organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-2-(4-nitro­phenyl­sulfanyl)­propanoic acid

aFacultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico, bUnidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México 54090, Mexico, and cCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico
*Correspondence e-mail: tlahuext@ciq.uaem.mx

(Received 21 November 2007; accepted 23 November 2007; online 6 December 2007)

The title compound, C10H11NO4S, is of inter­est with respect to its biological activity. The mol­ecules are linked into centrosymmetric dimers by inter­molecular O—H⋯O hydrogen bonds and the dimers are further connected into chains by weak C—H⋯O inter­actions.

Related literature

For related literature on fibrate structures and biological activity, see: Henry et al. (2003[Henry, R. F., Zhang, G. Z., Gao, Y. & Buckner, I. S. (2003). Acta Cryst. E59, o699-o700.]); Rath et al. (2005[Rath, N. P., Haq, W. & Balendiran, G. K. (2005). Acta Cryst. C61, o81-o84.]); Djinović et al. (1989[Djinović, K., Globokar, M. & Zupet, P. (1989). Acta Cryst. C45, 772-775.]); Thorp (1962[Thorp, J. M. (1962). Lancet, 1, 1323-1326.]); Thorp & Waring (1962[Thorp, J. M. & Waring, W. S. (1962). Nature (London), 194, 948-949.]); Miller & Spence (1998[Miller, D. B. & Spence, J. D. (1998). Clin. Pharmacokinet. 34, 155-162.]); Forcheron et al. (2002[Forcheron, F., Cachefo, A., Thevenon, S., Pinteur, C. & Beylot, M. (2002). Diabetes, 51, 3486-3491.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, D.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO4S

  • Mr = 241.26

  • Triclinic, [P \overline 1]

  • a = 6.9382 (8) Å

  • b = 9.4500 (11) Å

  • c = 9.6395 (11) Å

  • α = 66.371 (2)°

  • β = 87.995 (2)°

  • γ = 88.298 (2)°

  • V = 578.60 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 273 (2) K

  • 0.32 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 0.95

  • 5660 measured reflections

  • 2036 independent reflections

  • 1718 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.123

  • S = 1.08

  • 2036 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.84 2.656 (3) 175
C2—H2⋯O2ii 0.93 2.46 3.211 (3) 138
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SAINT-Plus NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus NT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SAINT-Plus NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-NT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SAINT-Plus NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]).

Supporting information


Comment top

Fibrates, such as bezafibrate, clofibric acid and fenofibrate (Henry et al., 2003; Rath et al., 2005; Djinović et al., 1989), which are ligands for the nuclear receptor PPAR (peroxisome proliferator-activated receptor), are used as therapeutic agents in the treatment of hyperlipidemia, heart disease and diabetic complications in humans. The fibrates are a widely used class of lipid-modifying agents that decrease plasma triglycerides (Thorp, 1962; Miller & Spence, 1998; Forcheron et al., 2002). The fibric acid pharmacophore has been of interest to medicinal chemists ever since the initial discovery that ethyl chlorophenoxyisobutyrate possessed hypolipidemic properties (Thorp & Waring, 1962).

In order to assist our knowledge about the electronic and steric requirements for such compounds to to show antihyperlipidemic activity, we have determined the crystal structure of the title compound, (I), which is an analogue of clofibric acid with a thioisobutirate side chain. A view of the molecular structure of (I) and hydrogen bonded dimers is given in Fig. 1. The crystal structure is permeated by strong O—H···O hydrogen-bonding interactions, as well as weak C—H···O interactions (Tablel 1) (Desiraju, 2002). The O—H···O hydrogen bonding interactions form centrosymmetric dimers and generate rings that can be described as having a graph set motif of R22(8) (Bernstein et al., 1995).

Related literature top

For related literature on fibrate structures and biological activity, see: Henry et al. (2003); Rath et al. (2005); Djinović et al. (1989); Thorp (1962); Thorp & Waring (1962); Miller & Spence (1998); Forcheron et al. (2002). For related literature, see: Bernstein et al. (1995); Desiraju (2002).

Experimental top

A mixture of 4-nitrothiophenol (1.0 g, 6.40 mmol), potassium carbonate (1.94 g, 14.1 mmol) in acetonitrile, was added dropwise to 1.04 ml of ethyl 2-bromo-2-methylpropionate (1.37 g, 7.04 mmol). The mixture was stirred and heated under reflux for 6 h. After that, the mixture was poured onto cold water. The resulting oil was treated with a mixture of tetrahydrofuran/methanol/H2O (3:2:1, v/v/v, 6 ml/mmol), and LiOH was added (5 equiv). The mixture was stirred at room temperature for 3 h. Then, HCl solution (10% v/v) was added, and most of the organic solvents removed in vacuo. The partly solid residue was extracted with CH2Cl2 (3 x 10 ml), dried with Na2SO4, filtered, and concentrated in vacuo to give a yellow solid (m.p. 394.9 K). Single crystals of (I) were obtained from acetonitrile.

Refinement top

All the H atoms were constrained using the riding-model approximation [C—Haryl = 0.95 Å, Uiso(Haryl) = 1.2 Ueq(Caryl); C—Hmethyl = 0.98 Å, Uiso(Hmethyl) = 1.5Ueq(Cmethyl)]; O—H = 0.82 Å, Uiso(Hhydroxyl) = 1.5Ueq(O)].

Structure description top

Fibrates, such as bezafibrate, clofibric acid and fenofibrate (Henry et al., 2003; Rath et al., 2005; Djinović et al., 1989), which are ligands for the nuclear receptor PPAR (peroxisome proliferator-activated receptor), are used as therapeutic agents in the treatment of hyperlipidemia, heart disease and diabetic complications in humans. The fibrates are a widely used class of lipid-modifying agents that decrease plasma triglycerides (Thorp, 1962; Miller & Spence, 1998; Forcheron et al., 2002). The fibric acid pharmacophore has been of interest to medicinal chemists ever since the initial discovery that ethyl chlorophenoxyisobutyrate possessed hypolipidemic properties (Thorp & Waring, 1962).

In order to assist our knowledge about the electronic and steric requirements for such compounds to to show antihyperlipidemic activity, we have determined the crystal structure of the title compound, (I), which is an analogue of clofibric acid with a thioisobutirate side chain. A view of the molecular structure of (I) and hydrogen bonded dimers is given in Fig. 1. The crystal structure is permeated by strong O—H···O hydrogen-bonding interactions, as well as weak C—H···O interactions (Tablel 1) (Desiraju, 2002). The O—H···O hydrogen bonding interactions form centrosymmetric dimers and generate rings that can be described as having a graph set motif of R22(8) (Bernstein et al., 1995).

For related literature on fibrate structures and biological activity, see: Henry et al. (2003); Rath et al. (2005); Djinović et al. (1989); Thorp (1962); Thorp & Waring (1962); Miller & Spence (1998); Forcheron et al. (2002). For related literature, see: Bernstein et al. (1995); Desiraju (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus NT (Bruker, 2000); data reduction: SAINT-Plus NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 2000); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering. H atoms are shown as small spheres of arbitrary radius. The intermolecular hydrogen bonds O4—H4···O3 forming the R22(8) motif are shown as dotted lines.
2-Methyl-2-(4-nitrophenylsulfanyl)propanoic acid top
Crystal data top
C10H11NO4SZ = 2
Mr = 241.26F(000) = 252
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Melting point: 394.9 K
a = 6.9382 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4500 (11) ÅCell parameters from 2036 reflections
c = 9.6395 (11) Åθ = 2.3–25°
α = 66.371 (2)°µ = 0.28 mm1
β = 87.995 (2)°T = 273 K
γ = 88.298 (2)°Plate, colourless
V = 578.60 (12) Å30.32 × 0.23 × 0.18 mm
Data collection top
Bruker CCD area detector
diffractometer
2036 independent reflections
Radiation source: fine-focus sealed tube1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.92, Tmax = 0.95k = 1111
5660 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.06P)2 + 0.156P]
where P = (Fo2 + 2Fc2)/3
2036 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H11NO4Sγ = 88.298 (2)°
Mr = 241.26V = 578.60 (12) Å3
Triclinic, P1Z = 2
a = 6.9382 (8) ÅMo Kα radiation
b = 9.4500 (11) ŵ = 0.28 mm1
c = 9.6395 (11) ÅT = 273 K
α = 66.371 (2)°0.32 × 0.23 × 0.18 mm
β = 87.995 (2)°
Data collection top
Bruker CCD area detector
diffractometer
2036 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1718 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.95Rint = 0.020
5660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.08Δρmax = 0.28 e Å3
2036 reflectionsΔρmin = 0.17 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1054 (3)0.1894 (3)0.6403 (2)0.0531 (5)
C20.1738 (3)0.0380 (3)0.6935 (3)0.0580 (6)
H20.30370.01680.71530.070*
C30.0525 (3)0.0797 (3)0.7141 (3)0.0576 (6)
H30.09820.18130.75090.069*
C40.1375 (3)0.0462 (3)0.6797 (2)0.0524 (5)
C50.2096 (4)0.1026 (3)0.6234 (3)0.0608 (6)
H50.33880.12310.59880.073*
C60.0871 (3)0.2196 (3)0.6045 (3)0.0599 (6)
H60.13360.32100.56690.072*
C70.2702 (4)0.3441 (3)0.8037 (3)0.0624 (6)
C80.3733 (3)0.1963 (3)0.9005 (3)0.0568 (6)
C90.0695 (4)0.3533 (4)0.8653 (3)0.0837 (9)
H9A0.00230.26020.88210.125*
H9B0.00110.44020.79360.125*
H9C0.07730.36530.95920.125*
C100.3903 (5)0.4859 (3)0.7791 (4)0.0940 (10)
H10A0.40760.49280.87450.141*
H10B0.32470.57730.71190.141*
H10C0.51400.47640.73540.141*
N10.2678 (3)0.1730 (3)0.7030 (2)0.0674 (6)
O10.2015 (3)0.3028 (2)0.7498 (3)0.0997 (7)
O20.4350 (3)0.1430 (3)0.6715 (3)0.1118 (9)
O30.2868 (2)0.0840 (2)0.98479 (19)0.0724 (5)
O40.5595 (3)0.1977 (2)0.8833 (2)0.0839 (6)
H40.60340.11010.92830.126*
S10.26504 (9)0.34147 (7)0.61287 (7)0.0636 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0654 (14)0.0463 (12)0.0439 (11)0.0029 (10)0.0021 (10)0.0142 (9)
C20.0524 (13)0.0544 (14)0.0660 (14)0.0081 (11)0.0043 (11)0.0233 (11)
C30.0646 (15)0.0425 (12)0.0637 (14)0.0088 (10)0.0004 (11)0.0201 (10)
C40.0580 (13)0.0509 (12)0.0505 (12)0.0010 (10)0.0029 (10)0.0230 (10)
C50.0566 (13)0.0572 (14)0.0687 (15)0.0103 (11)0.0110 (11)0.0252 (12)
C60.0675 (15)0.0447 (12)0.0632 (14)0.0124 (11)0.0135 (11)0.0170 (11)
C70.0765 (16)0.0474 (13)0.0621 (14)0.0032 (11)0.0115 (12)0.0203 (11)
C80.0599 (15)0.0550 (14)0.0535 (13)0.0011 (11)0.0059 (11)0.0192 (11)
C90.090 (2)0.084 (2)0.0815 (19)0.0282 (16)0.0080 (15)0.0396 (16)
C100.126 (3)0.0560 (16)0.102 (2)0.0089 (16)0.0276 (19)0.0311 (16)
N10.0681 (14)0.0593 (13)0.0789 (14)0.0041 (11)0.0051 (11)0.0323 (11)
O10.0975 (15)0.0514 (12)0.144 (2)0.0033 (10)0.0158 (13)0.0309 (12)
O20.0606 (13)0.0851 (15)0.197 (3)0.0033 (11)0.0088 (14)0.0639 (16)
O30.0667 (11)0.0628 (11)0.0653 (11)0.0002 (9)0.0036 (8)0.0026 (9)
O40.0596 (11)0.0673 (12)0.0976 (15)0.0026 (9)0.0058 (9)0.0041 (10)
S10.0762 (5)0.0503 (4)0.0543 (4)0.0081 (3)0.0034 (3)0.0100 (3)
Geometric parameters (Å, º) top
C1—C61.384 (3)C7—C101.531 (4)
C1—C21.387 (3)C7—S11.851 (2)
C1—S11.769 (2)C8—O31.208 (3)
C2—C31.361 (3)C8—O41.296 (3)
C2—H20.9300C9—H9A0.9600
C3—C41.368 (3)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.374 (3)C10—H10A0.9600
C4—N11.462 (3)C10—H10B0.9600
C5—C61.364 (3)C10—H10C0.9600
C5—H50.9300N1—O21.206 (3)
C6—H60.9300N1—O11.207 (3)
C7—C81.508 (3)O4—H40.8200
C7—C91.508 (4)
C6—C1—C2119.0 (2)C9—C7—S1111.51 (18)
C6—C1—S1120.86 (17)C10—C7—S1103.62 (19)
C2—C1—S1120.08 (18)O3—C8—O4122.9 (2)
C3—C2—C1120.5 (2)O3—C8—C7121.8 (2)
C3—C2—H2119.7O4—C8—C7115.3 (2)
C1—C2—H2119.7C7—C9—H9A109.5
C2—C3—C4119.0 (2)C7—C9—H9B109.5
C2—C3—H3120.5H9A—C9—H9B109.5
C4—C3—H3120.5C7—C9—H9C109.5
C3—C4—C5122.1 (2)H9A—C9—H9C109.5
C3—C4—N1118.9 (2)H9B—C9—H9C109.5
C5—C4—N1119.0 (2)C7—C10—H10A109.5
C6—C5—C4118.4 (2)C7—C10—H10B109.5
C6—C5—H5120.8H10A—C10—H10B109.5
C4—C5—H5120.8C7—C10—H10C109.5
C5—C6—C1120.9 (2)H10A—C10—H10C109.5
C5—C6—H6119.6H10B—C10—H10C109.5
C1—C6—H6119.6O2—N1—O1123.1 (2)
C8—C7—C9111.5 (2)O2—N1—C4118.7 (2)
C8—C7—C10111.5 (2)O1—N1—C4118.2 (2)
C9—C7—C10112.9 (2)C8—O4—H4109.5
C8—C7—S1105.22 (16)C1—S1—C7102.66 (11)
C6—C1—C2—C31.8 (3)C9—C7—C8—O4160.9 (2)
S1—C1—C2—C3179.55 (18)C10—C7—C8—O433.6 (3)
C1—C2—C3—C40.8 (4)S1—C7—C8—O478.0 (2)
C2—C3—C4—C50.8 (4)C3—C4—N1—O2179.4 (2)
C2—C3—C4—N1179.5 (2)C5—C4—N1—O20.3 (4)
C3—C4—C5—C61.3 (4)C3—C4—N1—O11.1 (3)
N1—C4—C5—C6179.0 (2)C5—C4—N1—O1178.6 (2)
C4—C5—C6—C10.3 (4)C6—C1—S1—C797.2 (2)
C2—C1—C6—C51.2 (4)C2—C1—S1—C785.1 (2)
S1—C1—C6—C5178.97 (19)C8—C7—S1—C168.65 (18)
C9—C7—C8—O320.9 (3)C9—C7—S1—C152.4 (2)
C10—C7—C8—O3148.1 (3)C10—C7—S1—C1174.16 (18)
S1—C7—C8—O3100.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.842.656 (3)175
C2—H2···O2ii0.932.463.211 (3)138
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H11NO4S
Mr241.26
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.9382 (8), 9.4500 (11), 9.6395 (11)
α, β, γ (°)66.371 (2), 87.995 (2), 88.298 (2)
V3)578.60 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.32 × 0.23 × 0.18
Data collection
DiffractometerBruker CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.92, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
5660, 2036, 1718
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.08
No. of reflections2036
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: SMART (Bruker, 2000), SAINT-Plus NT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 2000), PLATON (Spek, 2003) and publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.842.656 (3)175
C2—H2···O2ii0.932.463.211 (3)138
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under grant No. 3562P-E and PROMEP-SEP UAEMOR-PTC-131 (GNV).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, D.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.618), SAINT-Plus NT (Version 6.04) and SHELXTL-NT (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDjinović, K., Globokar, M. & Zupet, P. (1989). Acta Cryst. C45, 772–775.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationForcheron, F., Cachefo, A., Thevenon, S., Pinteur, C. & Beylot, M. (2002). Diabetes, 51, 3486–3491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHenry, R. F., Zhang, G. Z., Gao, Y. & Buckner, I. S. (2003). Acta Cryst. E59, o699–o700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiller, D. B. & Spence, J. D. (1998). Clin. Pharmacokinet. 34, 155–162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRath, N. P., Haq, W. & Balendiran, G. K. (2005). Acta Cryst. C61, o81–o84.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorp, J. M. (1962). Lancet, 1, 1323–1326.  CrossRef PubMed Google Scholar
First citationThorp, J. M. & Waring, W. S. (1962). Nature (London), 194, 948–949.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds