metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chlorido(3-chloro-2-methyl­imino­phenyl-κ2C1,N)-trans-bis­­(tri­methyl­phosphine-κP)cobalt(III)

aDepartment of Chemistry, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 22 November 2007; accepted 23 November 2007; online 18 December 2007)

In the title compound, [CoCl2(C8H7ClN)(C3H9P)2], the Co atom displays an octa­hedral coordination, with two cis Cl atoms perpendicular to two trans trimethyl­phosphine ligands as well as trans to the bidentate 3-chloro-2-methyl­imino­phenyl ligand.

Related literature

For reactions of chlorinated phenyl Schiff bases with [CoCl(PMe3)3], see: Chen et al. (2007[Chen, Y., Sun, H. & Li, X. (2007). Organometallics. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C8H7ClN)(C3H9P)2]

  • Mr = 434.57

  • Orthorhombic, P 21 21 21

  • a = 8.5530 (17) Å

  • b = 10.543 (2) Å

  • c = 21.769 (4) Å

  • V = 1963.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 (2) K

  • 0.30 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.672, Tmax = 0.689

  • 16045 measured reflections

  • 4910 independent reflections

  • 4868 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.07

  • 4910 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.43 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2082 Friedel pairs

  • Flack parameter: −0.001 (9)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Reaction of chlorinated phenyl Schiff bases with [CoCl(PMe3)3] has been reported recently (Chen et al., 2007). N-(2,6-Dichlorobenzylidene)methanamine reacts with [CoCl(PMe3)3] by a cyclometallation reaction involving C—Cl bond activation at cobalt(I) centers and with imine as pre-chelate ligands to afford the hexacoordinate title cobalt(III) complex as a red solid that is soluble in pentane or diethyl ether.

A view of the molecular structure is given in Fig. 1. The cobalt atom displays an octahedral coordination with two cis-chlorine atoms (Cl1 and Cl2) perpendicular to two trans trimethylphosphine ligands as well as trans to the bidentate 3-chloro-2-methyliminophenyl ligand. The P1—Co—P2 angle of 172.71 (2)° implies a slight distortion from an ideal octahedron. The sum of the internal angles (540°) indicates planarity of the chelate ring. The C?N bond length C7—N1 [1.288 (2) Å] is relatively long, indicating significant bond weakening upon coordination of the nitrogen donor atom. The longer Co1—Cl5 bond [2.3471 (6) Å], when compared with Co1—Cl1 [2.2742 (5) Å], reflects the stronger trans-influence of the carbon atom (C1) than that of the nitrogen atom (N1).

Related literature top

For reactions of chlorinated phenyl Schiff bases with [CoCl(PMe3)3], see: Chen et al. (2007).

Experimental top

Standard vacuum techniques were used in the manipulations of volatile and air-sensitive materials. Chlorotris(trimethylphosphane)cobalt(I) (1.11 g, 3.44 mmol) was dissolved in 40 ml of tetrahydrofuran (THF). To this solution was added N-(2,6-dichlorobenzylidene)methanamine (0.63 g, 3.43 mmol) in 20 ml of THF at 193 K. The mixture was allowed to warm to 293 K and stirred for 18 h to form a red-brown turbid mixture. The filtrate was evaporated in vacuo, and the residue was extracted with pentane (60 ml)and diethyl ether (60 ml), respectively. Crystallization in diethyl ether at 246 K afforded the title complex as red crystals in 57% yield.

Refinement top

The H atoms were introduced at calculated positions as riding atoms, with C—H bond lengths of 0.93 (CH) or 0.96 Å (CH3) and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C), respectively.

Structure description top

Reaction of chlorinated phenyl Schiff bases with [CoCl(PMe3)3] has been reported recently (Chen et al., 2007). N-(2,6-Dichlorobenzylidene)methanamine reacts with [CoCl(PMe3)3] by a cyclometallation reaction involving C—Cl bond activation at cobalt(I) centers and with imine as pre-chelate ligands to afford the hexacoordinate title cobalt(III) complex as a red solid that is soluble in pentane or diethyl ether.

A view of the molecular structure is given in Fig. 1. The cobalt atom displays an octahedral coordination with two cis-chlorine atoms (Cl1 and Cl2) perpendicular to two trans trimethylphosphine ligands as well as trans to the bidentate 3-chloro-2-methyliminophenyl ligand. The P1—Co—P2 angle of 172.71 (2)° implies a slight distortion from an ideal octahedron. The sum of the internal angles (540°) indicates planarity of the chelate ring. The C?N bond length C7—N1 [1.288 (2) Å] is relatively long, indicating significant bond weakening upon coordination of the nitrogen donor atom. The longer Co1—Cl5 bond [2.3471 (6) Å], when compared with Co1—Cl1 [2.2742 (5) Å], reflects the stronger trans-influence of the carbon atom (C1) than that of the nitrogen atom (N1).

For reactions of chlorinated phenyl Schiff bases with [CoCl(PMe3)3], see: Chen et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The formation of the title compound.
cis-Dichlorido(3-chloro-2-methyliminophenyl-κ2C1,N)-trans- bis(trimethylphosphine-κP)cobalt(III) top
Crystal data top
[CoCl2(C8H7ClN)(C3H9P)2]Dx = 1.470 Mg m3
Mr = 434.57Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3063 reflections
a = 8.5530 (17) Åθ = 3.1–20.4°
b = 10.543 (2) ŵ = 1.44 mm1
c = 21.769 (4) ÅT = 298 K
V = 1963.0 (7) Å3Block, red
Z = 40.30 × 0.30 × 0.28 mm
F(000) = 896
Data collection top
Bruker P4
diffractometer
4868 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 28.5°, θmin = 1.9°
ω scansh = 119
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.672, Tmax = 0.689l = 2926
16045 measured reflections2699 standard reflections every 5 reflections
4910 independent reflections intensity decay: 0.02%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.7929P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4910 reflectionsΔρmax = 0.47 e Å3
190 parametersΔρmin = 0.43 e Å3
0 restraintsAbsolute structure: Flack (1983), 2082 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (9)
Crystal data top
[CoCl2(C8H7ClN)(C3H9P)2]V = 1963.0 (7) Å3
Mr = 434.57Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5530 (17) ŵ = 1.44 mm1
b = 10.543 (2) ÅT = 298 K
c = 21.769 (4) Å0.30 × 0.30 × 0.28 mm
Data collection top
Bruker P4
diffractometer
4868 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.038
Tmin = 0.672, Tmax = 0.6892699 standard reflections every 5 reflections
16045 measured reflections intensity decay: 0.02%
4910 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.47 e Å3
S = 1.07Δρmin = 0.43 e Å3
4910 reflectionsAbsolute structure: Flack (1983), 2082 Friedel pairs
190 parametersAbsolute structure parameter: 0.001 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.03793 (18)0.45205 (14)0.18750 (6)0.0120 (3)
Co10.21282 (3)0.51827 (2)0.141359 (10)0.00967 (6)
Cl10.41880 (5)0.58705 (4)0.08431 (2)0.01627 (9)
Cl20.23616 (5)0.69589 (4)0.205711 (19)0.01659 (9)
Cl30.14169 (5)0.09058 (4)0.112040 (19)0.01852 (9)
P10.06006 (6)0.62472 (4)0.07525 (2)0.01346 (9)
P20.38816 (5)0.41085 (4)0.19781 (2)0.01276 (9)
C10.1815 (2)0.36764 (16)0.09372 (8)0.0121 (3)
C20.2656 (2)0.32345 (17)0.04297 (8)0.0159 (3)
H2A0.34640.37210.02680.019*
C30.2291 (2)0.20742 (17)0.01664 (8)0.0170 (3)
H3A0.28810.17870.01640.020*
C40.1063 (2)0.13253 (16)0.03839 (8)0.0161 (3)
H4A0.08320.05490.02020.019*
C50.0203 (2)0.17679 (16)0.08749 (8)0.0136 (3)
C60.0574 (2)0.29240 (15)0.11584 (8)0.0122 (3)
C70.0181 (2)0.34538 (16)0.16892 (8)0.0129 (3)
H7A0.10150.30550.18840.015*
C80.0316 (2)0.50993 (18)0.24222 (8)0.0174 (3)
H8A0.11680.45840.25640.026*
H8B0.06960.59310.23220.026*
H8C0.04600.51630.27390.026*
C90.0955 (3)0.79342 (18)0.07302 (10)0.0258 (4)
H9A0.02610.83220.04390.039*
H9B0.20180.80890.06100.039*
H9C0.07740.82900.11300.039*
C100.0760 (3)0.5799 (2)0.00478 (8)0.0227 (4)
H10A0.00610.63080.02890.034*
H10B0.04890.49200.00930.034*
H10C0.18140.59300.01850.034*
C110.1493 (2)0.6155 (2)0.08898 (10)0.0258 (4)
H11A0.20350.66400.05830.039*
H11B0.17260.64920.12890.039*
H11C0.18240.52860.08690.039*
C120.3113 (3)0.3308 (2)0.26513 (9)0.0243 (4)
H12A0.39470.28790.28610.036*
H12B0.23370.27020.25280.036*
H12C0.26480.39200.29220.036*
C130.5434 (3)0.5051 (2)0.23006 (12)0.0293 (5)
H13A0.61220.45160.25330.044*
H13B0.49980.56880.25650.044*
H13C0.60090.54520.19760.044*
C140.4966 (3)0.2879 (2)0.15854 (10)0.0260 (4)
H14A0.56770.24840.18680.039*
H14B0.55430.32460.12520.039*
H14C0.42520.22560.14280.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0100 (6)0.0149 (6)0.0111 (6)0.0009 (5)0.0003 (5)0.0007 (5)
Co10.00910 (11)0.00863 (10)0.01127 (10)0.00028 (8)0.00087 (8)0.00067 (7)
Cl10.01429 (18)0.01469 (17)0.01983 (19)0.00287 (15)0.00548 (15)0.00055 (15)
Cl20.0190 (2)0.01338 (18)0.01734 (19)0.00129 (15)0.00002 (15)0.00514 (14)
Cl30.0213 (2)0.01699 (19)0.01728 (18)0.00885 (16)0.00267 (16)0.00191 (15)
P10.0146 (2)0.01225 (19)0.0135 (2)0.00196 (15)0.00023 (16)0.00098 (14)
P20.0109 (2)0.01100 (18)0.0164 (2)0.00005 (15)0.00138 (15)0.00015 (16)
C10.0133 (8)0.0113 (7)0.0116 (7)0.0004 (6)0.0009 (6)0.0013 (5)
C20.0153 (8)0.0150 (7)0.0173 (8)0.0011 (6)0.0024 (6)0.0009 (6)
C30.0200 (9)0.0144 (7)0.0166 (8)0.0021 (7)0.0016 (7)0.0038 (6)
C40.0204 (9)0.0113 (7)0.0166 (8)0.0007 (6)0.0037 (7)0.0025 (6)
C50.0144 (8)0.0116 (7)0.0147 (7)0.0035 (6)0.0026 (6)0.0020 (6)
C60.0129 (8)0.0123 (7)0.0113 (7)0.0006 (6)0.0019 (6)0.0015 (6)
C70.0115 (7)0.0157 (7)0.0116 (7)0.0008 (6)0.0010 (6)0.0013 (6)
C80.0164 (8)0.0204 (8)0.0153 (8)0.0002 (7)0.0047 (6)0.0039 (6)
C90.0352 (12)0.0126 (8)0.0296 (10)0.0023 (8)0.0070 (9)0.0045 (7)
C100.0277 (10)0.0263 (9)0.0141 (8)0.0070 (8)0.0023 (7)0.0008 (7)
C110.0154 (9)0.0350 (11)0.0271 (10)0.0054 (8)0.0009 (8)0.0060 (8)
C120.0231 (10)0.0274 (9)0.0224 (9)0.0053 (8)0.0013 (7)0.0113 (7)
C130.0226 (10)0.0209 (9)0.0444 (12)0.0048 (8)0.0165 (9)0.0012 (8)
C140.0260 (10)0.0282 (10)0.0239 (9)0.0162 (8)0.0008 (8)0.0016 (7)
Geometric parameters (Å, º) top
N1—C71.288 (2)C6—C71.437 (2)
N1—C81.465 (2)C7—H7A0.9300
N1—Co11.9323 (15)C8—H8A0.9600
Co1—C11.9155 (17)C8—H8B0.9600
Co1—P12.2444 (6)C8—H8C0.9600
Co1—P22.2455 (5)C9—H9A0.9600
Co1—Cl12.2742 (5)C9—H9B0.9600
Co1—Cl22.3471 (6)C9—H9C0.9600
Cl3—C51.7411 (18)C10—H10A0.9600
P1—C91.805 (2)C10—H10B0.9600
P1—C101.8105 (19)C10—H10C0.9600
P1—C111.818 (2)C11—H11A0.9600
P2—C131.801 (2)C11—H11B0.9600
P2—C141.808 (2)C11—H11C0.9600
P2—C121.814 (2)C12—H12A0.9600
C1—C21.398 (2)C12—H12B0.9600
C1—C61.410 (2)C12—H12C0.9600
C2—C31.386 (2)C13—H13A0.9600
C2—H2A0.9300C13—H13B0.9600
C3—C41.397 (3)C13—H13C0.9600
C3—H3A0.9300C14—H14A0.9600
C4—C51.379 (3)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C5—C61.403 (2)
C7—N1—C8117.90 (15)C1—C6—C7113.23 (15)
C7—N1—Co1116.15 (12)N1—C7—C6115.12 (16)
C8—N1—Co1125.91 (12)N1—C7—H7A122.4
C1—Co1—N182.74 (7)C6—C7—H7A122.4
C1—Co1—P189.20 (5)N1—C8—H8A109.5
N1—Co1—P193.63 (5)N1—C8—H8B109.5
C1—Co1—P288.36 (5)H8A—C8—H8B109.5
N1—Co1—P292.88 (5)N1—C8—H8C109.5
P1—Co1—P2172.71 (2)H8A—C8—H8C109.5
C1—Co1—Cl194.41 (5)H8B—C8—H8C109.5
N1—Co1—Cl1177.13 (5)P1—C9—H9A109.5
P1—Co1—Cl186.64 (2)P1—C9—H9B109.5
P2—Co1—Cl186.69 (2)H9A—C9—H9B109.5
C1—Co1—Cl2175.19 (5)P1—C9—H9C109.5
N1—Co1—Cl292.52 (5)H9A—C9—H9C109.5
P1—Co1—Cl291.91 (2)H9B—C9—H9C109.5
P2—Co1—Cl291.09 (2)P1—C10—H10A109.5
Cl1—Co1—Cl290.33 (2)P1—C10—H10B109.5
C9—P1—C10102.64 (10)H10A—C10—H10B109.5
C9—P1—C11102.83 (11)P1—C10—H10C109.5
C10—P1—C11102.61 (10)H10A—C10—H10C109.5
C9—P1—Co1114.36 (7)H10B—C10—H10C109.5
C10—P1—Co1116.27 (7)P1—C11—H11A109.5
C11—P1—Co1116.19 (7)P1—C11—H11B109.5
C13—P2—C14101.64 (11)H11A—C11—H11B109.5
C13—P2—C12102.05 (11)P1—C11—H11C109.5
C14—P2—C12103.56 (11)H11A—C11—H11C109.5
C13—P2—Co1115.30 (7)H11B—C11—H11C109.5
C14—P2—Co1116.43 (7)P2—C12—H12A109.5
C12—P2—Co1115.76 (7)P2—C12—H12B109.5
C2—C1—C6118.00 (15)H12A—C12—H12B109.5
C2—C1—Co1129.22 (13)P2—C12—H12C109.5
C6—C1—Co1112.76 (12)H12A—C12—H12C109.5
C3—C2—C1120.33 (17)H12B—C12—H12C109.5
C3—C2—H2A119.8P2—C13—H13A109.5
C1—C2—H2A119.8P2—C13—H13B109.5
C2—C3—C4121.86 (17)H13A—C13—H13B109.5
C2—C3—H3A119.1P2—C13—H13C109.5
C4—C3—H3A119.1H13A—C13—H13C109.5
C5—C4—C3118.20 (16)H13B—C13—H13C109.5
C5—C4—H4A120.9P2—C14—H14A109.5
C3—C4—H4A120.9P2—C14—H14B109.5
C4—C5—C6120.97 (16)H14A—C14—H14B109.5
C4—C5—Cl3119.07 (13)P2—C14—H14C109.5
C6—C5—Cl3119.90 (14)H14A—C14—H14C109.5
C5—C6—C1120.59 (16)H14B—C14—H14C109.5
C5—C6—C7126.16 (16)

Experimental details

Crystal data
Chemical formula[CoCl2(C8H7ClN)(C3H9P)2]
Mr434.57
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.5530 (17), 10.543 (2), 21.769 (4)
V3)1963.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.30 × 0.30 × 0.28
Data collection
DiffractometerBruker P4
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.672, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
16045, 4910, 4868
Rint0.038
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.07
No. of reflections4910
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.43
Absolute structureFlack (1983), 2082 Friedel pairs
Absolute structure parameter0.001 (9)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001).

 

Acknowledgements

We gratefully acknowledge support by the NSF China (No. 20572062) and the Doctoral Program of the Ministry of Education of China (MOE) (Nos. 20050422010 and 20050422011).

References

First citationBruker (1997). SMART (Version 5.6) and SAINT (Version 5.06A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Sun, H. & Li, X. (2007). Organometallics. In the press.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds