organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Oxobenz[de]iso­quinolino[2,1-a]benzimidazolium chloride monohydrate

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 16 November 2007; accepted 21 November 2007; online 6 December 2007)

The title compound, C18H11N2O+·Cl·H2O, was prepared by the reaction of 1,8-naphthalic anhydride with o-phenyl­ene­diamine in DMF. The dihedral angle formed by the phenyl and naphthalic rings is 177.06°. The structure is stabilized by intra­molecular C—H⋯O hydrogen bonds. There are N—H⋯Cl, O—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds in the structure.

Related literature

For related literature, see: Ofir (2006[Ofir, Y. (2006). J. Mater. Chem. 16, 2142-2143.]). Cederfur et al. (2003[Cederfur, J., Pei, Y. X. E. C., Meng, Z. H. & Kempe, M. (2003). J. Comb. Chem. 5, 67-72.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11N2O+·Cl·H2O

  • Mr = 324.75

  • Triclinic, [P \overline 1]

  • a = 8.9000 (18) Å

  • b = 8.9440 (18) Å

  • c = 9.4480 (19) Å

  • α = 81.50 (3)°

  • β = 88.76 (3)°

  • γ = 77.61 (3)°

  • V = 726.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 (2) K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 8800 measured reflections

  • 2698 independent reflections

  • 1852 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.02

  • 2698 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.86 2.19 3.044 (2) 175
O2—H2C⋯Cl1 0.85 2.48 3.253 (3) 153
O2—H2D⋯Cl1i 0.85 2.35 3.195 (2) 171
C5—H5A⋯O1 0.93 2.48 2.964 (3) 113
C5—H5A⋯O1ii 0.93 2.47 3.153 (2) 130
C9—H9A⋯Cl1 0.93 2.78 3.673 (2) 162
C15—H15A⋯O2iii 0.93 2.58 3.313 (3) 136
Symmetry codes: (i) -x-1, -y+1, -z+2; (ii) -x, -y+2, -z+1; (iii) x+1, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,8-Naphthlimide derivatives are an important function material during the recent years and are used as optical characters. 1,8-Naphthalimides exhibit hydrogen-bonding. and cation-dependent fluorescence. The naphthyl group can be used as a good receptor(Cederfur et al., 2003).

In the title compound, the bond lengths and angles are normal in the 1,8-naphthalenedicarboximide and phenyl ring (Ofir, 2006). The dihedral angle formed by the phenyl(C1—C6) ring and naphthalic ring(N1—C18) is 177.06°.

There are π-π stacking interactions in the molecular in the structure. The distance between ring centroids Cg(1)—Cg(5)(i) are 3.578 (2); Cg(2)—Cg(2)(i) are 3.648 (2); Cg(2)—Cg(5)(i) are 3.845 (2) [symmetry code:i=-x,1 - y,1 - z].where Cg1 is the centre-of-gravity of the ring defined by atoms (N1—C6—C1—C2—C7), Cg2 is the centre-of-gravity of the ring defined by atoms (N1—C7—C8—C17—C16—C18) and Cg5 is the centre-of-gravity of the ring defined by atoms (C12—C13—C14—C15—C16—C17).

The crystal packing is stabilized by N2—H2A···Cl,O2—H2C···Cl1, C5—H5A···O1, C9—H9A···Cl1, C15—H15···O2 and O2- H2D···Cl1 hydrogen bonds. (Table 2).

Related literature top

For related literature, see: Ofir (2006). Cederfur et al. (2003)

Experimental top

The single crystals of the title compound were obtained by reaction o-phenylene diamine(0.2 mmol) with 1,8-naphthalic anhydride (0.2 mmol) in refluxing DMF(50 ml). The product (yield 87%) was stirred in the DMF. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from DMF and HCl 4:1 (v/v) solution at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with N—H=0.86, O—H=0.85, C—H=0.93 Å, and with Uiso=1.2Ueq. The asymmetric unit comprises a hydrogen bonded unit.

Structure description top

1,8-Naphthlimide derivatives are an important function material during the recent years and are used as optical characters. 1,8-Naphthalimides exhibit hydrogen-bonding. and cation-dependent fluorescence. The naphthyl group can be used as a good receptor(Cederfur et al., 2003).

In the title compound, the bond lengths and angles are normal in the 1,8-naphthalenedicarboximide and phenyl ring (Ofir, 2006). The dihedral angle formed by the phenyl(C1—C6) ring and naphthalic ring(N1—C18) is 177.06°.

There are π-π stacking interactions in the molecular in the structure. The distance between ring centroids Cg(1)—Cg(5)(i) are 3.578 (2); Cg(2)—Cg(2)(i) are 3.648 (2); Cg(2)—Cg(5)(i) are 3.845 (2) [symmetry code:i=-x,1 - y,1 - z].where Cg1 is the centre-of-gravity of the ring defined by atoms (N1—C6—C1—C2—C7), Cg2 is the centre-of-gravity of the ring defined by atoms (N1—C7—C8—C17—C16—C18) and Cg5 is the centre-of-gravity of the ring defined by atoms (C12—C13—C14—C15—C16—C17).

The crystal packing is stabilized by N2—H2A···Cl,O2—H2C···Cl1, C5—H5A···O1, C9—H9A···Cl1, C15—H15···O2 and O2- H2D···Cl1 hydrogen bonds. (Table 2).

For related literature, see: Ofir (2006). Cederfur et al. (2003)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
6-Oxobenz[de]isoquinolino[2,1-a]benzimidazolium chloride monohydrate top
Crystal data top
C18H11N2O+·Cl·H2OZ = 2
Mr = 324.75F(000) = 336
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Melting point: 210 K
a = 8.9000 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9440 (18) ÅCell parameters from 512 reflections
c = 9.4480 (19) Åθ = 2–22°
α = 81.50 (3)°µ = 0.28 mm1
β = 88.76 (3)°T = 295 K
γ = 77.61 (3)°Block, colorless
V = 726.5 (3) Å30.3 × 0.25 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1852 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
phi and ω scansh = 1010
8800 measured reflectionsk = 810
2698 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.048P)2 + 0.1865P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2698 reflectionsΔρmax = 0.20 e Å3
209 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C18H11N2O+·Cl·H2Oγ = 77.61 (3)°
Mr = 324.75V = 726.5 (3) Å3
Triclinic, P1Z = 2
a = 8.9000 (18) ÅMo Kα radiation
b = 8.9440 (18) ŵ = 0.28 mm1
c = 9.4480 (19) ÅT = 295 K
α = 81.50 (3)°0.3 × 0.25 × 0.2 mm
β = 88.76 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1852 reflections with I > 2σ(I)
8800 measured reflectionsRint = 0.041
2698 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2698 reflectionsΔρmin = 0.25 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1171 (2)0.7662 (2)0.52217 (19)0.0619 (5)
N10.0148 (2)0.6439 (2)0.69142 (19)0.0415 (5)
N20.1494 (2)0.5542 (2)0.8640 (2)0.0467 (5)
H2A0.18340.49130.92810.056*
C10.2061 (3)0.7127 (3)0.8379 (2)0.0444 (6)
C20.3250 (3)0.8054 (3)0.8995 (3)0.0583 (7)
H2B0.38350.76550.97240.070*
C30.3523 (3)0.9601 (3)0.8470 (3)0.0614 (7)
H3A0.43221.02730.88500.074*
C40.2649 (3)1.0189 (3)0.7400 (3)0.0570 (7)
H4A0.28661.12490.70890.068*
C50.1473 (3)0.9268 (3)0.6777 (3)0.0493 (6)
H5A0.08930.96700.60440.059*
C60.1196 (2)0.7714 (3)0.7295 (2)0.0428 (6)
C70.0361 (2)0.5140 (3)0.7766 (2)0.0418 (5)
C80.0551 (3)0.3648 (3)0.7634 (2)0.0453 (6)
C90.0314 (3)0.2316 (3)0.8436 (3)0.0570 (7)
H9A0.04650.23620.91120.068*
C100.1232 (3)0.0895 (3)0.8245 (3)0.0666 (8)
H10A0.10670.00040.87990.080*
C110.2356 (3)0.0807 (3)0.7269 (3)0.0650 (8)
H11A0.29550.01560.71550.078*
C120.2643 (3)0.2142 (3)0.6415 (3)0.0548 (7)
C130.3794 (3)0.2111 (4)0.5386 (3)0.0673 (8)
H13A0.44320.11670.52730.081*
C140.4013 (3)0.3414 (4)0.4543 (3)0.0632 (7)
H14A0.47770.33540.38540.076*
C150.3092 (3)0.4827 (3)0.4716 (3)0.0535 (6)
H15A0.32380.57190.41360.064*
C160.1967 (3)0.4934 (3)0.5731 (2)0.0453 (6)
C170.1714 (3)0.3589 (3)0.6603 (3)0.0466 (6)
C180.1035 (3)0.6455 (3)0.5888 (2)0.0451 (6)
Cl10.26953 (7)0.34446 (8)1.10307 (7)0.0603 (2)
O20.5321 (2)0.6341 (3)1.1799 (2)0.0821 (6)
H2C0.44700.56871.18360.098*
H2D0.57870.62951.10350.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0707 (11)0.0447 (11)0.0648 (12)0.0123 (9)0.0176 (9)0.0077 (9)
N10.0449 (10)0.0346 (11)0.0446 (11)0.0109 (9)0.0005 (8)0.0005 (9)
N20.0538 (11)0.0415 (12)0.0434 (11)0.0150 (9)0.0040 (9)0.0047 (9)
C10.0478 (13)0.0382 (14)0.0448 (13)0.0101 (11)0.0010 (11)0.0030 (11)
C20.0559 (15)0.0577 (18)0.0587 (16)0.0110 (13)0.0133 (13)0.0033 (14)
C30.0596 (16)0.0516 (17)0.0666 (18)0.0002 (13)0.0115 (13)0.0064 (14)
C40.0608 (16)0.0401 (15)0.0655 (17)0.0050 (12)0.0016 (13)0.0022 (13)
C50.0554 (14)0.0404 (14)0.0505 (14)0.0126 (12)0.0036 (12)0.0013 (11)
C60.0422 (12)0.0393 (14)0.0462 (14)0.0092 (11)0.0014 (10)0.0030 (11)
C70.0457 (12)0.0367 (13)0.0429 (13)0.0125 (11)0.0044 (11)0.0003 (11)
C80.0524 (13)0.0368 (14)0.0467 (14)0.0119 (11)0.0074 (11)0.0018 (11)
C90.0677 (16)0.0435 (16)0.0590 (16)0.0141 (13)0.0031 (13)0.0008 (13)
C100.0822 (19)0.0381 (16)0.077 (2)0.0138 (14)0.0093 (16)0.0011 (14)
C110.0748 (18)0.0391 (16)0.080 (2)0.0058 (14)0.0160 (16)0.0138 (15)
C120.0559 (15)0.0441 (16)0.0649 (17)0.0056 (12)0.0109 (13)0.0148 (13)
C130.0624 (17)0.0588 (19)0.082 (2)0.0009 (14)0.0076 (16)0.0301 (17)
C140.0557 (16)0.072 (2)0.0666 (18)0.0134 (15)0.0056 (13)0.0271 (16)
C150.0512 (14)0.0576 (17)0.0539 (15)0.0125 (13)0.0013 (12)0.0139 (13)
C160.0453 (13)0.0443 (15)0.0474 (14)0.0105 (11)0.0028 (11)0.0083 (11)
C170.0481 (13)0.0444 (15)0.0489 (14)0.0100 (11)0.0100 (11)0.0100 (11)
C180.0454 (13)0.0451 (15)0.0442 (14)0.0112 (11)0.0011 (11)0.0027 (12)
Cl10.0674 (4)0.0554 (5)0.0554 (4)0.0173 (3)0.0016 (3)0.0071 (3)
O20.0807 (13)0.0973 (17)0.0678 (13)0.0119 (12)0.0008 (11)0.0218 (12)
Geometric parameters (Å, º) top
O1—C181.195 (3)C8—C171.404 (3)
N1—C71.359 (3)C9—C101.389 (4)
N1—C61.397 (3)C9—H9A0.9300
N1—C181.416 (3)C10—C111.344 (4)
N2—C71.312 (3)C10—H10A0.9300
N2—C11.385 (3)C11—C121.407 (4)
N2—H2A0.8600C11—H11A0.9300
C1—C21.373 (3)C12—C131.396 (4)
C1—C61.377 (3)C12—C171.411 (3)
C2—C31.370 (4)C13—C141.359 (4)
C2—H2B0.9300C13—H13A0.9300
C3—C41.374 (4)C14—C151.381 (4)
C3—H3A0.9300C14—H14A0.9300
C4—C51.366 (4)C15—C161.369 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C61.375 (3)C16—C171.412 (3)
C5—H5A0.9300C16—C181.459 (3)
C7—C81.427 (3)O2—H2C0.8500
C8—C91.369 (3)O2—H2D0.8500
C7—N1—C6108.91 (18)C8—C9—H9A119.9
C7—N1—C18123.8 (2)C10—C9—H9A119.9
C6—N1—C18127.18 (19)C11—C10—C9120.7 (3)
C7—N2—C1110.12 (19)C11—C10—H10A119.6
C7—N2—H2A124.9C9—C10—H10A119.6
C1—N2—H2A124.9C10—C11—C12121.2 (3)
C2—C1—C6122.1 (2)C10—C11—H11A119.4
C2—C1—N2130.9 (2)C12—C11—H11A119.4
C6—C1—N2107.0 (2)C13—C12—C11123.4 (3)
C3—C2—C1116.0 (2)C13—C12—C17118.2 (3)
C3—C2—H2B122.0C11—C12—C17118.4 (3)
C1—C2—H2B122.0C14—C13—C12122.2 (3)
C2—C3—C4121.9 (2)C14—C13—H13A118.9
C2—C3—H3A119.1C12—C13—H13A118.9
C4—C3—H3A119.1C13—C14—C15119.5 (3)
C5—C4—C3122.3 (2)C13—C14—H14A120.2
C5—C4—H4A118.9C15—C14—H14A120.2
C3—C4—H4A118.9C16—C15—C14120.9 (3)
C4—C5—C6116.1 (2)C16—C15—H15A119.6
C4—C5—H5A121.9C14—C15—H15A119.6
C6—C5—H5A121.9C15—C16—C17120.2 (2)
C5—C6—C1121.6 (2)C15—C16—C18119.0 (2)
C5—C6—N1132.6 (2)C17—C16—C18120.8 (2)
C1—C6—N1105.75 (19)C8—C17—C12119.2 (2)
N2—C7—N1108.2 (2)C8—C17—C16121.9 (2)
N2—C7—C8129.9 (2)C12—C17—C16118.9 (2)
N1—C7—C8121.9 (2)O1—C18—N1119.1 (2)
C9—C8—C17120.3 (2)O1—C18—C16126.1 (2)
C9—C8—C7123.0 (2)N1—C18—C16114.8 (2)
C17—C8—C7116.7 (2)H2C—O2—H2D107.7
C8—C9—C10120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.193.044 (2)175
O2—H2C···Cl10.852.483.253 (3)153
O2—H2D···Cl1i0.852.353.195 (2)171
C5—H5A···O10.932.482.964 (3)113
C5—H5A···O1ii0.932.473.153 (2)130
C9—H9A···Cl10.932.783.673 (2)162
C15—H15A···O2iii0.932.583.313 (3)136
Symmetry codes: (i) x1, y+1, z+2; (ii) x, y+2, z+1; (iii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC18H11N2O+·Cl·H2O
Mr324.75
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.9000 (18), 8.9440 (18), 9.4480 (19)
α, β, γ (°)81.50 (3), 88.76 (3), 77.61 (3)
V3)726.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8800, 2698, 1852
Rint0.041
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.02
No. of reflections2698
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.862.193.044 (2)175
O2—H2C···Cl10.852.483.253 (3)153
O2—H2D···Cl1i0.852.353.195 (2)171
C5—H5A···O10.932.482.964 (3)113
C5—H5A···O1ii0.932.473.153 (2)130
C9—H9A···Cl10.932.783.673 (2)162
C15—H15A···O2iii0.932.583.313 (3)136
Symmetry codes: (i) x1, y+1, z+2; (ii) x, y+2, z+1; (iii) x+1, y, z1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCederfur, J., Pei, Y. X. E. C., Meng, Z. H. & Kempe, M. (2003). J. Comb. Chem. 5, 67–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOfir, Y. (2006). J. Mater. Chem. 16, 2142–2143.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds