metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­manganese(II)]-di-μ-sulfato-[aqua­manganese(II)]-μ-N,N,N′,N′-tetra­kis(2-pyridylmeth­yl)hexane-1,6-di­amine] hexa­hydrate]

aSchool of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 23 November 2007; accepted 26 November 2007; online 6 December 2007)

In the polymeric title compound, {[Mn2(SO4)2(C30H36N6)(H2O)2]·6H2O}n, the two Mn2+ ions are bridged by two sulfate anions to form dinuclear complexes, and these dinuclear species are linked by the hexa­dentate ligand N,N,N′,N′-tetra­kis(2-pyridylmeth­yl)hexane-1,6-diamine (tphn), forming a one-dimensional chain structure running in the [101] direction. The repeat unit of the polymer, Mn2(SO4)2(H2O)2(tphn), is disposed about a twofold axis passing through the centre of the dinuclear unit. The coordination geometry around the Mn centre is distorted octa­hedral. Two methylene groups are each disordered equally over two positions.

Related literature

For a related Mn-complex involving the tphn ligand, see: Hwang & Ha (2007[Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2302.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(SO4)2(C30H36N6)(H2O)2]·6H2O

  • Mr = 926.78

  • Monoclinic, C 2/c

  • a = 20.910 (3) Å

  • b = 12.5820 (17) Å

  • c = 15.752 (2) Å

  • β = 99.888 (3)°

  • V = 4082.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 243 (2) K

  • 0.21 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.888

  • 11793 measured reflections

  • 4165 independent reflections

  • 3158 reflections with I > 2σs(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.145

  • S = 1.22

  • 4165 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5W—H5W1⋯O7Wi 0.96 1.76 2.703 (5) 166
O5W—H5W2⋯O3ii 0.94 1.85 2.727 (4) 153
O6W—H6W1⋯O2iii 0.96 1.91 2.865 (5) 171
O6W—H6W2⋯O3iv 0.86 2.26 2.899 (5) 130
O7W—H7W1⋯O8W 1.00 1.85 2.829 (6) 165
O7W—H7W2⋯O6W 0.93 2.53 3.044 (6) 115
O7W—H7W2⋯O6Wv 0.93 2.35 3.162 (6) 146
O8W—H8W1⋯O3vi 1.03 1.91 2.860 (5) 152
O8W—H8W2⋯O1vii 0.97 1.96 2.913 (5) 166
O8W—H8W2⋯O3vii 0.97 2.59 3.317 (5) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x, y, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound consists of a MnII complex polymer with solvent H2O molecules. In the polymer, two Mn2+ ions are first bridged by two SO4 anion ligands to form dinuclear complexes (Fig. 1), and these dinuclear species are anew bridged by the hexadentate ligand N,N,N',N'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine (tphn) to form a one-dimensional chain structure running in the [101] direction (Fig. 2). The Mn ion is six-coordinated in a distorted octahedral structure by three N atoms from the tphn ligand in the facial position, two O atoms from the two SO4 ligands and an O atom from H2O ligand. The constitutional repeating unit of the polymer, Mn2(SO4)2(H2O)2(tphn), is disposed about a twofold axis passing through the centre of the dinuclear unit. As the twofold axis is parallel to the b axis, the unit lies in the (010) plane. The Mn—N(amine) bond length [2.360 (4) Å] is slightly longer than the Mn—N(pyridyl) bond lengths [2.300 (4) and 2.256 (4) Å], and the Mn—O(H2O) bond length [2.206 (3) Å] is slightly longer than the Mn—O(SO4) bond lengths [2.139 (3) and 2.143 (3) Å]. The geometry of the bridging SO4 ligand is nearly tetrahedral with the O—S—O bond angles of 107.96 (18)–110.23 (18)°, and the S—O bond distances are almost equal [1.456 (3)–1.486 (3) Å]. The compound displays intra- and intermolecular O—H···O hydrogen bonds among the H2O ligand, solvent molecules and SO4 anions (Fig. 2, Table 1).

Related literature top

For a related Mn-complex involving the tphn ligand, see: Hwang & Ha (2007).

Experimental top

To a solution of MnSO4.5H2O (0.25 g, 1.04 mmol) in H2O (10 ml) was added a solution of N,N,N',N'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine (0.50 g, 1.04 mmol) in EtOH (10 ml) and stirred for 1 h at room temparature, and then filtered. The solvent was removed under vacuum, the residue washed with EtOH/acetone and dried, to give a pale yellow powder (0.41 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an aqueous solution. MS (FAB): m/z 632 (Mn(tphn)HSO4+); IR (KBr): 3405 cm-1 (broad).

Refinement top

H atoms bonded to C atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.94 Å (aromatic) or 0.98 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water ligand and solvent molecules were located from Fourier difference maps, but their positions were not refined and Uiso(H) was fixed at 0.08. The hexylene chain of the tphn ligand displayed relatively large displacement factors so that the chain appears to be partially disordered. Atoms C14 and C15 were modelled anisotropically as disordered over two sites, with a site occupancy factor of 0.5. The disorder of the hexylene chain and the relatively large displacement factors of the solvent water molecules result in the large value of the R factor.

Structure description top

The title compound consists of a MnII complex polymer with solvent H2O molecules. In the polymer, two Mn2+ ions are first bridged by two SO4 anion ligands to form dinuclear complexes (Fig. 1), and these dinuclear species are anew bridged by the hexadentate ligand N,N,N',N'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine (tphn) to form a one-dimensional chain structure running in the [101] direction (Fig. 2). The Mn ion is six-coordinated in a distorted octahedral structure by three N atoms from the tphn ligand in the facial position, two O atoms from the two SO4 ligands and an O atom from H2O ligand. The constitutional repeating unit of the polymer, Mn2(SO4)2(H2O)2(tphn), is disposed about a twofold axis passing through the centre of the dinuclear unit. As the twofold axis is parallel to the b axis, the unit lies in the (010) plane. The Mn—N(amine) bond length [2.360 (4) Å] is slightly longer than the Mn—N(pyridyl) bond lengths [2.300 (4) and 2.256 (4) Å], and the Mn—O(H2O) bond length [2.206 (3) Å] is slightly longer than the Mn—O(SO4) bond lengths [2.139 (3) and 2.143 (3) Å]. The geometry of the bridging SO4 ligand is nearly tetrahedral with the O—S—O bond angles of 107.96 (18)–110.23 (18)°, and the S—O bond distances are almost equal [1.456 (3)–1.486 (3) Å]. The compound displays intra- and intermolecular O—H···O hydrogen bonds among the H2O ligand, solvent molecules and SO4 anions (Fig. 2, Table 1).

For a related Mn-complex involving the tphn ligand, see: Hwang & Ha (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the constitutional repeating unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the solvent H2O molecules have been omitted for clarity. The bonds of the disordered hexylene chains are shown with dashed lines.
[Figure 2] Fig. 2. View of the unit-cell contents and chain structure of the title compound. H atoms at C atoms have been omitted for clarity. Hydrogen-bond interactions are drawn with dashed lines.
catena-Poly[[[aquamanganese(II)]-di-µ-sulfato-[aquamanganese(II)]-µ- N,N,N',N'-tetrakis(2-pyridylmethyl)hexane-1,6-diamine] hexahydrate] top
Crystal data top
[Mn2(SO4)2(C30H36N6)(H2O)2]·6H2OF(000) = 1936
Mr = 926.78Dx = 1.508 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2250 reflections
a = 20.910 (3) Åθ = 2.2–24.3°
b = 12.5820 (17) ŵ = 0.80 mm1
c = 15.752 (2) ÅT = 243 K
β = 99.888 (3)°Block, colorless
V = 4082.7 (10) Å30.21 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4165 independent reflections
Radiation source: fine-focus sealed tube3158 reflections with I > 2σs(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2620
Tmin = 0.734, Tmax = 0.888k = 1515
11793 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
4165 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Mn2(SO4)2(C30H36N6)(H2O)2]·6H2OV = 4082.7 (10) Å3
Mr = 926.78Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.910 (3) ŵ = 0.80 mm1
b = 12.5820 (17) ÅT = 243 K
c = 15.752 (2) Å0.21 × 0.20 × 0.15 mm
β = 99.888 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3158 reflections with I > 2σs(I)
Tmin = 0.734, Tmax = 0.888Rint = 0.050
11793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.22Δρmax = 0.56 e Å3
4165 reflectionsΔρmin = 0.67 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.39214 (3)0.24391 (5)0.21343 (4)0.0214 (2)
N10.41270 (18)0.4176 (3)0.1814 (2)0.0258 (9)
N20.28972 (18)0.2294 (3)0.1407 (2)0.0263 (9)
N30.32712 (19)0.3532 (3)0.2857 (2)0.0275 (9)
C10.4377 (2)0.4535 (4)0.1136 (3)0.0317 (12)
H10.44960.40330.07490.038*
C20.4467 (3)0.5585 (4)0.0978 (4)0.0515 (16)
H20.46440.58020.04970.062*
C30.4295 (4)0.6309 (4)0.1537 (5)0.082 (3)
H30.43470.70400.14460.098*
C40.4040 (4)0.5958 (4)0.2244 (4)0.072 (2)
H40.39230.64490.26410.086*
C50.3960 (2)0.4891 (4)0.2360 (3)0.0329 (12)
C60.3681 (2)0.4466 (4)0.3113 (3)0.0334 (12)
H6A0.40340.42690.35790.040*
H6B0.34210.50200.33300.040*
C70.2691 (2)0.1531 (4)0.0829 (3)0.0310 (12)
H70.30000.10550.06780.037*
C80.2056 (3)0.1406 (4)0.0446 (3)0.0376 (13)
H80.19340.08600.00430.045*
C90.1602 (3)0.2099 (4)0.0664 (3)0.0419 (14)
H90.11620.20340.04110.050*
C100.1798 (3)0.2889 (4)0.1256 (3)0.0375 (13)
H100.14960.33730.14110.045*
C110.2447 (2)0.2960 (4)0.1620 (3)0.0283 (11)
C120.2683 (2)0.3835 (4)0.2250 (3)0.0349 (12)
H12A0.27750.44690.19310.042*
H12B0.23380.40160.25760.042*
C130.3108 (3)0.2990 (4)0.3633 (3)0.0414 (13)
H13A0.28080.24140.34200.050*0.50
H13B0.35090.26510.39220.050*0.50
H13C0.35060.26640.39450.050*0.50
H13D0.29730.35330.40110.050*0.50
C14A0.2846 (6)0.3505 (7)0.4266 (6)0.039 (3)0.50
H14A0.24350.38310.40000.047*0.50
H14B0.31410.40790.45000.047*0.50
C15A0.2719 (5)0.2795 (8)0.5022 (6)0.033 (2)0.50
H15A0.24090.22350.48000.040*0.50
H15B0.31250.24530.52880.040*0.50
C14B0.2607 (5)0.2176 (8)0.3489 (6)0.038 (3)0.50
H14C0.27080.16730.30560.046*0.50
H14D0.21890.25110.32600.046*0.50
C15B0.2545 (6)0.1568 (7)0.4313 (6)0.042 (3)0.50
H15C0.22620.09530.41570.050*0.50
H15D0.29750.12990.45690.050*0.50
S10.50266 (6)0.19295 (9)0.09722 (7)0.0224 (3)
O10.43452 (15)0.1790 (2)0.11052 (18)0.0311 (8)
O20.50341 (16)0.2496 (2)0.01682 (18)0.0340 (8)
O30.53263 (16)0.0869 (2)0.09408 (18)0.0304 (8)
O40.53755 (16)0.2547 (2)0.17063 (18)0.0332 (8)
O5W0.37252 (16)0.0856 (2)0.26352 (19)0.0335 (8)
H5W10.37060.02100.23040.080*
H5W20.39520.07460.32000.080*
O6W0.0222 (2)0.3660 (3)0.1421 (2)0.0555 (11)
H6W10.01160.33390.08600.080*
H6W20.00000.42240.12670.080*
O7W0.11759 (19)0.3934 (3)0.3098 (3)0.0633 (12)
H7W10.11730.41220.37170.080*
H7W20.07230.39130.29880.080*
O8W0.1124 (2)0.4811 (3)0.4739 (3)0.0716 (14)
H8W10.07980.43830.50240.080*
H8W20.08970.54290.44590.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0244 (4)0.0200 (4)0.0213 (3)0.0010 (3)0.0082 (3)0.0018 (3)
N10.026 (2)0.025 (2)0.029 (2)0.0012 (17)0.0125 (18)0.0024 (17)
N20.026 (2)0.030 (2)0.0251 (19)0.0024 (17)0.0088 (17)0.0064 (17)
N30.031 (2)0.032 (2)0.0216 (19)0.0001 (18)0.0123 (18)0.0043 (17)
C10.040 (3)0.029 (3)0.031 (3)0.003 (2)0.019 (2)0.003 (2)
C20.064 (4)0.034 (3)0.067 (4)0.000 (3)0.041 (3)0.015 (3)
C30.130 (7)0.022 (3)0.117 (6)0.007 (4)0.084 (6)0.003 (3)
C40.113 (6)0.026 (3)0.095 (5)0.008 (3)0.072 (5)0.014 (3)
C50.040 (3)0.028 (3)0.035 (3)0.002 (2)0.018 (2)0.004 (2)
C60.046 (3)0.030 (3)0.030 (3)0.000 (2)0.020 (2)0.007 (2)
C70.035 (3)0.029 (3)0.029 (3)0.000 (2)0.006 (2)0.002 (2)
C80.042 (4)0.040 (3)0.029 (3)0.012 (3)0.000 (3)0.006 (2)
C90.027 (3)0.061 (4)0.037 (3)0.004 (3)0.001 (2)0.018 (3)
C100.034 (3)0.047 (3)0.034 (3)0.009 (3)0.012 (2)0.015 (2)
C110.029 (3)0.035 (3)0.023 (2)0.003 (2)0.012 (2)0.013 (2)
C120.036 (3)0.038 (3)0.035 (3)0.010 (2)0.017 (2)0.004 (2)
C130.046 (4)0.054 (3)0.027 (3)0.004 (3)0.013 (3)0.006 (2)
C14A0.056 (8)0.024 (5)0.042 (6)0.004 (5)0.023 (6)0.004 (5)
C15A0.041 (7)0.035 (6)0.026 (5)0.002 (4)0.012 (5)0.003 (4)
C14B0.058 (8)0.036 (6)0.024 (5)0.009 (5)0.021 (5)0.004 (4)
C15B0.055 (8)0.030 (6)0.042 (6)0.014 (5)0.016 (6)0.012 (5)
S10.0259 (7)0.0213 (6)0.0212 (6)0.0008 (5)0.0076 (5)0.0024 (5)
O10.033 (2)0.0322 (18)0.0319 (18)0.0025 (15)0.0158 (16)0.0072 (14)
O20.043 (2)0.0343 (19)0.0269 (16)0.0004 (17)0.0138 (16)0.0022 (15)
O30.035 (2)0.0259 (17)0.0302 (17)0.0045 (15)0.0063 (15)0.0066 (14)
O40.039 (2)0.0248 (17)0.0328 (17)0.0084 (16)0.0009 (15)0.0086 (14)
O5W0.042 (2)0.0243 (17)0.0338 (18)0.0047 (16)0.0057 (16)0.0018 (14)
O6W0.074 (3)0.048 (2)0.046 (2)0.003 (2)0.015 (2)0.0042 (18)
O7W0.054 (3)0.045 (2)0.095 (3)0.011 (2)0.026 (3)0.025 (2)
O8W0.060 (3)0.069 (3)0.096 (3)0.022 (2)0.044 (3)0.041 (2)
Geometric parameters (Å, º) top
Mn1—O12.139 (3)C11—C121.507 (6)
Mn1—O4i2.143 (3)C12—H12A0.9800
Mn1—O5W2.206 (3)C12—H12B0.9800
Mn1—N22.256 (4)C13—C14A1.379 (10)
Mn1—N12.300 (4)C13—C14B1.456 (11)
Mn1—N32.360 (4)C13—H13A0.9800
N1—C51.332 (5)C13—H13B0.9800
N1—C11.345 (5)C13—H13C0.9800
N2—C71.342 (5)C13—H13D0.9800
N2—C111.346 (6)C14A—C15A1.547 (12)
N3—C61.468 (6)C14A—H14A0.9800
N3—C121.473 (6)C14A—H14B0.9800
N3—C131.489 (5)C15A—C15Bii1.499 (13)
C1—C21.364 (6)C15A—H15A0.9800
C1—H10.9400C15A—H15B0.9800
C2—C31.358 (7)C14B—C15B1.531 (12)
C2—H20.9400C14B—H14C0.9800
C3—C41.387 (7)C14B—H14D0.9800
C3—H30.9400C15B—H15C0.9800
C4—C51.370 (7)C15B—H15D0.9800
C4—H40.9400S1—O21.456 (3)
C5—C61.507 (6)S1—O41.477 (3)
C6—H6A0.9800S1—O31.479 (3)
C6—H6B0.9800S1—O11.486 (3)
C7—C81.370 (7)O5W—H5W10.963
C7—H70.9400O5W—H5W20.944
C8—C91.376 (7)O6W—H6W10.962
C8—H80.9400O6W—H6W20.860
C9—C101.377 (7)O7W—H7W11.004
C9—H90.9400O7W—H7W20.933
C10—C111.381 (7)O8W—H8W11.030
C10—H100.9400O8W—H8W20.977
O1—Mn1—O4i110.92 (13)C10—C11—C12120.5 (4)
O1—Mn1—O5W93.05 (11)N3—C12—C11112.4 (4)
O4i—Mn1—O5W83.96 (11)N3—C12—H12A109.1
O1—Mn1—N293.72 (12)C11—C12—H12A109.1
O4i—Mn1—N2152.92 (13)N3—C12—H12B109.1
O5W—Mn1—N283.68 (12)C11—C12—H12B109.1
O1—Mn1—N194.54 (12)H12A—C12—H12B107.9
O4i—Mn1—N190.01 (12)C14A—C13—C14B94.5 (7)
O5W—Mn1—N1171.62 (12)C14A—C13—N3123.6 (6)
N2—Mn1—N199.36 (13)C14B—C13—N3117.1 (5)
O1—Mn1—N3159.47 (12)C14A—C13—H13A106.4
O4i—Mn1—N385.39 (13)N3—C13—H13A106.4
O5W—Mn1—N3101.28 (12)C14A—C13—H13B106.4
N2—Mn1—N373.57 (13)C14B—C13—H13B107.5
N1—Mn1—N372.36 (12)N3—C13—H13B106.4
C5—N1—C1117.8 (4)H13A—C13—H13B106.5
C5—N1—Mn1114.9 (3)C14A—C13—H13C104.0
C1—N1—Mn1127.3 (3)C14B—C13—H13C108.0
C7—N2—C11117.3 (4)N3—C13—H13C108.0
C7—N2—Mn1124.6 (3)H13A—C13—H13C107.5
C11—N2—Mn1117.8 (3)C14B—C13—H13D108.0
C6—N3—C12110.7 (4)N3—C13—H13D108.0
C6—N3—C13110.2 (3)H13A—C13—H13D119.2
C12—N3—C13111.6 (4)H13B—C13—H13D109.6
C6—N3—Mn1104.0 (3)H13C—C13—H13D107.3
C12—N3—Mn1108.9 (3)C13—C14A—C15A115.3 (8)
C13—N3—Mn1111.2 (3)C13—C14A—H14A108.4
N1—C1—C2123.7 (4)C15A—C14A—H14A108.4
N1—C1—H1118.2C13—C14A—H14B108.4
C2—C1—H1118.2C15A—C14A—H14B108.4
C3—C2—C1118.2 (5)H14A—C14A—H14B107.5
C3—C2—H2120.9C15Bii—C15A—C14A111.2 (8)
C1—C2—H2120.9C15Bii—C15A—H15A109.4
C2—C3—C4119.2 (5)C14A—C15A—H15A109.4
C2—C3—H3120.4C15Bii—C15A—H15B109.4
C4—C3—H3120.4C14A—C15A—H15B109.4
C5—C4—C3119.5 (5)H15A—C15A—H15B108.0
C5—C4—H4120.3C13—C14B—C15B112.5 (8)
C3—C4—H4120.3C13—C14B—H14C109.1
N1—C5—C4121.6 (5)C15B—C14B—H14C109.1
N1—C5—C6116.7 (4)C13—C14B—H14D109.1
C4—C5—C6121.7 (4)C15B—C14B—H14D109.1
N3—C6—C5110.7 (3)H14C—C14B—H14D107.8
N3—C6—H6A109.5C15Aii—C15B—C14B114.9 (8)
C5—C6—H6A109.5C15Aii—C15B—H15C108.5
N3—C6—H6B109.5C14B—C15B—H15C108.5
C5—C6—H6B109.5C15Aii—C15B—H15D108.5
H6A—C6—H6B108.1C14B—C15B—H15D108.5
N2—C7—C8123.7 (5)H15C—C15B—H15D107.5
N2—C7—H7118.2O2—S1—O4110.23 (18)
C8—C7—H7118.2O2—S1—O3110.17 (18)
C7—C8—C9118.5 (5)O4—S1—O3110.21 (18)
C7—C8—H8120.8O2—S1—O1109.54 (19)
C9—C8—H8120.8O4—S1—O1107.96 (18)
C8—C9—C10119.1 (5)O3—S1—O1108.69 (18)
C8—C9—H9120.4S1—O1—Mn1126.45 (18)
C10—C9—H9120.4S1—O4—Mn1i143.91 (19)
C9—C10—C11119.1 (5)H5W1—O5W—H5W2110.7
C9—C10—H10120.5H6W1—O6W—H6W293.4
C11—C10—H10120.5H7W1—O7W—H7W290.7
N2—C11—C10122.3 (5)H8W1—O8W—H8W2107.8
N2—C11—C12117.1 (4)
O1—Mn1—N1—C5176.5 (3)C12—N3—C6—C567.5 (5)
O4i—Mn1—N1—C565.5 (3)C13—N3—C6—C5168.5 (4)
N2—Mn1—N1—C588.9 (3)Mn1—N3—C6—C549.3 (4)
N3—Mn1—N1—C519.6 (3)N1—C5—C6—N336.5 (6)
O1—Mn1—N1—C15.3 (4)C4—C5—C6—N3143.6 (6)
O4i—Mn1—N1—C1116.3 (4)C11—N2—C7—C80.6 (6)
N2—Mn1—N1—C189.2 (4)Mn1—N2—C7—C8174.5 (3)
N3—Mn1—N1—C1158.5 (4)N2—C7—C8—C90.1 (7)
O1—Mn1—N2—C731.8 (3)C7—C8—C9—C100.1 (7)
O4i—Mn1—N2—C7124.2 (4)C8—C9—C10—C110.4 (7)
O5W—Mn1—N2—C760.9 (3)C7—N2—C11—C101.1 (6)
N1—Mn1—N2—C7127.0 (3)Mn1—N2—C11—C10175.4 (3)
N3—Mn1—N2—C7164.6 (4)C7—N2—C11—C12178.3 (4)
O1—Mn1—N2—C11154.4 (3)Mn1—N2—C11—C127.4 (5)
O4i—Mn1—N2—C1149.7 (4)C9—C10—C11—N21.0 (7)
O5W—Mn1—N2—C11113.0 (3)C9—C10—C11—C12178.1 (4)
N1—Mn1—N2—C1159.1 (3)C6—N3—C12—C11148.8 (4)
N3—Mn1—N2—C119.2 (3)C13—N3—C12—C1188.0 (5)
O1—Mn1—N3—C688.2 (4)Mn1—N3—C12—C1135.0 (4)
O4i—Mn1—N3—C655.5 (3)N2—C11—C12—N329.7 (6)
O5W—Mn1—N3—C6138.4 (3)C10—C11—C12—N3153.1 (4)
N2—Mn1—N3—C6141.7 (3)C6—N3—C13—C14A52.1 (8)
N1—Mn1—N3—C635.9 (3)C12—N3—C13—C14A71.4 (8)
O1—Mn1—N3—C1229.9 (5)Mn1—N3—C13—C14A166.8 (7)
O4i—Mn1—N3—C12173.6 (3)C6—N3—C13—C14B168.5 (6)
O5W—Mn1—N3—C12103.5 (3)C12—N3—C13—C14B45.0 (7)
N2—Mn1—N3—C1223.6 (3)Mn1—N3—C13—C14B76.8 (7)
N1—Mn1—N3—C1282.1 (3)C14B—C13—C14A—C15A53.7 (10)
O1—Mn1—N3—C13153.2 (3)N3—C13—C14A—C15A179.5 (7)
O4i—Mn1—N3—C1363.1 (3)C13—C14A—C15A—C15Bii178.2 (9)
O5W—Mn1—N3—C1319.8 (3)C14A—C13—C14B—C15B56.4 (9)
N2—Mn1—N3—C1399.7 (3)N3—C13—C14B—C15B172.1 (6)
N1—Mn1—N3—C13154.5 (3)C13—C14B—C15B—C15Aii68.7 (12)
C5—N1—C1—C20.1 (7)O2—S1—O1—Mn1116.8 (2)
Mn1—N1—C1—C2178.1 (4)O4—S1—O1—Mn13.3 (3)
N1—C1—C2—C30.1 (9)O3—S1—O1—Mn1122.8 (2)
C1—C2—C3—C40.5 (11)O4i—Mn1—O1—S132.5 (3)
C2—C3—C4—C50.8 (11)O5W—Mn1—O1—S1117.2 (2)
C1—N1—C5—C40.2 (8)N2—Mn1—O1—S1158.9 (2)
Mn1—N1—C5—C4178.6 (5)N1—Mn1—O1—S159.2 (2)
C1—N1—C5—C6179.9 (4)N3—Mn1—O1—S1108.3 (4)
Mn1—N1—C5—C61.5 (5)O2—S1—O4—Mn1i134.1 (3)
C3—C4—C5—N10.6 (10)O3—S1—O4—Mn1i12.3 (4)
C3—C4—C5—C6179.5 (6)O1—S1—O4—Mn1i106.3 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5W1···O7Wiii0.9631.7582.703 (5)166
O5W—H5W2···O3i0.9441.8522.727 (4)153
O6W—H6W1···O2iv0.9621.9112.865 (5)171
O6W—H6W2···O3v0.8602.2662.899 (5)130
O7W—H7W1···O8W1.0041.8472.829 (6)165
O7W—H7W2···O6W0.9332.5303.044 (6)115
O7W—H7W2···O6Wvi0.9332.3473.162 (6)146
O8W—H8W1···O3vii1.0301.9102.860 (5)152
O8W—H8W2···O1viii0.9771.9562.913 (5)166
O8W—H8W2···O3viii0.9772.5873.317 (5)132
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y+1/2, z; (vi) x, y, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn2(SO4)2(C30H36N6)(H2O)2]·6H2O
Mr926.78
Crystal system, space groupMonoclinic, C2/c
Temperature (K)243
a, b, c (Å)20.910 (3), 12.5820 (17), 15.752 (2)
β (°) 99.888 (3)
V3)4082.7 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.21 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.734, 0.888
No. of measured, independent and
observed [I > 2σs(I)] reflections
11793, 4165, 3158
Rint0.050
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.145, 1.22
No. of reflections4165
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.67

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5W1···O7Wi0.9631.7582.703 (5)166
O5W—H5W2···O3ii0.9441.8522.727 (4)153
O6W—H6W1···O2iii0.9621.9112.865 (5)171
O6W—H6W2···O3iv0.8602.2662.899 (5)130
O7W—H7W1···O8W1.0041.8472.829 (6)165
O7W—H7W2···O6W0.9332.5303.044 (6)115
O7W—H7W2···O6Wv0.9332.3473.162 (6)146
O8W—H8W1···O3vi1.0301.9102.860 (5)152
O8W—H8W2···O1vii0.9771.9562.913 (5)166
O8W—H8W2···O3vii0.9772.5873.317 (5)132
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z; (v) x, y, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This research was supported in part by the BK21 program of the Ministry of Education & Human Resources Development, Republic of Korea.

References

First citationBruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds