organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[3-(4-Bromo­phen­yl)-1-phenyl-1H-pyrazol-4-yl]-5-eth­­oxy-2-phenyl­isoxazolidine

aCentre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: gurushan48@yahoo.com

(Received 16 November 2007; accepted 1 December 2007; online 21 December 2007)

In the title compound, C26H24BrN3O2, the isoxazolidine ring adopts an envelope conformation, the ring N atom deviating from the mean plane of the other four atoms by an angle of 0.286°. The orientation of the phenyl ring is +sp and the bromophenyl ring is +sc relative to the attached pyrazole ring; the dihedral angles between the least-squares planes of the pyrazole and the attached phenyl and bromophenyl rings are 21.8 (3) and 41.8 (3)°.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]); Gayathri et al. (2007[Gayathri, D., Velmurugan, D., Ravikumar, K., Karthikeyan, K. & Perumal, P. T. (2007). Acta Cryst. E63, o2216-o2217.]); Frederickson (1997[Frederickson, M. (1997). Tetrahedron, 53, 403-425.]); Gothelf et al. (2002[Gothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jorgensen, K. A. (2002). Angew. Chem. Int. Ed. 41, 4236-4238.]); Huisgen (1984[Huisgen, R. (1984). 1-3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa. New York: Wiley.]); Kumar et al. (2003[Kumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Eur. J. Med. Chem. 38, 613-619.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24BrN3O2

  • Mr = 490.39

  • Monoclinic, C 2/c

  • a = 27.7493 (6) Å

  • b = 7.4254 (2) Å

  • c = 24.5230 (5) Å

  • β = 114.516 (1)°

  • V = 4597.41 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 293 (2) K

  • 0.26 × 0.23 × 0.22 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SAINT; Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.691

  • 23867 measured reflections

  • 4982 independent reflections

  • 3038 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.00

  • 4982 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The 1,3-dipolar cycloadditionof nitrones to alkenes provides a straight forward route to isoxazolidines(Frederickson, 1997, Gothelf et al., 2002). The nitrone cycloadducts are attractive intermediates for the synthesis of several class of natural products and biologically active compounds such as b-aminoacids and alkaloids.(Huisgen, 1984).The pyrazole unit is the core structure in a number of natural products. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anti-hyperglycemic, analgesic, anti-inflammatory, anti-pyretic, anti-bacterial, hypoglycemic, sedative, hypnotic activity, and anticoagulant activity. Particularly, arylpyrazoles are widely used in medicinal and pesticidal chemistry. Recently some arylpyrazoles were reported to display non-nucleoside HIV-1 reverse transcriptase inhibitory activity (Kumar et al., 2003).

The isoxazolidine ring adopts envelope conformation with N as the flap, atom N7 deviates from the mean plane with a maximum deviation of 0.286 (2)°. The ethoxy group attached to the isoxazolidine adopts an extended conformation. The bond lengths and bond angles are comparable with literature values (Allen et al.,1987).The dihedral angle between the LSQ planes of pyrazole and phenyl and bromo phenyl ring is 21.8 (3)° and 41.8 (3)°, which is lower than the reported value due to the simple substitution of a bromine to the phenyl ring (Gayathri et al.,2007). The phenyl ring is equatorially substituted to the isoxazolidine ring and slightly twisted due to the steric hinderance with the bromophenyl ring and the ethoxy group is substituted axailly to the isoxazolidine ring. The molecule iss stabilized by intra molecular C—H···O hydrogen bonds in the unit cell.

Related literature top

For related literature, see: Allen et al. (1987); Gayathri et al. (2007); Frederickson (1997); Gothelf et al. (2002); Huisgen (1984); Kumar et al. (2003).

Experimental top

A solution of pyrazole nitrone (0.5 mmol) and ethyl vinyl ether (5 mmol) was refluxed in dry toluene (10 mL) at 60°C until the completion of the reaction as evidenced by thin-layer chromatography. The solvent was evaporated under reduced pressure. The crude was purified by column chromatography using ethyl acetate-petroleum ether (3:97) as eluent, to afford the pure isoxazolidine (68%) as a white solid. Single crystals were obtained by crystallization from petroleum ether and ethyl acetate mixture.

Structure description top

The 1,3-dipolar cycloadditionof nitrones to alkenes provides a straight forward route to isoxazolidines(Frederickson, 1997, Gothelf et al., 2002). The nitrone cycloadducts are attractive intermediates for the synthesis of several class of natural products and biologically active compounds such as b-aminoacids and alkaloids.(Huisgen, 1984).The pyrazole unit is the core structure in a number of natural products. Many pyrazole derivatives are known to exhibit a wide range of biological properties such as anti-hyperglycemic, analgesic, anti-inflammatory, anti-pyretic, anti-bacterial, hypoglycemic, sedative, hypnotic activity, and anticoagulant activity. Particularly, arylpyrazoles are widely used in medicinal and pesticidal chemistry. Recently some arylpyrazoles were reported to display non-nucleoside HIV-1 reverse transcriptase inhibitory activity (Kumar et al., 2003).

The isoxazolidine ring adopts envelope conformation with N as the flap, atom N7 deviates from the mean plane with a maximum deviation of 0.286 (2)°. The ethoxy group attached to the isoxazolidine adopts an extended conformation. The bond lengths and bond angles are comparable with literature values (Allen et al.,1987).The dihedral angle between the LSQ planes of pyrazole and phenyl and bromo phenyl ring is 21.8 (3)° and 41.8 (3)°, which is lower than the reported value due to the simple substitution of a bromine to the phenyl ring (Gayathri et al.,2007). The phenyl ring is equatorially substituted to the isoxazolidine ring and slightly twisted due to the steric hinderance with the bromophenyl ring and the ethoxy group is substituted axailly to the isoxazolidine ring. The molecule iss stabilized by intra molecular C—H···O hydrogen bonds in the unit cell.

For related literature, see: Allen et al. (1987); Gayathri et al. (2007); Frederickson (1997); Gothelf et al. (2002); Huisgen (1984); Kumar et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997), PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the molecules viewed down c axis.
3-[3-(4-Bromophenyl)-1-phenyl-1H-pyrazol-4-yl]- 5-ethoxy-2-phenylisoxazolidine top
Crystal data top
C26H24BrN3O2F(000) = 2016
Mr = 490.39Dx = 1.417 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4982 reflections
a = 27.7493 (6) Åθ = 2.9–27.0°
b = 7.4254 (2) ŵ = 1.82 mm1
c = 24.5230 (5) ÅT = 293 K
β = 114.516 (1)°Cubic, yellow
V = 4597.41 (18) Å30.26 × 0.23 × 0.22 mm
Z = 8
Data collection top
Bruker Kappa APEXII
diffractometer
4982 independent reflections
Radiation source: fine-focus sealed tube3038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and φ scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SAINT; Bruker, 1999)
h = 3535
Tmin = 0.650, Tmax = 0.691k = 99
23867 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0394P)2 + 2.7695P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
4982 reflectionsΔρmax = 0.37 e Å3
289 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (11)
Crystal data top
C26H24BrN3O2V = 4597.41 (18) Å3
Mr = 490.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.7493 (6) ŵ = 1.82 mm1
b = 7.4254 (2) ÅT = 293 K
c = 24.5230 (5) Å0.26 × 0.23 × 0.22 mm
β = 114.516 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
4982 independent reflections
Absorption correction: multi-scan
(SAINT; Bruker, 1999)
3038 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.691Rint = 0.041
23867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
4982 reflectionsΔρmin = 0.49 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.015166 (12)0.61394 (5)0.097949 (17)0.09166 (16)
N10.76772 (7)0.4888 (2)0.08475 (8)0.0420 (4)
N20.72795 (7)0.4783 (2)0.10324 (8)0.0412 (4)
C30.74697 (9)0.4845 (3)0.16353 (10)0.0436 (5)
H30.72680.47940.18570.052*
C40.80068 (9)0.4996 (3)0.18641 (9)0.0388 (5)
C50.81190 (9)0.5021 (3)0.13506 (9)0.0381 (5)
C110.67491 (9)0.4517 (3)0.06083 (10)0.0419 (5)
C160.66488 (10)0.3876 (3)0.00433 (11)0.0531 (6)
H70.69260.36600.00670.064*
C150.61347 (11)0.3559 (3)0.03539 (13)0.0661 (7)
H80.60660.31310.07360.079*
C140.57219 (11)0.3861 (4)0.01980 (14)0.0699 (8)
H90.53760.36150.04680.084*
C130.58227 (10)0.4529 (4)0.03587 (14)0.0650 (7)
H100.55430.47490.04650.078*
C120.63349 (10)0.4881 (3)0.07642 (11)0.0524 (6)
H110.64000.53590.11390.063*
C60.83710 (9)0.5082 (3)0.25106 (9)0.0400 (5)
H60.87320.53370.25550.048*
N70.83638 (7)0.3344 (2)0.28223 (7)0.0396 (4)
O80.86261 (6)0.3879 (2)0.34526 (6)0.0474 (4)
C90.83812 (9)0.5532 (3)0.34867 (10)0.0446 (5)
H9A0.86370.62990.37980.054*
C100.82134 (10)0.6428 (3)0.28798 (10)0.0497 (6)
H10A0.83960.75650.29160.060*
H10B0.78340.66420.26980.060*
C170.86907 (9)0.1977 (3)0.27316 (10)0.0412 (5)
C220.84549 (10)0.0922 (3)0.22259 (11)0.0521 (6)
H180.80980.10670.19760.062*
C210.87546 (12)0.0354 (3)0.20937 (13)0.0642 (7)
H190.86000.10390.17460.077*
C200.92747 (13)0.0614 (4)0.24692 (15)0.0718 (8)
H200.94730.14800.23800.086*
C190.95026 (11)0.0402 (4)0.29764 (14)0.0718 (8)
H210.98560.02170.32340.086*
C180.92128 (10)0.1703 (3)0.31106 (12)0.0573 (6)
H220.93710.23910.34570.069*
O230.79337 (6)0.5295 (2)0.35987 (6)0.0468 (4)
C240.80487 (10)0.4624 (3)0.41873 (10)0.0504 (6)
H24A0.83190.53580.44860.060*
H24B0.81770.33950.42260.060*
C250.75456 (11)0.4695 (4)0.42755 (12)0.0703 (8)
H25A0.76100.42490.46670.106*
H25B0.72810.39640.39770.106*
H25C0.74230.59170.42380.106*
C260.86227 (9)0.5288 (3)0.12921 (9)0.0387 (5)
C310.86189 (9)0.6344 (3)0.08219 (10)0.0456 (5)
H270.83050.68880.05640.055*
C300.90731 (10)0.6599 (3)0.07315 (11)0.0522 (6)
H280.90650.72910.04120.063*
C290.95350 (9)0.5817 (3)0.11189 (11)0.0513 (6)
C280.95552 (10)0.4791 (3)0.15916 (11)0.0544 (6)
H300.98730.42820.18540.065*
C270.90973 (9)0.4523 (3)0.16740 (10)0.0463 (6)
H310.91080.38150.19920.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0616 (2)0.1079 (3)0.1308 (3)0.00190 (17)0.0650 (2)0.0236 (2)
N10.0463 (11)0.0463 (10)0.0442 (11)0.0036 (9)0.0296 (10)0.0001 (8)
N20.0440 (11)0.0436 (10)0.0436 (11)0.0031 (8)0.0258 (9)0.0021 (8)
C30.0515 (14)0.0448 (12)0.0477 (14)0.0017 (11)0.0339 (12)0.0042 (10)
C40.0502 (13)0.0355 (11)0.0404 (13)0.0000 (10)0.0285 (11)0.0015 (9)
C50.0443 (13)0.0354 (11)0.0412 (13)0.0000 (10)0.0244 (11)0.0008 (9)
C110.0444 (13)0.0365 (11)0.0470 (14)0.0043 (10)0.0211 (11)0.0043 (10)
C160.0518 (15)0.0544 (14)0.0553 (16)0.0006 (12)0.0246 (13)0.0019 (12)
C150.0646 (18)0.0661 (17)0.0582 (17)0.0037 (14)0.0160 (15)0.0105 (13)
C140.0498 (16)0.0674 (17)0.080 (2)0.0050 (14)0.0147 (15)0.0006 (15)
C130.0474 (16)0.0686 (17)0.085 (2)0.0019 (13)0.0329 (16)0.0117 (15)
C120.0518 (15)0.0547 (14)0.0589 (15)0.0013 (12)0.0311 (13)0.0020 (12)
C60.0496 (13)0.0389 (11)0.0418 (13)0.0025 (10)0.0291 (11)0.0011 (10)
N70.0501 (11)0.0415 (9)0.0329 (10)0.0028 (8)0.0231 (9)0.0001 (8)
O80.0559 (10)0.0548 (9)0.0356 (9)0.0104 (8)0.0229 (8)0.0017 (7)
C90.0498 (14)0.0482 (13)0.0425 (13)0.0005 (11)0.0258 (11)0.0080 (10)
C100.0710 (16)0.0422 (12)0.0487 (14)0.0039 (11)0.0377 (13)0.0000 (10)
C170.0507 (14)0.0369 (11)0.0472 (13)0.0000 (10)0.0314 (12)0.0036 (10)
C220.0604 (15)0.0440 (13)0.0570 (16)0.0029 (11)0.0296 (13)0.0065 (11)
C210.081 (2)0.0482 (14)0.0740 (19)0.0064 (14)0.0422 (17)0.0176 (13)
C200.080 (2)0.0531 (16)0.100 (2)0.0077 (15)0.055 (2)0.0111 (16)
C190.0570 (17)0.0723 (18)0.086 (2)0.0146 (15)0.0292 (16)0.0078 (17)
C180.0571 (16)0.0554 (14)0.0623 (17)0.0067 (12)0.0276 (14)0.0070 (12)
O230.0522 (10)0.0572 (9)0.0387 (9)0.0068 (8)0.0266 (8)0.0029 (7)
C240.0676 (16)0.0511 (13)0.0409 (13)0.0092 (12)0.0310 (12)0.0044 (11)
C250.080 (2)0.0892 (19)0.0590 (17)0.0074 (16)0.0456 (16)0.0151 (15)
C260.0464 (13)0.0383 (11)0.0402 (12)0.0014 (10)0.0268 (11)0.0049 (10)
C310.0464 (13)0.0485 (13)0.0481 (14)0.0030 (11)0.0259 (11)0.0058 (11)
C300.0579 (16)0.0517 (14)0.0611 (16)0.0013 (12)0.0388 (14)0.0091 (12)
C290.0469 (14)0.0543 (14)0.0665 (16)0.0033 (12)0.0372 (13)0.0011 (12)
C280.0444 (14)0.0663 (16)0.0545 (16)0.0064 (12)0.0224 (13)0.0017 (13)
C270.0536 (15)0.0515 (13)0.0419 (13)0.0042 (11)0.0277 (12)0.0037 (10)
Geometric parameters (Å, º) top
Br1—C291.894 (2)C10—H10A0.9700
N1—C51.334 (3)C10—H10B0.9700
N1—N21.358 (2)C17—C181.374 (3)
N2—C31.349 (3)C17—C221.381 (3)
N2—C111.420 (3)C22—C211.385 (3)
C3—C41.362 (3)C22—H180.9300
C3—H30.9300C21—C201.366 (4)
C4—C51.417 (3)C21—H190.9300
C4—C61.486 (3)C20—C191.365 (4)
C5—C261.476 (3)C20—H200.9300
C11—C161.380 (3)C19—C181.381 (3)
C11—C121.380 (3)C19—H210.9300
C16—C151.373 (4)C18—H220.9300
C16—H70.9300O23—C241.432 (2)
C15—C141.369 (4)C24—C251.500 (3)
C15—H80.9300C24—H24A0.9700
C14—C131.368 (4)C24—H24B0.9700
C14—H90.9300C25—H25A0.9600
C13—C121.380 (3)C25—H25B0.9600
C13—H100.9300C25—H25C0.9600
C12—H110.9300C26—C271.382 (3)
C6—N71.504 (3)C26—C311.391 (3)
C6—C101.529 (3)C31—C301.380 (3)
C6—H60.9800C31—H270.9300
N7—C171.439 (3)C30—C291.368 (3)
N7—O81.464 (2)C30—H280.9300
O8—C91.422 (3)C29—C281.369 (3)
C9—O231.390 (2)C28—C271.381 (3)
C9—C101.516 (3)C28—H300.9300
C9—H9A0.9800C27—H310.9300
C5—N1—N2104.94 (16)C6—C10—H10B110.9
C3—N2—N1111.19 (17)H10A—C10—H10B108.9
C3—N2—C11128.51 (17)C18—C17—C22119.8 (2)
N1—N2—C11120.16 (17)C18—C17—N7123.8 (2)
N2—C3—C4108.54 (17)C22—C17—N7116.4 (2)
N2—C3—H3125.7C17—C22—C21119.4 (2)
C4—C3—H3125.7C17—C22—H18120.3
C3—C4—C5103.97 (18)C21—C22—H18120.3
C3—C4—C6125.90 (18)C20—C21—C22120.5 (3)
C5—C4—C6130.13 (19)C20—C21—H19119.7
N1—C5—C4111.36 (18)C22—C21—H19119.7
N1—C5—C26117.65 (17)C19—C20—C21119.8 (2)
C4—C5—C26130.8 (2)C19—C20—H20120.1
C16—C11—C12120.1 (2)C21—C20—H20120.1
C16—C11—N2119.9 (2)C20—C19—C18120.5 (3)
C12—C11—N2119.9 (2)C20—C19—H21119.7
C15—C16—C11119.3 (2)C18—C19—H21119.7
C15—C16—H7120.4C17—C18—C19119.8 (2)
C11—C16—H7120.4C17—C18—H22120.1
C14—C15—C16121.2 (3)C19—C18—H22120.1
C14—C15—H8119.4C9—O23—C24113.54 (17)
C16—C15—H8119.4O23—C24—C25107.5 (2)
C13—C14—C15119.3 (3)O23—C24—H24A110.2
C13—C14—H9120.3C25—C24—H24A110.2
C15—C14—H9120.3O23—C24—H24B110.2
C14—C13—C12120.7 (2)C25—C24—H24B110.2
C14—C13—H10119.6H24A—C24—H24B108.5
C12—C13—H10119.6C24—C25—H25A109.5
C13—C12—C11119.4 (2)C24—C25—H25B109.5
C13—C12—H11120.3H25A—C25—H25B109.5
C11—C12—H11120.3C24—C25—H25C109.5
C4—C6—N7111.02 (16)H25A—C25—H25C109.5
C4—C6—C10115.13 (18)H25B—C25—H25C109.5
N7—C6—C10101.09 (15)C27—C26—C31118.09 (19)
C4—C6—H6109.8C27—C26—C5123.58 (19)
N7—C6—H6109.8C31—C26—C5118.3 (2)
C10—C6—H6109.8C30—C31—C26121.1 (2)
C17—N7—O8106.59 (15)C30—C31—H27119.4
C17—N7—C6112.61 (15)C26—C31—H27119.4
O8—N7—C6101.43 (14)C29—C30—C31119.0 (2)
C9—O8—N7104.82 (14)C29—C30—H28120.5
O23—C9—O8112.99 (18)C31—C30—H28120.5
O23—C9—C10108.29 (19)C30—C29—C28121.4 (2)
O8—C9—C10106.28 (16)C30—C29—Br1118.51 (17)
O23—C9—H9A109.7C28—C29—Br1120.05 (19)
O8—C9—H9A109.7C29—C28—C27119.2 (2)
C10—C9—H9A109.7C29—C28—H30120.4
C9—C10—C6104.34 (17)C27—C28—H30120.4
C9—C10—H10A110.9C28—C27—C26121.1 (2)
C6—C10—H10A110.9C28—C27—H31119.4
C9—C10—H10B110.9C26—C27—H31119.4
C5—N1—N2—C30.1 (2)N7—O8—C9—C1029.9 (2)
C5—N1—N2—C11176.21 (17)O23—C9—C10—C6119.66 (19)
N1—N2—C3—C40.0 (2)O8—C9—C10—C62.0 (2)
C11—N2—C3—C4175.68 (19)C4—C6—C10—C9145.05 (18)
N2—C3—C4—C50.1 (2)N7—C6—C10—C925.3 (2)
N2—C3—C4—C6179.11 (18)O8—N7—C17—C1818.5 (3)
N2—N1—C5—C40.2 (2)C6—N7—C17—C1891.9 (2)
N2—N1—C5—C26175.78 (17)O8—N7—C17—C22162.37 (17)
C3—C4—C5—N10.2 (2)C6—N7—C17—C2287.3 (2)
C6—C4—C5—N1178.98 (19)C18—C17—C22—C212.7 (3)
C3—C4—C5—C26175.1 (2)N7—C17—C22—C21176.5 (2)
C6—C4—C5—C265.7 (4)C17—C22—C21—C202.2 (4)
C3—N2—C11—C16157.4 (2)C22—C21—C20—C190.5 (4)
N1—N2—C11—C1617.9 (3)C21—C20—C19—C180.6 (4)
C3—N2—C11—C1221.8 (3)C22—C17—C18—C191.6 (4)
N1—N2—C11—C12162.82 (19)N7—C17—C18—C19177.5 (2)
C12—C11—C16—C151.8 (3)C20—C19—C18—C170.1 (4)
N2—C11—C16—C15177.5 (2)O8—C9—O23—C2468.5 (2)
C11—C16—C15—C140.3 (4)C10—C9—O23—C24174.05 (17)
C16—C15—C14—C131.5 (4)C9—O23—C24—C25171.8 (2)
C15—C14—C13—C120.7 (4)N1—C5—C26—C27143.2 (2)
C14—C13—C12—C111.4 (4)C4—C5—C26—C2741.8 (3)
C16—C11—C12—C132.6 (3)N1—C5—C26—C3135.7 (3)
N2—C11—C12—C13176.7 (2)C4—C5—C26—C31139.3 (2)
C3—C4—C6—N765.4 (3)C27—C26—C31—C301.1 (3)
C5—C4—C6—N7113.6 (2)C5—C26—C31—C30177.9 (2)
C3—C4—C6—C1048.7 (3)C26—C31—C30—C291.0 (3)
C5—C4—C6—C10132.3 (2)C31—C30—C29—C280.1 (4)
C4—C6—N7—C1780.7 (2)C31—C30—C29—Br1178.75 (17)
C10—C6—N7—C17156.73 (18)C30—C29—C28—C270.8 (4)
C4—C6—N7—O8165.78 (15)Br1—C29—C28—C27177.84 (18)
C10—C6—N7—O843.17 (19)C29—C28—C27—C260.8 (4)
C17—N7—O8—C9164.37 (15)C31—C26—C27—C280.2 (3)
C6—N7—O8—C946.37 (17)C5—C26—C27—C28178.8 (2)
N7—O8—C9—O2388.77 (19)

Experimental details

Crystal data
Chemical formulaC26H24BrN3O2
Mr490.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.7493 (6), 7.4254 (2), 24.5230 (5)
β (°) 114.516 (1)
V3)4597.41 (18)
Z8
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.26 × 0.23 × 0.22
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SAINT; Bruker, 1999)
Tmin, Tmax0.650, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
23867, 4982, 3038
Rint0.041
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.00
No. of reflections4982
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.49

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997), PARST97 (Nardelli, 1995).

 

Acknowledgements

SE thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance as a Senior Research Fellowship (SRF).

References

First citationAllen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CrossRef Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrederickson, M. (1997). Tetrahedron, 53, 403–425.  CrossRef CAS Web of Science Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Karthikeyan, K. & Perumal, P. T. (2007). Acta Cryst. E63, o2216–o2217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGothelf, A. S., Gothelf, K. V., Hazell, R. G. & Jorgensen, K. A. (2002). Angew. Chem. Int. Ed. 41, 4236–4238.  CrossRef CAS Google Scholar
First citationHuisgen, R. (1984). 1–3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa. New York: Wiley.  Google Scholar
First citationKumar, K. R. R., Mallesha, H. & Rangappa, K. S. (2003). Eur. J. Med. Chem. 38, 613–619.  Web of Science CrossRef PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds