organic compounds
2,3,10,11-Tetramethoxy-6,7,14,15-tetrahydro-6,14-methanocycloocta[1,2-b;5,6-b′]diquinoline
aSchool of Chemistry, University of New South Wales, Sydney, Australia 2052
*Correspondence e-mail: r.bishop@unsw.edu.au
The racemic title compound, C27H26N2O4, crystallizes with its central carbon bridge on a twofold axis. It forms parallel chains of molecules utilizing aryl offset face–face interactions with an interplanar distance of about 3.5 Å. These chains associate further by means of pairs of O—CH2—H⋯π (with H–ring distances ranging from 2.69 to 2.95 Å) and O—CH2—H⋯N motifs. The methoxy groups in this structure are coplanar with the aromatic rings to which they are attached. This is recognized as being common behaviour amongst aromatic methoxy compounds.
Related literature
Condensation of two equivalents of a 2-aminobenzaldehyde derivative with one of bicyclo[3.3.1]nonane-2,6-dione provides a V-shaped diquinoline adduct by means of the Friedländer condensation (Cheng & Yan, 1982). Substituted molecules of this general structural type frequently act as lattice inclusion hosts (Bishop, 2006). For related literature, see: Allen (2002); Desiraju & Gavezzotti (1989); Marjo et al. (1997); Pendrak et al. (1995); Schaefer & Honig (1968).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Schagen et al., 1989); cell CAD-4 Software; data reduction: Local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Johnson, 1976) and CrystalMaker (CrystalMaker, 2005); software used to prepare material for publication: Local programs.
Supporting information
https://doi.org/10.1107/S1600536807061235/ln2008sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807061235/ln2008Isup2.hkl
2-Amino-4,5-dimethoxybenzaldehyde (Pendrak et al., 1995) (1.20 g, 6.62 mmol) and bicyclo[3.3.1]nonane-2,6-dione (Schaefer & Honig, 1968) (0.38 g, 2.50 mol) were dissolved in hot ethanol (20 ml) and a solution of sodium hydroxide (0.49 g, 12.25 mmol) in ethanol (10 ml) was added. The mixture was refluxed for 5 h, allowed to cool, then kept at 273 K for 5 h. Filtration gave the product 1 (0.51 g, 46%) of m.p. 548–549 K. 13C NMR (75.5 MHz, CDCl3) δ: 29.5 (CH2), 36.6 (CH), 38.2 (CH2), 56.2 (CH3), 56.4 (CH3), 104.6 (CH), 107.4 (CH), 123.3 (C), 126.8 (C), 134.7 (CH), 144.3 (C), 149.7 (C), 152.3 (C), 159.2 (C); 1H NMR (300 MHz, CDCl3) δ: 2.49 (br s, 2H), 3.25 & 3.32 (d, 2H, JAB 16.6 Hz), 3.42 & 3.49 (dd, 2H, JAB 16.6, JBX 5.3 Hz), 3.70 (d, 2H, J 2.6 Hz), 3.91 (s, 6H), 3.99 (s, 6H), 6.79 (s, 2H), 7.32 (s, 2H), 7.50 (s, 2H). X-ray quality crystals were obtained from ethyl acetate solution.
The
of the title compound, (1), contains half a molecule, with the central bridging carbon atom located on a twofold axis (Fig. 1).Molecules of (1) form parallel chains along the ac diagonal (Fig. 2), associating by means of exo,exo-facial aryl offset face-face (OFF) interactions (Desiraju & Gavezzotti, 1989). The distance between the aromatic planes is about 3.5 Å. Complementary to the π···π interaction are a pair of associations between a methoxy group and a quinoline N atom (O—CH2—H···N; d = 2.88 Å), and a pair between an aliphatic methylene and a methoxy group (C—H···O—CH3, d = 2.84 Å). Adjacent chains interact in two ways: by means of a double centrosymmetric O—CH2—H···π interaction (utilizing the 3-methoxy group, with shortest C···C contacts of 3.57 and 3.82 Å) and an O—CH2—H···N interaction (utilizing the 10-methoxy group with C···N of 3.35 Å).
It is noteworthy that the methoxy groups in this structure are co-planar with the aromatic rings to which they are attached. The Cambridge Structural Database (Allen et al., 2002) reveals that this situation is commonplace amongst related compounds. The steric effects resulting from this co-planarity would be sufficient cause for the absence of centrosymmetric dimers utilizing the edge-edge aryl C—H···N supramolecular synthon which are found in the parent the non-methoxy diquinoline adduct (Marjo et al., 1997).
Condensation of two equivalents of a 2-aminobenzaldehyde derivative with one of bicyclo[3.3.1]nonane-2,6-dione provides a V-shaped diquinoline adduct by means of the Friedländer condensation (Cheng & Yan, 1982). Substituted molecules of this general structural type frequently act as lattice inclusion hosts (Bishop, 2006). For related literature, see: Allen (2002); Desiraju & Gavezzotti (1989); Marjo et al. (1997); Pendrak et al. (1995); Schaefer & Honig (1968).
Data collection: CAD-4 Software (Schagen et al., 1989); cell
CAD-4 Software (Schagen et al., 1989); data reduction: Local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: RAELS (Rae, 2000); molecular graphics: ORTEPII (Johnson, 1976) and CrystalMaker (CrystalMaker, 2005); software used to prepare material for publication: Local programs.C27H26N2O4 | F(000) = 936.0 |
Mr = 442.5 | Dx = 1.34 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.137 (7) Å | Cell parameters from 11 reflections |
b = 9.533 (6) Å | θ = 10–11° |
c = 16.551 (7) Å | µ = 0.09 mm−1 |
β = 100.79 (3)° | T = 294 K |
V = 2191 (2) Å3 | Irregular, colourless |
Z = 4 | 0.12 mm (radius) |
Enraf–Nonius CAD-4 diffractometer | θmax = 25° |
ω–2θ scans | h = −16→16 |
1999 measured reflections | k = 0→11 |
1926 independent reflections | l = 0→19 |
803 reflections with I > 2σ(I) | 1 standard reflections every 30 min |
Rint = 0.062 | intensity decay: none |
Refinement on F | 0 restraints |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters not refined |
wR(F2) = 0.053 | w = 1/[σ2(F) + 0.0004F2] |
S = 1.41 | (Δ/σ)max = 0.001 |
803 reflections | Δρmax = 0.56 e Å−3 |
150 parameters | Δρmin = −0.48 e Å−3 |
C27H26N2O4 | V = 2191 (2) Å3 |
Mr = 442.5 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 14.137 (7) Å | µ = 0.09 mm−1 |
b = 9.533 (6) Å | T = 294 K |
c = 16.551 (7) Å | 0.12 mm (radius) |
β = 100.79 (3)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.062 |
1999 measured reflections | 1 standard reflections every 30 min |
1926 independent reflections | intensity decay: none |
803 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.053 | H-atom parameters not refined |
S = 1.41 | Δρmax = 0.56 e Å−3 |
803 reflections | Δρmin = −0.48 e Å−3 |
150 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.3447 (2) | −0.0160 (3) | 0.3564 (2) | 0.059 (1) | |
O2 | 0.2109 (2) | −0.1040 (3) | 0.4273 (2) | 0.0559 (9) | |
N1 | 0.4643 (2) | 0.2977 (4) | 0.5789 (2) | 0.047 (1) | |
C1 | 0.5320 (4) | 0.4581 (5) | 0.6853 (3) | 0.055 (1) | |
C2 | 0.4554 (3) | 0.3525 (4) | 0.6509 (3) | 0.043 (1) | |
C3 | 0.3824 (3) | 0.3145 (5) | 0.6937 (3) | 0.045 (1) | |
C4 | 0.3736 (3) | 0.3841 (5) | 0.7746 (3) | 0.054 (1) | |
C5 | 0.5000 | 0.5529 (7) | 0.7500 | 0.062 (2) | |
C6 | 0.3986 (3) | 0.1982 (4) | 0.5451 (3) | 0.041 (1) | |
C7 | 0.4076 (3) | 0.1425 (5) | 0.4682 (2) | 0.042 (1) | |
C8 | 0.3440 (3) | 0.0430 (5) | 0.4314 (3) | 0.043 (1) | |
C9 | 0.2697 (3) | −0.0039 (5) | 0.4705 (3) | 0.042 (1) | |
C10 | 0.2596 (3) | 0.0469 (4) | 0.5446 (3) | 0.044 (1) | |
C11 | 0.3242 (3) | 0.1518 (5) | 0.5843 (2) | 0.042 (1) | |
C12 | 0.3174 (3) | 0.2147 (5) | 0.6597 (3) | 0.045 (1) | |
C13 | 0.4183 (4) | 0.0306 (6) | 0.3148 (3) | 0.076 (2) | |
C14 | 0.1350 (3) | −0.1571 (5) | 0.4654 (3) | 0.061 (1) | |
HC1 | 0.5453 | 0.5182 | 0.6392 | 0.055 | |
H1C4 | 0.3577 | 0.3110 | 0.8132 | 0.054 | |
H2C4 | 0.3207 | 0.4552 | 0.7640 | 0.054 | |
H1C5 | 0.4451 | 0.6135 | 0.7235 | 0.062 | 0.5 |
H2C5 | 0.5549 | 0.6135 | 0.7765 | 0.062 | 0.5 |
HC7 | 0.4605 | 0.1755 | 0.4404 | 0.042 | |
HC10 | 0.2068 | 0.0110 | 0.5717 | 0.044 | |
HC12 | 0.2646 | 0.1863 | 0.6889 | 0.045 | |
H1C13 | 0.4120 | −0.0191 | 0.2609 | 0.076 | |
H2C13 | 0.4118 | 0.1340 | 0.3051 | 0.076 | |
H3C13 | 0.4827 | 0.0098 | 0.3492 | 0.076 | |
H1C14 | 0.0972 | −0.2287 | 0.4287 | 0.061 | |
H2C14 | 0.1634 | −0.2014 | 0.5193 | 0.061 | |
H3C14 | 0.0917 | −0.0783 | 0.4748 | 0.061 |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.058 (2) | 0.066 (2) | 0.055 (2) | −0.016 (2) | 0.018 (2) | −0.021 (2) |
O2 | 0.050 (2) | 0.057 (2) | 0.060 (2) | −0.014 (2) | 0.007 (2) | 0.003 (2) |
N1 | 0.049 (2) | 0.050 (3) | 0.040 (2) | −0.007 (2) | 0.000 (2) | 0.002 (2) |
C1 | 0.067 (3) | 0.050 (3) | 0.044 (3) | −0.007 (3) | 0.000 (3) | 0.004 (3) |
C2 | 0.049 (3) | 0.039 (3) | 0.040 (3) | 0.005 (2) | 0.001 (2) | 0.004 (3) |
C3 | 0.046 (3) | 0.047 (3) | 0.039 (3) | 0.009 (2) | 0.001 (2) | 0.007 (2) |
C4 | 0.060 (3) | 0.060 (3) | 0.039 (3) | 0.020 (3) | −0.001 (2) | −0.006 (3) |
C5 | 0.089 (6) | 0.045 (5) | 0.048 (4) | 0.0000 | −0.002 (4) | 0.0000 |
C6 | 0.039 (3) | 0.044 (3) | 0.038 (3) | 0.006 (2) | 0.002 (2) | 0.007 (2) |
C7 | 0.036 (3) | 0.054 (3) | 0.039 (3) | −0.006 (2) | 0.010 (2) | −0.003 (3) |
C8 | 0.042 (3) | 0.045 (3) | 0.040 (3) | 0.006 (2) | 0.007 (2) | 0.002 (3) |
C9 | 0.036 (3) | 0.041 (3) | 0.047 (3) | −0.006 (2) | 0.001 (2) | 0.001 (3) |
C10 | 0.038 (3) | 0.043 (3) | 0.051 (3) | −0.003 (2) | 0.006 (2) | 0.006 (2) |
C11 | 0.042 (3) | 0.044 (3) | 0.040 (3) | 0.006 (3) | 0.007 (2) | 0.013 (3) |
C12 | 0.043 (3) | 0.054 (3) | 0.038 (3) | 0.006 (3) | 0.007 (2) | 0.012 (2) |
C13 | 0.074 (4) | 0.106 (5) | 0.056 (3) | −0.032 (3) | 0.029 (3) | −0.029 (3) |
C14 | 0.050 (3) | 0.060 (3) | 0.072 (3) | −0.017 (3) | 0.004 (3) | 0.008 (3) |
O1—C8 | 1.365 (4) | C6—C7 | 1.406 (5) |
O1—C13 | 1.421 (5) | C6—C11 | 1.407 (5) |
O2—C9 | 1.375 (5) | C7—C8 | 1.369 (5) |
O2—C14 | 1.434 (4) | C7—HC7 | 1.000 |
N1—C2 | 1.328 (5) | C8—C9 | 1.406 (5) |
N1—C6 | 1.371 (5) | C9—C10 | 1.352 (5) |
C1—C2 | 1.510 (6) | C10—C11 | 1.428 (5) |
C1—C4i | 1.545 (6) | C10—HC10 | 1.000 |
C1—C5 | 1.532 (5) | C11—C12 | 1.405 (5) |
C1—HC1 | 1.000 | C12—HC12 | 1.000 |
C2—C3 | 1.405 (5) | C13—H1C13 | 1.000 |
C3—C4 | 1.520 (5) | C13—H2C13 | 1.000 |
C3—C12 | 1.368 (5) | C13—H3C13 | 1.000 |
C4—H1C4 | 1.000 | C14—H1C14 | 1.000 |
C4—H2C4 | 1.000 | C14—H2C14 | 1.000 |
C5—H1C5 | 1.000 | C14—H3C14 | 1.000 |
C5—H2C5 | 1.000 | ||
C8—O1—C13 | 116.3 (4) | C6—C7—C8 | 120.1 (4) |
C9—O2—C14 | 116.5 (3) | C6—C7—HC7 | 119.9 |
C2—N1—C6 | 117.9 (4) | C8—C7—HC7 | 119.9 |
C2—C1—C4i | 111.0 (4) | O1—C8—C7 | 125.1 (4) |
C2—C1—C5 | 111.9 (4) | O1—C8—C9 | 114.9 (4) |
C2—C1—HC1 | 108.6 | C7—C8—C9 | 120.0 (4) |
C4i—C1—C5 | 108.3 (3) | O2—C9—C8 | 114.4 (4) |
C4i—C1—HC1 | 108.6 | O2—C9—C10 | 124.3 (4) |
C5—C1—HC1 | 108.6 | C8—C9—C10 | 121.3 (4) |
N1—C2—C1 | 114.8 (4) | C9—C10—C11 | 120.0 (4) |
N1—C2—C3 | 123.6 (4) | C9—C10—HC10 | 120.0 |
C1—C2—C3 | 121.6 (4) | C11—C10—HC10 | 120.0 |
C2—C3—C4 | 121.3 (4) | C6—C11—C10 | 118.5 (4) |
C2—C3—C12 | 118.2 (4) | C6—C11—C12 | 117.2 (4) |
C4—C3—C12 | 120.5 (4) | C10—C11—C12 | 124.3 (4) |
C1i—C4—C3 | 111.8 (4) | C3—C12—C11 | 120.7 (4) |
C1i—C4—H1C4 | 108.9 | C3—C12—HC12 | 119.7 |
C1i—C4—H2C4 | 108.9 | C11—C12—HC12 | 119.7 |
C3—C4—H1C4 | 108.9 | O1—C13—H1C13 | 109.5 |
C3—C4—H2C4 | 108.9 | O1—C13—H2C13 | 109.5 |
H1C4—C4—H2C4 | 109.5 | O1—C13—H3C13 | 109.5 |
C1—C5—C1i | 107.7 (5) | H1C13—C13—H2C13 | 109.5 |
C1—C5—H1C5 | 109.9 | H1C13—C13—H3C13 | 109.5 |
C1—C5—H2C5 | 109.9 | H2C13—C13—H3C13 | 109.5 |
C1i—C5—H1C5 | 109.9 | O2—C14—H1C14 | 109.5 |
C1i—C5—H2C5 | 109.9 | O2—C14—H2C14 | 109.5 |
H1C5—C5—H2C5 | 109.5 | O2—C14—H3C14 | 109.5 |
N1—C6—C7 | 117.5 (4) | H1C14—C14—H2C14 | 109.5 |
N1—C6—C11 | 122.5 (4) | H1C14—C14—H3C14 | 109.5 |
C7—C6—C11 | 120.0 (4) | H2C14—C14—H3C14 | 109.5 |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H3C14···N1ii | 1.00 | 2.882 | 3.723 (5) | 142 |
C14—H3C14···N1iii | 1.00 | 2.958 | 3.348 (5) | 104 |
Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C27H26N2O4 |
Mr | 442.5 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 14.137 (7), 9.533 (6), 16.551 (7) |
β (°) | 100.79 (3) |
V (Å3) | 2191 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.12 (radius) |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1999, 1926, 803 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.053, 1.41 |
No. of reflections | 803 |
No. of parameters | 150 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.56, −0.48 |
Computer programs: CAD-4 Software (Schagen et al., 1989), SIR92 (Altomare et al., 1994), RAELS (Rae, 2000), ORTEPII (Johnson, 1976) and CrystalMaker (CrystalMaker, 2005), Local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H3C14···N1i | 1.00 | 2.882 | 3.723 (5) | 142 |
C14—H3C14···N1ii | 1.00 | 2.958 | 3.348 (5) | 104 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) x−1/2, y−1/2, z. |
Acknowledgements
This research was supported by the UNSW Faculty Research Grants Program.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bishop, R. (2006). Crystal Engineering of Halogenated Heteroaromatic Clathrate Systems. In Frontiers in Crystal Engineering, ch. 5, pp. 91–116, edited by E. R. T. Tiekink & J. J. Vittal. Chichester: Wiley. Google Scholar
Cheng, C.-C. & Yan, S.-J. (1982). Org. React. 28, 37–201. CAS Google Scholar
CrystalMaker (2005). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. http://www.crystalmaker.co.uk. Google Scholar
Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482. CrossRef CAS Web of Science IUCr Journals Google Scholar
Johnson, C. K. (1976). ORTEPII, Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Marjo, C. E., Scudder, M. L., Craig, D. C. & Bishop, R. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2099–2104. CrossRef Google Scholar
Pendrak, I., Wittrock, R. & Kingsbury, W. D. (1995). J. Org. Chem. 60, 2912–2915. CrossRef CAS Web of Science Google Scholar
Rae, A. D. (2000). RAELS. Australian National University, Canberra. Google Scholar
Schaefer, J. P. & Honig, L. M. (1968). J. Org. Chem. 33, 2655–2659. CrossRef CAS Web of Science Google Scholar
Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit of the title compound, (1), contains half a molecule, with the central bridging carbon atom located on a twofold axis (Fig. 1).
Molecules of (1) form parallel chains along the ac diagonal (Fig. 2), associating by means of exo,exo-facial aryl offset face-face (OFF) interactions (Desiraju & Gavezzotti, 1989). The distance between the aromatic planes is about 3.5 Å. Complementary to the π···π interaction are a pair of associations between a methoxy group and a quinoline N atom (O—CH2—H···N; d = 2.88 Å), and a pair between an aliphatic methylene and a methoxy group (C—H···O—CH3, d = 2.84 Å). Adjacent chains interact in two ways: by means of a double centrosymmetric O—CH2—H···π interaction (utilizing the 3-methoxy group, with shortest C···C contacts of 3.57 and 3.82 Å) and an O—CH2—H···N interaction (utilizing the 10-methoxy group with C···N of 3.35 Å).
It is noteworthy that the methoxy groups in this structure are co-planar with the aromatic rings to which they are attached. The Cambridge Structural Database (Allen et al., 2002) reveals that this situation is commonplace amongst related compounds. The steric effects resulting from this co-planarity would be sufficient cause for the absence of centrosymmetric dimers utilizing the edge-edge aryl C—H···N supramolecular synthon which are found in the parent the non-methoxy diquinoline adduct (Marjo et al., 1997).