organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

6′-Amino-3′-methyl-2-oxo-1′-phenyl-1′,3a′,4′,7a′-tetra­hydro­spiro­[1H-indole-3(2H),4′-pyrano[2,3-d]pyrazole]-5′-carbo­nitrile

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: gurushan48@yahoo.com

(Received 15 November 2007; accepted 1 December 2007; online 21 December 2007)

In the crystal structure of the title compound, C21H15N5O2, the planar indolone unit and the pyran ring are almost perpendicular to each other [dihedral angle = 89.41 (2)°], and the pyrazole and phenyl rings are oriented at an angle of 25.74 (1)°. The mol­ecular packing is stabilized by inter- and intra­molecular C—H⋯O, N—H⋯O and C—H⋯π hydrogen bonds.

Related literature

For related literature, see: Houlihan et al. (1992[Houlihan, W. J., Remers, W. A. & Brown, R. K. (1992). Indoles: Part I. New York: J. Wiley & Sons.]); Jeyabharathi et al. (2001[Jeyabharathi, A., Ponnuswamy, M. N., Amal Raj, A., Raghunathan, R., Razak, I. A., Usman, A., Chantrapromma, S. & Fun, H.-K. (2001). Acta Cryst. E57, o901-o903.]); Kang et al. (2002[Kang, T.-H., Matsumoto, K., Murakami, Y., Takayama, H., Kitajima, M., Aimi, N. & Watanabe, H. (2002). Eur. J. Pharmacol. 444, 39-45.]); Khafagy et al. (2002[Khafagy, M. M., El-Wahas, A. H. F. A., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715-722.]); McSweeney et al. (2004[McSweeney, N., Pratt, A. C., Creaven, B. S., Long, C. & Howie, R. A. (2004). Acta Cryst. E60, o2025-o2028.]), Selvanayagam et al. (2005[Selvanayagam, S., Rathisuganya, P., Shaherin, B., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3693-o3695.]); Usui et al. (1998[Usui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). Biochem. J. 333, 543-548.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15N5O2

  • Mr = 369.38

  • Monoclinic, P 21 /c

  • a = 10.0370 (3) Å

  • b = 21.9705 (6) Å

  • c = 8.2325 (2) Å

  • β = 98.761 (1)°

  • V = 1794.23 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.24 × 0.21 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SAINT; Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 21620 measured reflections

  • 4485 independent reflections

  • 3277 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.02

  • 4485 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the pyrazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2 0.93 2.42 2.959 (2) 117
N1—H1⋯O1i 0.86 1.99 2.819 (2) 161
N3—H3B⋯O1ii 0.86 2.12 2.880 (1) 148
C6—H6⋯Cgiii 0.92 2.85 3.771 (3) 173
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The indole moiety is probably the most well known heterocycle, a common and important feature of a variety of natural products and medicinal agents (Houlihan et al., 1992). Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. The spiro indolone system is the core structure of many pharmacological agents and natural alkaloids (Usui et al., 1998). For example, spirotryprostatin A, a natural alkaloid isolated from the fermentation broth of Aspergillus fumigatus, has been identified as a novel inhibitor of microtubule assembly (Khafagy et al., 2002), and pteropodine and isopteropodine have been shown to modulate the function of muscarinic serotonin receptors (Kang et al., 2002). In view of the above properties of spiro indolone derivatives, the crystal structure analysis of the title compound was undertaken. The indolone and the pyrano pyrazole moities are connected through a spiro junction in the molecule. The dihedral angle between the planar indolone ring and pyrano ring(mean plane calculated through atoms C9,C10,O2,C11, C13) is 89.41 (2)°, which indicates that the rings are perpendicularto each other, also the dihedral angle between the pyrazole ring and the phenyl ring is 25.74 (1)° and the pyrano ring is 3.98 (1)°. The gemoetry of the indolone and pyrano pyrazole moieties are comparable with literature values(Jeyabharathi et al., 2001, Selvanayagam et al.,2005, McSweeney et al., 2004), a slight distortion of bond lengths and angles is seen around the C1 atom due to spiro charecter and in the pyrano ring the angle between (C11—O2—C10) 113.87 (1)° which is lower compared to the literature value (McSweeney et al., 2004). The bond length of C9—C14 (sp2-sp) 1.42 (2)° is long due to sp2 hybridization. The cyanide group orients with pyrano ring (O2—C10—C19—C14) -178.4 (1)° in -anti-periplanar(-ap) conformation, while the amino group orients (C11—O2—C10—N3) 176.1 (1)° in +ap conformation. The angle of (C13—C12—C21) 127.83 (1) and (C1—C13—C12) 133.86 (1) is above the normal value due to the steric hindarance of the bulky indolone ring and the methyl group.

The packing of the molecules viewed along C axis is shown in Figure 2 and the hydrogen bond geometry are given in Table 2. The molecular packing is stabilzed by inter and intra molecular C—H..O, N—H···O and C—H···pi hydrogen bonds.

Related literature top

For related literature, see: Houlihan et al. (1992); Jeyabharathi et al. (2001); Kang et al. (2002); Khafagy et al. (2002); McSweeney et al. (2004), Selvanayagam et al. (2005); Usui et al. (1998).

Experimental top

1-methyl isatin (0.161 g, 1 mmol), malononitrile (0.066 g, 1 mmol) and 1-phenyl-3-methyl pyrazolon-5-one (0.174 g, 1 mmol) were added to silica gel impregnated with indium(III) chloride (44 mg, 20 mol°), prepared by adding a solution of InCl3 in a minimum amount of THF to silica gel (2 g, 100–200 mesh activated by heating for 4 h at 150° before use), followed by complete evaporation of solvent under vacuum. The whole mixture was stirred for 5 min for uniform mixing and then irradiated in a microwave oven at 300 W for 3 min. On completion, the reaction mixture was directly charged on a small silica gel column and eluted with a mixture of ethyl acetate-hexane (4:6) to afford the pure product in 88° yield as a white solid. Crystals of (I) were grown by slow evaporation from ethanol.

Structure description top

The indole moiety is probably the most well known heterocycle, a common and important feature of a variety of natural products and medicinal agents (Houlihan et al., 1992). Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. The spiro indolone system is the core structure of many pharmacological agents and natural alkaloids (Usui et al., 1998). For example, spirotryprostatin A, a natural alkaloid isolated from the fermentation broth of Aspergillus fumigatus, has been identified as a novel inhibitor of microtubule assembly (Khafagy et al., 2002), and pteropodine and isopteropodine have been shown to modulate the function of muscarinic serotonin receptors (Kang et al., 2002). In view of the above properties of spiro indolone derivatives, the crystal structure analysis of the title compound was undertaken. The indolone and the pyrano pyrazole moities are connected through a spiro junction in the molecule. The dihedral angle between the planar indolone ring and pyrano ring(mean plane calculated through atoms C9,C10,O2,C11, C13) is 89.41 (2)°, which indicates that the rings are perpendicularto each other, also the dihedral angle between the pyrazole ring and the phenyl ring is 25.74 (1)° and the pyrano ring is 3.98 (1)°. The gemoetry of the indolone and pyrano pyrazole moieties are comparable with literature values(Jeyabharathi et al., 2001, Selvanayagam et al.,2005, McSweeney et al., 2004), a slight distortion of bond lengths and angles is seen around the C1 atom due to spiro charecter and in the pyrano ring the angle between (C11—O2—C10) 113.87 (1)° which is lower compared to the literature value (McSweeney et al., 2004). The bond length of C9—C14 (sp2-sp) 1.42 (2)° is long due to sp2 hybridization. The cyanide group orients with pyrano ring (O2—C10—C19—C14) -178.4 (1)° in -anti-periplanar(-ap) conformation, while the amino group orients (C11—O2—C10—N3) 176.1 (1)° in +ap conformation. The angle of (C13—C12—C21) 127.83 (1) and (C1—C13—C12) 133.86 (1) is above the normal value due to the steric hindarance of the bulky indolone ring and the methyl group.

The packing of the molecules viewed along C axis is shown in Figure 2 and the hydrogen bond geometry are given in Table 2. The molecular packing is stabilzed by inter and intra molecular C—H..O, N—H···O and C—H···pi hydrogen bonds.

For related literature, see: Houlihan et al. (1992); Jeyabharathi et al. (2001); Kang et al. (2002); Khafagy et al. (2002); McSweeney et al. (2004), Selvanayagam et al. (2005); Usui et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 1997) and PARST97 (Nardelli, 1995)'.

Figures top
[Figure 1] Fig. 1. : The ORTEP diagram of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : Packing of the molecules viewed down c axis, the dashed lines represent hydrogen bonds.
6'-Amino-3'-methyl-2-oxo-1'-phenyl-1',3a',4',7a'-tetrahydro- spiro[1H-indole-3(2H),4'-pyrano[2,3-d]pyrazole]-5'-carbonitrile top
Crystal data top
C21H15N5O2F(000) = 768
Mr = 369.38Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 4485 reflections
a = 10.0370 (3) Åθ = 2.7–28.4°
b = 21.9705 (6) ŵ = 0.09 mm1
c = 8.2325 (2) ÅT = 293 K
β = 98.761 (1)°Cubic, colourless
V = 1794.23 (8) Å30.24 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4485 independent reflections
Radiation source: fine-focus sealed tube3277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SAINT; Bruker, 1999)
h = 1313
Tmin = 0.978, Tmax = 0.982k = 2929
21620 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.118Calculated w = 1/[σ2(Fo2) + (0.0549P)2 + 0.3722P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4485 reflectionsΔρmax = 0.24 e Å3
254 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (11)
Crystal data top
C21H15N5O2V = 1794.23 (8) Å3
Mr = 369.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0370 (3) ŵ = 0.09 mm1
b = 21.9705 (6) ÅT = 293 K
c = 8.2325 (2) Å0.24 × 0.21 × 0.20 mm
β = 98.761 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
4485 independent reflections
Absorption correction: multi-scan
(SAINT; Bruker, 1999)
3277 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.028
21620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
4485 reflectionsΔρmin = 0.17 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.94447 (12)0.45685 (6)0.30510 (15)0.0484 (3)
H11.02210.47180.34360.058*
N20.63637 (18)0.56417 (7)0.0884 (2)0.0705 (4)
N30.37828 (13)0.49908 (6)0.28737 (17)0.0560 (4)
H3A0.38200.53180.23090.067*
H3B0.30710.49100.32980.067*
N40.53791 (11)0.31470 (5)0.49407 (14)0.0416 (3)
N50.65120 (12)0.27975 (6)0.49024 (16)0.0467 (3)
O10.83478 (10)0.47928 (5)0.52173 (12)0.0524 (3)
O20.45453 (9)0.41161 (4)0.40050 (12)0.0434 (2)
C10.71934 (12)0.42403 (6)0.27907 (15)0.0354 (3)
C20.83874 (13)0.45672 (6)0.38640 (16)0.0400 (3)
C30.91361 (14)0.42960 (6)0.14910 (17)0.0423 (3)
C40.99616 (17)0.42282 (8)0.0305 (2)0.0555 (4)
H41.08520.43600.04770.067*
C50.9396 (2)0.39532 (8)0.1154 (2)0.0611 (5)
H50.99150.39070.19910.073*
C60.80860 (19)0.37474 (7)0.13958 (19)0.0567 (4)
H60.77380.35610.23840.068*
C70.72765 (16)0.38144 (6)0.01793 (17)0.0459 (3)
H70.63930.36730.03390.055*
C80.78159 (14)0.40946 (6)0.12661 (16)0.0375 (3)
C90.60089 (13)0.46759 (6)0.24995 (16)0.0374 (3)
C100.48299 (14)0.46081 (6)0.30913 (16)0.0392 (3)
C110.55303 (12)0.36842 (6)0.41973 (16)0.0366 (3)
C120.73234 (14)0.31320 (6)0.41359 (17)0.0418 (3)
C130.67407 (12)0.37005 (6)0.36648 (15)0.0359 (3)
C140.61894 (15)0.52139 (7)0.16089 (18)0.0445 (3)
C150.42476 (13)0.28945 (7)0.55574 (16)0.0414 (3)
C160.33155 (19)0.32592 (8)0.6121 (2)0.0658 (5)
H160.34170.36800.61310.079*
C170.2218 (2)0.29945 (10)0.6676 (3)0.0811 (6)
H170.15790.32410.70580.097*
C180.20561 (18)0.23795 (9)0.6674 (2)0.0682 (5)
H180.13100.22070.70420.082*
C190.29922 (18)0.20212 (9)0.6129 (2)0.0669 (5)
H190.28930.16000.61380.080*
C200.40913 (17)0.22731 (7)0.5562 (2)0.0580 (4)
H200.47260.20230.51830.070*
C210.86622 (16)0.28962 (8)0.3862 (2)0.0615 (5)
H21A0.87910.24940.43140.092*
H21B0.93590.31600.43910.092*
H21C0.86990.28830.27040.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0335 (6)0.0648 (8)0.0489 (7)0.0131 (6)0.0126 (5)0.0126 (6)
N20.0949 (12)0.0515 (8)0.0673 (9)0.0072 (8)0.0194 (8)0.0063 (7)
N30.0533 (8)0.0583 (8)0.0608 (8)0.0199 (6)0.0225 (6)0.0096 (6)
N40.0356 (6)0.0435 (6)0.0475 (6)0.0009 (5)0.0122 (5)0.0011 (5)
N50.0378 (6)0.0464 (7)0.0569 (7)0.0024 (5)0.0108 (5)0.0051 (6)
O10.0406 (5)0.0763 (7)0.0418 (5)0.0155 (5)0.0111 (4)0.0182 (5)
O20.0358 (5)0.0462 (5)0.0508 (6)0.0044 (4)0.0146 (4)0.0022 (4)
C10.0312 (6)0.0404 (7)0.0349 (6)0.0042 (5)0.0063 (5)0.0047 (5)
C20.0334 (7)0.0466 (7)0.0407 (7)0.0057 (6)0.0082 (5)0.0040 (6)
C30.0418 (7)0.0423 (7)0.0455 (7)0.0001 (6)0.0150 (6)0.0029 (6)
C40.0509 (9)0.0594 (9)0.0623 (10)0.0043 (7)0.0280 (8)0.0017 (8)
C50.0773 (12)0.0601 (10)0.0535 (9)0.0170 (9)0.0338 (9)0.0017 (8)
C60.0802 (12)0.0495 (9)0.0418 (8)0.0128 (8)0.0140 (8)0.0073 (6)
C70.0544 (9)0.0417 (7)0.0412 (7)0.0015 (6)0.0064 (6)0.0050 (6)
C80.0409 (7)0.0358 (6)0.0374 (7)0.0009 (5)0.0109 (5)0.0007 (5)
C90.0381 (7)0.0375 (7)0.0367 (6)0.0006 (5)0.0057 (5)0.0046 (5)
C100.0398 (7)0.0416 (7)0.0363 (7)0.0029 (6)0.0060 (5)0.0044 (5)
C110.0320 (6)0.0400 (7)0.0382 (7)0.0002 (5)0.0066 (5)0.0029 (5)
C120.0342 (7)0.0445 (7)0.0469 (8)0.0000 (6)0.0063 (6)0.0001 (6)
C130.0299 (6)0.0413 (7)0.0364 (6)0.0033 (5)0.0047 (5)0.0028 (5)
C140.0482 (8)0.0430 (8)0.0429 (7)0.0006 (6)0.0086 (6)0.0049 (6)
C150.0366 (7)0.0502 (8)0.0388 (7)0.0049 (6)0.0099 (5)0.0001 (6)
C160.0685 (11)0.0557 (10)0.0830 (13)0.0057 (8)0.0431 (10)0.0117 (9)
C170.0702 (12)0.0807 (14)0.1060 (16)0.0021 (10)0.0569 (12)0.0063 (12)
C180.0531 (10)0.0820 (13)0.0748 (12)0.0128 (9)0.0268 (9)0.0111 (10)
C190.0603 (11)0.0599 (10)0.0837 (13)0.0114 (9)0.0218 (9)0.0131 (9)
C200.0517 (9)0.0494 (9)0.0772 (11)0.0013 (7)0.0237 (8)0.0091 (8)
C210.0414 (8)0.0590 (10)0.0872 (13)0.0085 (7)0.0196 (8)0.0120 (9)
Geometric parameters (Å, º) top
N1—C21.3381 (17)C6—C71.390 (2)
N1—C31.4081 (18)C6—H60.9300
N1—H10.8600C7—C81.3754 (19)
N2—C141.141 (2)C7—H70.9300
N3—C101.3366 (18)C9—C101.3548 (18)
N3—H3A0.8600C9—C141.417 (2)
N3—H3B0.8600C11—C131.3534 (17)
N4—C111.3488 (17)C12—C131.4084 (19)
N4—N51.3764 (16)C12—C211.489 (2)
N4—C151.4251 (16)C15—C161.366 (2)
N5—C121.3258 (17)C15—C201.374 (2)
O1—C21.2255 (16)C16—C171.384 (2)
O2—C111.3620 (15)C16—H160.9300
O2—C101.3716 (16)C17—C181.361 (3)
C1—C131.4935 (18)C17—H170.9300
C1—C91.5166 (18)C18—C191.353 (3)
C1—C81.5189 (17)C18—H180.9300
C1—C21.5525 (18)C19—C201.378 (2)
C3—C41.3813 (19)C19—H190.9300
C3—C81.3824 (19)C20—H200.9300
C4—C51.387 (2)C21—H21A0.9600
C4—H40.9300C21—H21B0.9600
C5—C61.376 (3)C21—H21C0.9600
C5—H50.9300
C2—N1—C3111.98 (11)C10—C9—C1125.48 (12)
C2—N1—H1124.0C14—C9—C1116.69 (11)
C3—N1—H1124.0N3—C10—C9126.49 (13)
C10—N3—H3A120.0N3—C10—O2110.13 (12)
C10—N3—H3B120.0C9—C10—O2123.38 (12)
H3A—N3—H3B120.0N4—C11—C13109.79 (11)
C11—N4—N5109.11 (10)N4—C11—O2122.18 (11)
C11—N4—C15130.78 (11)C13—C11—O2127.99 (12)
N5—N4—C15119.80 (11)N5—C12—C13111.30 (12)
C12—N5—N4105.73 (11)N5—C12—C21120.88 (13)
C11—O2—C10113.87 (10)C13—C12—C21127.82 (13)
C13—C1—C9106.77 (10)C11—C13—C12104.06 (11)
C13—C1—C8115.12 (11)C11—C13—C1122.07 (12)
C9—C1—C8114.43 (11)C12—C13—C1133.86 (11)
C13—C1—C2111.00 (11)N2—C14—C9178.35 (17)
C9—C1—C2108.46 (10)C16—C15—C20119.84 (14)
C8—C1—C2100.88 (10)C16—C15—N4121.12 (14)
O1—C2—N1126.29 (13)C20—C15—N4119.03 (13)
O1—C2—C1125.13 (11)C15—C16—C17119.13 (17)
N1—C2—C1108.58 (11)C15—C16—H16120.4
C4—C3—C8122.46 (14)C17—C16—H16120.4
C4—C3—N1128.18 (14)C18—C17—C16121.16 (17)
C8—C3—N1109.36 (11)C18—C17—H17119.4
C3—C4—C5116.65 (16)C16—C17—H17119.4
C3—C4—H4121.7C19—C18—C17119.31 (16)
C5—C4—H4121.7C19—C18—H18120.3
C6—C5—C4121.65 (14)C17—C18—H18120.3
C6—C5—H5119.2C18—C19—C20120.70 (17)
C4—C5—H5119.2C18—C19—H19119.6
C5—C6—C7120.77 (15)C20—C19—H19119.6
C5—C6—H6119.6C15—C20—C19119.85 (16)
C7—C6—H6119.6C15—C20—H20120.1
C8—C7—C6118.32 (15)C19—C20—H20120.1
C8—C7—H7120.8C12—C21—H21A109.5
C6—C7—H7120.8C12—C21—H21B109.5
C7—C8—C3120.14 (12)H21A—C21—H21B109.5
C7—C8—C1130.69 (12)C12—C21—H21C109.5
C3—C8—C1109.17 (11)H21A—C21—H21C109.5
C10—C9—C14117.73 (12)H21B—C21—H21C109.5
C11—N4—N5—C120.01 (15)C11—O2—C10—N3176.12 (11)
C15—N4—N5—C12174.29 (12)C11—O2—C10—C93.13 (18)
C3—N1—C2—O1177.13 (15)N5—N4—C11—C130.03 (15)
C3—N1—C2—C11.82 (17)C15—N4—C11—C13173.48 (13)
C13—C1—C2—O160.38 (18)N5—N4—C11—O2177.86 (11)
C9—C1—C2—O156.62 (18)C15—N4—C11—O24.4 (2)
C8—C1—C2—O1177.16 (14)C10—O2—C11—N4174.36 (12)
C13—C1—C2—N1120.66 (12)C10—O2—C11—C133.11 (19)
C9—C1—C2—N1122.35 (12)N4—N5—C12—C130.02 (16)
C8—C1—C2—N11.81 (15)N4—N5—C12—C21179.85 (14)
C2—N1—C3—C4178.50 (15)N4—C11—C13—C120.04 (15)
C2—N1—C3—C81.03 (18)O2—C11—C13—C12177.69 (13)
C8—C3—C4—C50.9 (2)N4—C11—C13—C1180.00 (11)
N1—C3—C4—C5178.53 (15)O2—C11—C13—C12.3 (2)
C3—C4—C5—C61.3 (3)N5—C12—C13—C110.03 (16)
C4—C5—C6—C70.6 (3)C21—C12—C13—C11179.83 (15)
C5—C6—C7—C80.4 (2)N5—C12—C13—C1179.99 (13)
C6—C7—C8—C30.7 (2)C21—C12—C13—C10.1 (3)
C6—C7—C8—C1179.10 (14)C9—C1—C13—C116.46 (16)
C4—C3—C8—C70.0 (2)C8—C1—C13—C11134.66 (13)
N1—C3—C8—C7179.58 (13)C2—C1—C13—C11111.56 (14)
C4—C3—C8—C1179.81 (14)C9—C1—C13—C12173.49 (14)
N1—C3—C8—C10.25 (16)C8—C1—C13—C1245.3 (2)
C13—C1—C8—C761.85 (19)C2—C1—C13—C1268.48 (18)
C9—C1—C8—C762.41 (18)C10—C9—C14—N2176 (100)
C2—C1—C8—C7178.61 (14)C1—C9—C14—N28 (6)
C13—C1—C8—C3118.34 (13)C11—N4—C15—C1629.0 (2)
C9—C1—C8—C3117.40 (13)N5—N4—C15—C16158.13 (15)
C2—C1—C8—C31.21 (14)C11—N4—C15—C20150.19 (16)
C13—C1—C9—C106.56 (17)N5—N4—C15—C2022.7 (2)
C8—C1—C9—C10135.16 (13)C20—C15—C16—C170.5 (3)
C2—C1—C9—C10113.12 (14)N4—C15—C16—C17178.65 (17)
C13—C1—C9—C14177.13 (11)C15—C16—C17—C180.2 (3)
C8—C1—C9—C1448.53 (16)C16—C17—C18—C190.5 (4)
C2—C1—C9—C1463.20 (14)C17—C18—C19—C200.8 (3)
C14—C9—C10—N32.5 (2)C16—C15—C20—C190.2 (3)
C1—C9—C10—N3178.78 (13)N4—C15—C20—C19178.97 (15)
C14—C9—C10—O2178.36 (12)C18—C19—C20—C150.5 (3)
C1—C9—C10—O22.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O20.932.422.959 (2)117
N1—H1···O1i0.861.992.819 (2)161
N3—H3B···O1ii0.862.122.880 (1)148
C6—H6···Cgiii0.922.853.771 (3)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC21H15N5O2
Mr369.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0370 (3), 21.9705 (6), 8.2325 (2)
β (°) 98.761 (1)
V3)1794.23 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.21 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SAINT; Bruker, 1999)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
21620, 4485, 3277
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.02
No. of reflections4485
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), 'SHELXL97 (Sheldrick, 1997) and PARST97 (Nardelli, 1995)'.

Selected geometric parameters (Å, º) top
N1—C21.3381 (17)C1—C131.4935 (18)
N1—C31.4081 (18)C1—C91.5166 (18)
N2—C141.141 (2)C1—C81.5189 (17)
O1—C21.2255 (16)C1—C21.5525 (18)
O2—C111.3620 (15)C9—C141.417 (2)
O2—C101.3716 (16)
C11—O2—C10113.87 (10)C8—C1—C2100.88 (10)
C13—C1—C9106.77 (10)C13—C12—C21127.82 (13)
C13—C1—C2111.00 (11)C12—C13—C1133.86 (11)
C9—C1—C2108.46 (10)N2—C14—C9178.35 (17)
C11—O2—C10—N3176.12 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O20.932.422.959 (2)117
N1—H1···O1i0.861.992.819 (2)161
N3—H3B···O1ii0.862.122.880 (1)148
C6—H6···Cgiii0.922.853.771 (3)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z1.
 

Acknowledgements

SE thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance as a Senior Research Fellowship (SRF).

References

First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoulihan, W. J., Remers, W. A. & Brown, R. K. (1992). Indoles: Part I. New York: J. Wiley & Sons.  Google Scholar
First citationJeyabharathi, A., Ponnuswamy, M. N., Amal Raj, A., Raghunathan, R., Razak, I. A., Usman, A., Chantrapromma, S. & Fun, H.-K. (2001). Acta Cryst. E57, o901–o903.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKang, T.-H., Matsumoto, K., Murakami, Y., Takayama, H., Kitajima, M., Aimi, N. & Watanabe, H. (2002). Eur. J. Pharmacol. 444, 39–45.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhafagy, M. M., El-Wahas, A. H. F. A., Eid, F. A. & El-Agrody, A. M. (2002). Farmaco, 57, 715–722.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcSweeney, N., Pratt, A. C., Creaven, B. S., Long, C. & Howie, R. A. (2004). Acta Cryst. E60, o2025–o2028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Rathisuganya, P., Shaherin, B., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3693–o3695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). Biochem. J. 333, 543–548.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds