organic compounds
4-Bromo-2,6-dimethylanilinium bromide monohydrate
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, bNanjing Chemzam Pharmaceutical Technology Co. Ltd, Nanjing 210017, People's Republic of China, and cDepartment of Pharmacy, Guangdong Vocational and Technical College of Chemical Engineering Pharmaceutics, Guangzhou 510520, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn
In the title compound, C8H11BrN+·Br−·H2O, a network of N—H⋯O, N—H⋯Br and O—H⋯Br hydrogen bonds helps to consolidate the crystal packing.
Related literature
For related literature, see: Hirao & Fukuhara (1998); MacDiamid et al. (1998); Wakayama (1998); Wang et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807064896/lw2046sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064896/lw2046Isup2.hkl
The title compound is synthesized according to the literature(Wakayama et al., 1998). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.
All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.96 Å and included in the
in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.aniline is a novel,useful intermediate,which can be used in various areas. Some derivatives of aniline have improving anticorrosion ability for metals (Wang et al., 2002). Some show high efficacy as chemical sensors (MacDiamid et al.,1998) and catalitic oxidation (Hirao & Fukuhara, 1998). We report here the
of the title compound, (I). A network of intermolecular N—H···Br and O—H···Br hydrogen bonds helps to establish the crystal packing, Fig. 1 and Fig. 2.For related literature, see: Hirao & Fukuhara (1998); MacDiamid et al. (1998); Wakayama et al. (1998); Wang et al. (2002).
Data collection: CAD-4 Software (Enraf–Nonius,1989); cell
CAD-4 Software (Enraf–Nonius,1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C8H11BrN+·Br−·H2O | F(000) = 584 |
Mr = 298.99 | Dx = 1.866 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 7.1630 (14) Å | θ = 9–13° |
b = 18.649 (4) Å | µ = 7.58 mm−1 |
c = 8.4770 (17) Å | T = 293 K |
β = 109.98 (3)° | Block, colorless |
V = 1064.2 (4) Å3 | 0.40 × 0.20 × 0.20 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1346 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 26.0°, θmin = 2.2° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→22 |
Tmin = 0.152, Tmax = 0.221 | l = 0→10 |
2077 measured reflections | 3 standard reflections every 200 reflections |
2077 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0437P)2] where P = (Fo2 + 2Fc2)/3 |
2077 reflections | (Δ/σ)max < 0.001 |
120 parameters | Δρmax = 0.42 e Å−3 |
2 restraints | Δρmin = −0.52 e Å−3 |
C8H11BrN+·Br−·H2O | V = 1064.2 (4) Å3 |
Mr = 298.99 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1630 (14) Å | µ = 7.58 mm−1 |
b = 18.649 (4) Å | T = 293 K |
c = 8.4770 (17) Å | 0.40 × 0.20 × 0.20 mm |
β = 109.98 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1346 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.152, Tmax = 0.221 | 3 standard reflections every 200 reflections |
2077 measured reflections | intensity decay: none |
2077 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 2 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.42 e Å−3 |
2077 reflections | Δρmin = −0.52 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.93285 (11) | 0.38204 (3) | 0.77315 (8) | 0.0490 (2) | |
Br2 | 0.47862 (10) | 0.69675 (3) | 0.95867 (8) | 0.0407 (2) | |
C1 | 0.7335 (8) | 0.5937 (3) | 0.4804 (7) | 0.0276 (13) | |
C2 | 0.6858 (8) | 0.5297 (3) | 0.3931 (7) | 0.0310 (13) | |
C3 | 0.7483 (8) | 0.4664 (3) | 0.4828 (7) | 0.0346 (14) | |
H3 | 0.7195 | 0.4224 | 0.4282 | 0.041* | |
C4 | 0.8528 (9) | 0.4691 (3) | 0.6521 (7) | 0.0368 (15) | |
C5 | 0.9007 (8) | 0.5334 (3) | 0.7373 (7) | 0.0330 (14) | |
H5 | 0.9728 | 0.5338 | 0.8517 | 0.040* | |
C6 | 0.8412 (8) | 0.5966 (3) | 0.6519 (6) | 0.0298 (13) | |
C7 | 0.5756 (9) | 0.5250 (3) | 0.2060 (6) | 0.0410 (16) | |
H7A | 0.4469 | 0.5466 | 0.1799 | 0.062* | |
H7B | 0.5605 | 0.4755 | 0.1723 | 0.062* | |
H7C | 0.6494 | 0.5497 | 0.1472 | 0.062* | |
C8 | 0.8945 (9) | 0.6665 (3) | 0.7470 (7) | 0.0420 (16) | |
H8A | 0.7752 | 0.6910 | 0.7436 | 0.063* | |
H8B | 0.9682 | 0.6960 | 0.6964 | 0.063* | |
H8C | 0.9739 | 0.6569 | 0.8616 | 0.063* | |
N1 | 0.6621 (7) | 0.6625 (2) | 0.3935 (5) | 0.0336 (12) | |
H1A | 0.6039 | 0.6545 | 0.2841 | 0.050* | |
H1B | 0.7645 | 0.6921 | 0.4099 | 0.050* | |
H1C | 0.5749 | 0.6822 | 0.4343 | 0.050* | |
O1 | 0.4192 (8) | 0.7175 (3) | 0.5552 (6) | 0.0494 (12) | |
H1 | 0.442 (3) | 0.710 (4) | 0.657 (3) | 0.05 (2)* | |
H2 | 0.306 (3) | 0.736 (4) | 0.518 (3) | 0.09 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0650 (5) | 0.0365 (4) | 0.0427 (4) | 0.0084 (4) | 0.0147 (3) | 0.0129 (3) |
Br2 | 0.0445 (4) | 0.0422 (4) | 0.0337 (3) | 0.0045 (3) | 0.0113 (3) | 0.0053 (3) |
C1 | 0.030 (3) | 0.028 (3) | 0.027 (3) | −0.001 (2) | 0.012 (3) | 0.000 (2) |
C2 | 0.035 (3) | 0.033 (3) | 0.027 (3) | −0.001 (3) | 0.014 (3) | −0.006 (3) |
C3 | 0.040 (4) | 0.027 (3) | 0.034 (3) | −0.005 (3) | 0.011 (3) | −0.005 (3) |
C4 | 0.038 (4) | 0.039 (4) | 0.033 (3) | −0.001 (3) | 0.011 (3) | 0.010 (3) |
C5 | 0.037 (4) | 0.034 (3) | 0.024 (3) | 0.002 (3) | 0.006 (3) | 0.002 (3) |
C6 | 0.031 (3) | 0.034 (3) | 0.023 (3) | −0.001 (3) | 0.008 (3) | −0.006 (2) |
C7 | 0.054 (4) | 0.038 (4) | 0.025 (3) | −0.006 (3) | 0.006 (3) | −0.009 (3) |
C8 | 0.045 (4) | 0.048 (4) | 0.027 (3) | 0.003 (3) | 0.003 (3) | −0.004 (3) |
N1 | 0.037 (3) | 0.032 (3) | 0.033 (3) | 0.002 (2) | 0.012 (2) | 0.000 (2) |
O1 | 0.052 (3) | 0.069 (4) | 0.026 (3) | 0.019 (3) | 0.012 (2) | 0.005 (2) |
Br1—C4 | 1.901 (6) | C7—H7A | 0.9600 |
C1—C2 | 1.384 (7) | C7—H7B | 0.9600 |
C1—C6 | 1.395 (7) | C7—H7C | 0.9600 |
C1—N1 | 1.481 (6) | C8—H8A | 0.9600 |
C2—C3 | 1.393 (7) | C8—H8B | 0.9600 |
C2—C7 | 1.513 (7) | C8—H8C | 0.9600 |
C3—C4 | 1.374 (7) | N1—H1A | 0.8900 |
C3—H3 | 0.9300 | N1—H1B | 0.8900 |
C4—C5 | 1.381 (8) | N1—H1C | 0.8900 |
C5—C6 | 1.373 (7) | O1—H1 | 0.84 (2) |
C5—H5 | 0.9300 | O1—H2 | 0.84 (2) |
C6—C8 | 1.511 (7) | ||
C2—C1—C6 | 122.6 (5) | C2—C7—H7B | 109.5 |
C2—C1—N1 | 120.0 (5) | H7A—C7—H7B | 109.5 |
C6—C1—N1 | 117.3 (5) | C2—C7—H7C | 109.5 |
C1—C2—C3 | 117.6 (5) | H7A—C7—H7C | 109.5 |
C1—C2—C7 | 123.8 (5) | H7B—C7—H7C | 109.5 |
C3—C2—C7 | 118.5 (5) | C6—C8—H8A | 109.5 |
C4—C3—C2 | 119.9 (5) | C6—C8—H8B | 109.5 |
C4—C3—H3 | 120.1 | H8A—C8—H8B | 109.5 |
C2—C3—H3 | 120.1 | C6—C8—H8C | 109.5 |
C3—C4—C5 | 121.8 (5) | H8A—C8—H8C | 109.5 |
C3—C4—Br1 | 119.3 (5) | H8B—C8—H8C | 109.5 |
C5—C4—Br1 | 118.9 (4) | C1—N1—H1A | 109.5 |
C6—C5—C4 | 119.5 (5) | C1—N1—H1B | 109.5 |
C6—C5—H5 | 120.2 | H1A—N1—H1B | 109.5 |
C4—C5—H5 | 120.2 | C1—N1—H1C | 109.5 |
C5—C6—C1 | 118.5 (5) | H1A—N1—H1C | 109.5 |
C5—C6—C8 | 118.9 (5) | H1B—N1—H1C | 109.5 |
C1—C6—C8 | 122.6 (5) | H1—O1—H2 | 106 (3) |
C2—C7—H7A | 109.5 | ||
C6—C1—C2—C3 | 0.4 (8) | C3—C4—C5—C6 | 0.7 (9) |
N1—C1—C2—C3 | −176.9 (5) | Br1—C4—C5—C6 | −179.0 (4) |
C6—C1—C2—C7 | −177.7 (5) | C4—C5—C6—C1 | 0.0 (8) |
N1—C1—C2—C7 | 5.0 (8) | C4—C5—C6—C8 | 179.9 (5) |
C1—C2—C3—C4 | 0.2 (9) | C2—C1—C6—C5 | −0.6 (8) |
C7—C2—C3—C4 | 178.5 (5) | N1—C1—C6—C5 | 176.8 (5) |
C2—C3—C4—C5 | −0.8 (9) | C2—C1—C6—C8 | 179.5 (6) |
C2—C3—C4—Br1 | 178.9 (4) | N1—C1—C6—C8 | −3.1 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2···Br2i | 0.84 (2) | 2.56 (3) | 3.380 (5) | 169 (3) |
O1—H1···Br2 | 0.84 (2) | 2.50 (2) | 3.322 (5) | 174 (3) |
N1—H1C···O1 | 0.89 | 1.87 | 2.754 (6) | 170 |
N1—H1B···Br2ii | 0.89 | 2.53 | 3.388 (5) | 163 |
N1—H1A···Br2iii | 0.89 | 2.71 | 3.523 (4) | 153 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z−1/2; (iii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C8H11BrN+·Br−·H2O |
Mr | 298.99 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 7.1630 (14), 18.649 (4), 8.4770 (17) |
β (°) | 109.98 (3) |
V (Å3) | 1064.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.58 |
Crystal size (mm) | 0.40 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.152, 0.221 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2077, 2077, 1346 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.616 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.096, 0.97 |
No. of reflections | 2077 |
No. of parameters | 120 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.52 |
Computer programs: CAD-4 Software (Enraf–Nonius,1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2···Br2i | 0.84 (2) | 2.56 (3) | 3.380 (5) | 169 (3) |
O1—H1···Br2 | 0.84 (2) | 2.50 (2) | 3.322 (5) | 174 (3) |
N1—H1C···O1 | 0.89 | 1.87 | 2.754 (6) | 170 |
N1—H1B···Br2ii | 0.89 | 2.53 | 3.388 (5) | 163 |
N1—H1A···Br2iii | 0.89 | 2.71 | 3.523 (4) | 153 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z−1/2; (iii) x, y, z−1. |
References
Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hirao, T. & Fukuhara, S. (1998). J. Org. Chem. 63, 7534–7535. Web of Science CrossRef PubMed CAS Google Scholar
MacDiamid, A. G., Zhang, W. J., Feng, J., Huang, F. & Hsieh, B. (1998). Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 39, 80–81. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Wakayama, D. K. K. (1998). Shizen Kagaku, 48, 9–15. Google Scholar
Wang, C., Gao, J. B. & Chen, C. H. (2002). Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 40, 1746–1747. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
aniline is a novel,useful intermediate,which can be used in various areas. Some derivatives of aniline have improving anticorrosion ability for metals (Wang et al., 2002). Some show high efficacy as chemical sensors (MacDiamid et al.,1998) and catalitic oxidation (Hirao & Fukuhara, 1998). We report here the crystal structure of the title compound, (I). A network of intermolecular N—H···Br and O—H···Br hydrogen bonds helps to establish the crystal packing, Fig. 1 and Fig. 2.