 (17)0.0123 (3)0.84480 (10)0.0543 (6)
H170.59900.04080.80650.065*
C180.5699 (2)0.1152 (3)0.92397 (12)0.0624 (6)
H180.57550.20180.95240.075*
N10.74171 (17)0.4702 (2)1.01202 (8)0.0516 (5)
N21.15923 (14)0.2405 (2)1.14761 (7)0.0444 (4)
N31.20085 (17)0.3790 (3)1.11895 (8)0.0605 (5)
N41.19720 (17)0.4338 (3)1.21593 (9)0.0617 (5)
N50.0937 (2)0.8560 (3)0.79082 (8)0.0630 (6)
N60.53437 (14)0.1182 (2)0.88181 (7)0.0460 (4)
N70.52429 (16)0.0362 (3)0.93374 (8)0.0588 (5)
N80.60847 (16)0.1386 (3)0.86990 (9)0.0631 (6)
O10.79196 (15)0.6084 (2)1.00659 (8)0.0747 (5)
O20.63420 (14)0.4506 (2)1.00168 (8)0.0744 (5)
O30.13855 (18)0.9998 (2)0.79477 (7)0.0843 (6)
O40.01089 (19)0.8306 (3)0.77307 (8)0.0874 (6)
O50.36738 (12)0.27844 (18)0.85648 (7)0.0563 (4)
O61.00523 (12)0.10510 (18)1.09272 (6)0.0532 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0475 (11)0.0415 (12)0.0333 (11)0.0041 (10)0.0032 (9)0.0001 (9)
C20.0503 (12)0.0425 (12)0.0443 (12)0.0069 (10)0.0025 (10)0.0053 (10)
C30.0406 (11)0.0508 (14)0.0474 (13)0.0034 (10)0.0042 (9)0.0055 (10)
C40.0445 (11)0.0418 (12)0.0377 (11)0.0039 (10)0.0043 (9)0.0005 (10)
C50.0494 (12)0.0384 (12)0.0511 (13)0.0060 (10)0.0008 (10)0.0018 (10)
C60.0419 (11)0.0501 (14)0.0434 (12)0.0017 (10)0.0018 (9)0.0028 (10)
C70.0435 (12)0.0524 (14)0.0602 (14)0.0039 (10)0.0030 (10)0.0046 (11)
C80.0630 (14)0.0564 (16)0.0435 (14)0.0004 (12)0.0039 (11)0.0047 (11)
C90.0490 (13)0.0460 (14)0.0765 (17)0.0087 (11)0.0041 (12)0.0014 (14)
C100.0656 (14)0.0413 (13)0.0356 (12)0.0079 (11)0.0083 (10)0.0034 (10)
C110.0730 (16)0.0407 (13)0.0469 (13)0.0105 (11)0.0085 (11)0.0050 (10)
C120.0474 (12)0.0472 (14)0.0532 (13)0.0077 (10)0.0022 (10)0.0052 (11)
C130.0452 (11)0.0410 (13)0.0462 (12)0.0001 (10)0.0065 (9)0.0038 (10)
C140.0477 (12)0.0400 (13)0.0710 (16)0.0056 (10)0.0047 (11)0.0036 (11)
C150.0484 (12)0.0510 (14)0.0608 (15)0.0015 (11)0.0008 (11)0.0052 (11)
C160.0452 (12)0.0528 (14)0.0575 (14)0.0006 (10)0.0027 (10)0.0005 (11)
C170.0420 (12)0.0655 (16)0.0559 (14)0.0025 (11)0.0069 (10)0.0078 (13)
C180.0598 (14)0.0543 (16)0.0716 (18)0.0023 (12)0.0028 (13)0.0067 (14)
N10.0583 (12)0.0486 (12)0.0478 (11)0.0069 (10)0.0038 (9)0.0010 (9)
N20.0447 (9)0.0428 (11)0.0460 (11)0.0058 (8)0.0052 (8)0.0018 (9)
N30.0677 (12)0.0589 (13)0.0562 (12)0.0249 (10)0.0133 (10)0.0016 (10)
N40.0680 (13)0.0552 (13)0.0609 (13)0.0003 (10)0.0007 (10)0.0084 (11)
N50.0972 (17)0.0528 (14)0.0397 (11)0.0174 (13)0.0100 (11)0.0012 (10)
N60.0450 (10)0.0490 (11)0.0433 (10)0.0028 (8)0.0000 (8)0.0018 (9)
N70.0703 (12)0.0585 (13)0.0475 (12)0.0035 (10)0.0040 (9)0.0055 (10)
N80.0540 (12)0.0585 (14)0.0766 (15)0.0068 (10)0.0034 (10)0.0082 (12)
O10.0813 (12)0.0423 (10)0.0994 (14)0.0034 (9)0.0008 (10)0.0088 (9)
O20.0509 (10)0.0748 (12)0.0957 (13)0.0124 (8)0.0050 (9)0.0076 (10)
O30.1379 (17)0.0431 (11)0.0728 (13)0.0136 (11)0.0146 (11)0.0049 (9)
O40.0864 (13)0.0898 (15)0.0835 (13)0.0339 (11)0.0075 (11)0.0022 (11)
O50.0418 (8)0.0452 (9)0.0807 (11)0.0004 (7)0.0024 (7)0.0013 (8)
O60.0479 (8)0.0434 (9)0.0667 (10)0.0016 (7)0.0057 (7)0.0056 (8)
Geometric parameters (Å, º) top
C1—C21.366 (3)C11—C121.375 (3)
C1—C61.381 (3)C11—H110.9300
C1—N11.466 (3)C12—C131.384 (3)
C2—C31.379 (3)C12—H120.9300
C2—H20.9300C13—O51.365 (2)
C3—C41.387 (3)C13—C141.387 (3)
C3—H30.9300C14—C151.369 (3)
C4—O61.372 (2)C14—H140.9300
C4—C51.387 (3)C15—H150.9300
C5—C61.371 (3)C16—O51.421 (2)
C5—H50.9300C16—N61.431 (3)
C6—H60.9300C16—H16A0.9700
C7—O61.418 (2)C16—H16B0.9700
C7—N21.433 (3)C17—N81.317 (3)
C7—H7A0.9700C17—N61.329 (3)
C7—H7B0.9700C17—H170.9300
C8—N41.303 (3)C18—N71.302 (3)
C8—N21.324 (2)C18—N81.352 (3)
C8—H80.9300C18—H180.9300
C9—N31.314 (3)N1—O11.218 (2)
C9—N41.346 (3)N1—O21.221 (2)
C9—H90.9300N2—N31.356 (2)
C10—C111.370 (3)N5—O31.219 (3)
C10—C151.376 (3)N5—O41.226 (3)
C10—N51.467 (3)N6—N71.355 (2)
C2—C1—C6121.91 (19)O5—C13—C14114.73 (18)
C2—C1—N1118.85 (19)C12—C13—C14120.7 (2)
C6—C1—N1119.23 (18)C15—C14—C13119.8 (2)
C1—C2—C3119.2 (2)C15—C14—H14120.1
C1—C2—H2120.4C13—C14—H14120.1
C3—C2—H2120.4C14—C15—C10118.9 (2)
C2—C3—C4119.62 (19)C14—C15—H15120.5
C2—C3—H3120.2C10—C15—H15120.5
C4—C3—H3120.2O5—C16—N6106.23 (16)
O6—C4—C3124.31 (17)O5—C16—H16A110.5
O6—C4—C5115.34 (18)N6—C16—H16A110.5
C3—C4—C5120.34 (19)O5—C16—H16B110.5
C6—C5—C4119.80 (19)N6—C16—H16B110.5
C6—C5—H5120.1H16A—C16—H16B108.7
C4—C5—H5120.1N8—C17—N6110.6 (2)
C5—C6—C1119.09 (19)N8—C17—H17124.7
C5—C6—H6120.5N6—C17—H17124.7
C1—C6—H6120.5N7—C18—N8115.9 (2)
O6—C7—N2107.66 (16)N7—C18—H18122.1
O6—C7—H7A110.2N8—C18—H18122.1
N2—C7—H7A110.2O1—N1—O2123.24 (19)
O6—C7—H7B110.2O1—N1—C1118.48 (18)
N2—C7—H7B110.2O2—N1—C1118.28 (19)
H7A—C7—H7B108.5C8—N2—N3109.30 (18)
N4—C8—N2111.6 (2)C8—N2—C7129.31 (19)
N4—C8—H8124.2N3—N2—C7121.39 (17)
N2—C8—H8124.2C9—N3—N2101.46 (18)
N3—C9—N4115.9 (2)C8—N4—C9101.73 (19)
N3—C9—H9122.1O3—N5—O4123.3 (2)
N4—C9—H9122.1O3—N5—C10117.9 (2)
C11—C10—C15121.9 (2)O4—N5—C10118.8 (2)
C11—C10—N5119.8 (2)C17—N6—N7109.65 (18)
C15—C10—N5118.3 (2)C17—N6—C16129.68 (19)
C10—C11—C12119.4 (2)N7—N6—C16120.66 (18)
C10—C11—H11120.3C18—N7—N6101.97 (19)
C12—C11—H11120.3C17—N8—C18101.9 (2)
C11—C12—C13119.25 (19)N1—O2—H16A132.4
C11—C12—H12120.4C13—O5—C16117.61 (16)
C13—C12—H12120.4C4—O6—C7116.82 (16)
O5—C13—C12124.62 (18)
C6—C1—C2—C30.1 (3)O6—C7—N2—C896.5 (2)
N1—C1—C2—C3178.99 (17)O6—C7—N2—N384.1 (2)
C1—C2—C3—C41.1 (3)N4—C9—N3—N20.1 (2)
C2—C3—C4—O6176.99 (18)C8—N2—N3—C90.2 (2)
C2—C3—C4—C51.8 (3)C7—N2—N3—C9179.73 (17)
O6—C4—C5—C6177.62 (18)N2—C8—N4—C90.1 (2)
C3—C4—C5—C61.3 (3)N3—C9—N4—C80.0 (3)
C4—C5—C6—C10.1 (3)C11—C10—N5—O34.4 (3)
C2—C1—C6—C50.6 (3)C15—C10—N5—O3174.4 (2)
N1—C1—C6—C5178.46 (17)C11—C10—N5—O4175.75 (19)
C15—C10—C11—C120.6 (3)C15—C10—N5—O45.5 (3)
N5—C10—C11—C12179.39 (18)N8—C17—N6—N70.4 (2)
C10—C11—C12—C130.0 (3)N8—C17—N6—C16178.74 (19)
C11—C12—C13—O5178.33 (19)O5—C16—N6—C1794.9 (2)
C11—C12—C13—C141.2 (3)O5—C16—N6—N783.2 (2)
O5—C13—C14—C15177.77 (19)N8—C18—N7—N60.2 (2)
C12—C13—C14—C151.8 (3)C17—N6—N7—C180.3 (2)
C13—C14—C15—C101.2 (3)C16—N6—N7—C18178.84 (18)
C11—C10—C15—C140.0 (3)N6—C17—N8—C180.3 (2)
N5—C10—C15—C14178.81 (19)N7—C18—N8—C170.1 (3)
C2—C1—N1—O15.4 (3)C12—C13—O5—C160.5 (3)
C6—C1—N1—O1175.47 (19)C14—C13—O5—C16179.93 (18)
C2—C1—N1—O2174.71 (18)N6—C16—O5—C13176.10 (17)
C6—C1—N1—O24.4 (3)C3—C4—O6—C75.8 (3)
N4—C8—N2—N30.2 (2)C5—C4—O6—C7173.07 (17)
N4—C8—N2—C7179.68 (19)N2—C7—O6—C4167.68 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.593.367 (3)141
C14—H14···O3i0.932.413.249 (3)150
C17—H17···N4ii0.932.563.351 (3)144
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H8N4O3
Mr220.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.2344 (4), 7.7197 (3), 22.789 (1)
β (°) 94.730 (1)
V3)1969.65 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
18061, 3863, 2540
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.134, 1.07
No. of reflections3863
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.593.367 (3)141
C14—H14···O3i0.932.413.249 (3)150
C17—H17···N4ii0.932.563.351 (3)144
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z1/2.
 

Acknowledgements

The author gratefully acknowledges the financial support of the National Science Funds for Distinguished Young Scholars Program and Hubei Provincial Department of Education, People's Republic of China.

References

First citationBruker (2001). SAINT-Plus, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, C.-M., Chen, C.-Y., Wang, W.-D. & Zhou, X.-W. (2006). Acta Cryst. E62, o5381–o5382.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, C. M., Ye, C., Piekarski, C., Twamley, B. & Shreeve, J. M. (2005). Eur. J. Inorg. Chem. pp. 3760–3767.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, R., Gao, H., Ye, C. & Shreeve, J. M. (2007). Chem. Mater. 19, 144–152.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds