organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,4-Di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 November 2007; accepted 19 November 2007; online 6 December 2007)

The conformation of the N—H bond in the title compound (34DMPA), C10H13NO, is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation observed with respect to the 3-chloro substituent in N-(3,4-dichloro­phen­yl)acetamide (34DCPA). The asymmetric unit of the structure contains three mol­ecules. The bond parameters in 34DMPA are similar to those in 34DCPA, N-(2,6-dimethyl­phen­yl)acetamide, N-(3,5-dimethyl­phen­yl)acetamide and other acetanilides. The mol­ecules in 34DMPA are linked into infinite chains through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2341-o2342.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3154.]); Gowda, Kozisek, Svoboda & Fuess (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.]); Gowda, Kožíšek, Tokarčík & Fuess (2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.]); Jones et al. (1990[Jones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78-81.]); Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO

  • Mr = 163.21

  • Triclinic, [P \overline 1]

  • a = 6.749 (1) Å

  • b = 14.281 (2) Å

  • c = 15.005 (2) Å

  • α = 85.33 (1)°

  • β = 79.81 (1)°

  • γ = 87.58 (1)°

  • V = 1418.1 (3) Å3

  • Z = 6

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 299 (2) K

  • 0.35 × 0.33 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5528 measured reflections

  • 5025 independent reflections

  • 3386 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.210

  • S = 1.03

  • 5025 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.88 (3) 2.08 (3) 2.956 (3) 177 (3)
N3—H3N⋯O2 0.86 (3) 2.14 (3) 2.989 (3) 172 (3)
N2—H2N⋯O1i 0.98 (3) 1.92 (3) 2.893 (3) 170 (2)
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of N-(3,4-dimethylphenyl)-acetamide (34DMPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The conformation of the N—H bond in 34DMPA is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation obseved with respect to the 3-chloro substituent in N-(3,4-dichlorophenyl)-acetamide (34DCPA) (Jones et al., 1990). The asymmetric unit of the structure contains 3 molecules. The bond parameters in 34DMPA are similar to those in 34DCPA (Jones et al., 1990), N-(2,6-dimethylphenyl)-acetamide (Gowda et al., 2007b), N-(3,5-dimethylphenyl)-acetamide (Gowda, Kožíšek, Tokarčík & Fuess, 2007) and other acetanilides. The molecules in 34DMPA are linked into chains through N—H···O hydrogen bonding (Table 1 & Fig. 2).

Related literature top

For related literature, see: Gowda et al. (2007a,b); Kozisek, Svoboda & Fuess (2007); Gowda, Kožíšek, Tokarčík & Fuess (2007); Jones et al. (1990); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. The NH atoms were located in difference map with N—H = 0.86 (3)–0.98 (3) Å. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.were set equal to 1.2 Ueq of the parent atom.

Structure description top

In the present work, the structure of N-(3,4-dimethylphenyl)-acetamide (34DMPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The conformation of the N—H bond in 34DMPA is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation obseved with respect to the 3-chloro substituent in N-(3,4-dichlorophenyl)-acetamide (34DCPA) (Jones et al., 1990). The asymmetric unit of the structure contains 3 molecules. The bond parameters in 34DMPA are similar to those in 34DCPA (Jones et al., 1990), N-(2,6-dimethylphenyl)-acetamide (Gowda et al., 2007b), N-(3,5-dimethylphenyl)-acetamide (Gowda, Kožíšek, Tokarčík & Fuess, 2007) and other acetanilides. The molecules in 34DMPA are linked into chains through N—H···O hydrogen bonding (Table 1 & Fig. 2).

For related literature, see: Gowda et al. (2007a,b); Kozisek, Svoboda & Fuess (2007); Gowda, Kožíšek, Tokarčík & Fuess (2007); Jones et al. (1990); Shilpa & Gowda (2007).

Computing details top

Data collection: CAD-4-PC Version (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Version (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,4-Dimethylphenyl)acetamide top
Crystal data top
C10H13NOZ = 6
Mr = 163.21F(000) = 528
Triclinic, P1Dx = 1.147 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 6.749 (1) ÅCell parameters from 25 reflections
b = 14.281 (2) Åθ = 3.1–22.1°
c = 15.005 (2) ŵ = 0.59 mm1
α = 85.33 (1)°T = 299 K
β = 79.81 (1)°Prism, colourless
γ = 87.58 (1)°0.35 × 0.33 × 0.18 mm
V = 1418.1 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 3.0°
Graphite monochromatorh = 81
ω/2θ scansk = 1717
5528 measured reflectionsl = 1717
5025 independent reflections3 standard reflections every 120 min
3386 reflections with I > 2σ(I) intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.210 w = 1/[σ2(Fo2) + (0.1316P)2 + 0.1229P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5025 reflectionsΔρmax = 0.26 e Å3
344 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (7)
Crystal data top
C10H13NOγ = 87.58 (1)°
Mr = 163.21V = 1418.1 (3) Å3
Triclinic, P1Z = 6
a = 6.749 (1) ÅCu Kα radiation
b = 14.281 (2) ŵ = 0.59 mm1
c = 15.005 (2) ÅT = 299 K
α = 85.33 (1)°0.35 × 0.33 × 0.18 mm
β = 79.81 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.044
5528 measured reflections3 standard reflections every 120 min
5025 independent reflections intensity decay: 2.0%
3386 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
5025 reflectionsΔρmin = 0.27 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6611 (4)0.21887 (13)0.27754 (16)0.0935 (7)
N10.7204 (3)0.37376 (14)0.26524 (16)0.0647 (6)
H1N0.702 (4)0.428 (2)0.2362 (19)0.078*
C10.8633 (4)0.37519 (17)0.32314 (17)0.0633 (6)
C21.0021 (4)0.44579 (19)0.3073 (2)0.0713 (7)
H21.00450.48790.25650.086*
C31.1384 (4)0.4555 (2)0.3653 (2)0.0794 (8)
C41.1409 (5)0.3917 (3)0.4390 (2)0.0906 (10)
C51.0037 (6)0.3211 (3)0.4542 (2)0.0970 (10)
H51.00530.27740.50360.116*
C60.8637 (5)0.3128 (2)0.3985 (2)0.0849 (9)
H60.77020.26540.41170.102*
C70.6247 (4)0.29887 (17)0.24731 (19)0.0658 (6)
C80.4682 (4)0.31912 (19)0.1893 (2)0.0778 (8)
H8A0.46510.38500.17080.093*
H8B0.33900.30160.22320.093*
H8C0.49950.28380.13670.093*
C91.2754 (5)0.5374 (3)0.3480 (3)0.1155 (13)
H9A1.24990.57510.29510.139*
H9B1.41300.51490.33850.139*
H9C1.25110.57470.39950.139*
C101.2889 (7)0.3980 (4)0.5030 (3)0.1352 (18)
H10A1.42320.40070.46890.162*
H10B1.27850.34370.54560.162*
H10C1.25880.45370.53530.162*
O20.6415 (3)0.89842 (12)0.17410 (15)0.0810 (6)
N20.7398 (3)1.02533 (14)0.23505 (15)0.0625 (5)
H2N0.709 (4)1.092 (2)0.2425 (18)0.075*
C110.9017 (4)0.98806 (17)0.27568 (18)0.0613 (6)
C120.9873 (4)1.04469 (19)0.32918 (18)0.0697 (7)
H120.93621.10570.33600.084*
C131.1444 (5)1.0139 (2)0.37231 (19)0.0775 (8)
C141.2212 (4)0.9219 (2)0.3629 (2)0.0810 (8)
C151.1404 (5)0.8675 (2)0.3084 (3)0.0908 (10)
H151.19270.80680.30090.109*
C160.9848 (4)0.89835 (19)0.2641 (2)0.0822 (9)
H160.93600.85940.22670.099*
C170.6230 (4)0.98221 (17)0.18788 (17)0.0617 (6)
C180.4661 (4)1.04309 (19)0.1511 (2)0.0746 (7)
H18A0.45551.10260.17740.089*
H18B0.33871.01300.16600.089*
H18C0.50311.05290.08630.089*
C191.2353 (6)1.0776 (3)0.4266 (3)0.1110 (12)
H19A1.16681.13790.42540.133*
H19B1.37521.08480.40130.133*
H19C1.22251.05130.48820.133*
C201.3884 (5)0.8838 (3)0.4104 (3)0.1128 (13)
H20A1.50450.92180.39140.135*
H20B1.42180.82030.39530.135*
H20C1.34590.88490.47480.135*
O30.6498 (3)0.55410 (11)0.16267 (14)0.0773 (6)
N30.5363 (3)0.70443 (13)0.14131 (14)0.0607 (5)
H3N0.555 (4)0.760 (2)0.1545 (18)0.073*
C210.3877 (4)0.69495 (15)0.08863 (16)0.0565 (6)
C220.2832 (4)0.77608 (17)0.06384 (16)0.0609 (6)
H220.31690.83300.08230.073*
C230.1323 (4)0.7758 (2)0.01327 (18)0.0683 (7)
C240.0808 (4)0.6904 (2)0.0150 (2)0.0764 (8)
C250.1861 (5)0.6102 (2)0.0097 (2)0.0824 (8)
H250.15320.55330.00920.099*
C260.3366 (4)0.60984 (18)0.0604 (2)0.0723 (7)
H260.40320.55400.07560.087*
C270.6556 (4)0.63784 (16)0.17531 (16)0.0600 (6)
C280.7946 (5)0.67177 (19)0.2314 (2)0.0846 (9)
H28A0.92510.68080.19470.101*
H28B0.80560.62610.28100.101*
H28C0.74300.73030.25460.101*
C290.0253 (5)0.8664 (3)0.0104 (2)0.0974 (10)
H29A0.11480.86300.01610.117*
H29B0.03860.87660.07520.117*
H29C0.08360.91750.01270.117*
C300.0827 (5)0.6855 (3)0.0706 (2)0.1065 (12)
H30A0.20870.70600.03650.128*
H30B0.09250.62180.08540.128*
H30C0.05110.72540.12560.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1197 (17)0.0455 (10)0.1293 (18)0.0036 (10)0.0624 (14)0.0039 (10)
N10.0750 (14)0.0435 (10)0.0809 (14)0.0084 (9)0.0294 (11)0.0085 (9)
C10.0722 (16)0.0520 (13)0.0701 (15)0.0128 (11)0.0214 (13)0.0183 (11)
C20.0703 (16)0.0615 (15)0.0851 (18)0.0085 (12)0.0187 (14)0.0180 (13)
C30.0669 (17)0.0801 (19)0.095 (2)0.0081 (14)0.0113 (15)0.0384 (16)
C40.094 (2)0.107 (3)0.078 (2)0.0302 (19)0.0285 (17)0.0381 (19)
C50.128 (3)0.095 (2)0.0727 (19)0.019 (2)0.033 (2)0.0118 (17)
C60.112 (2)0.0733 (18)0.0740 (17)0.0072 (16)0.0310 (17)0.0088 (14)
C70.0712 (15)0.0480 (13)0.0822 (17)0.0085 (11)0.0229 (13)0.0134 (11)
C80.0755 (17)0.0617 (15)0.104 (2)0.0046 (13)0.0362 (16)0.0142 (14)
C90.092 (2)0.126 (3)0.133 (3)0.020 (2)0.015 (2)0.041 (3)
C100.125 (3)0.190 (5)0.109 (3)0.038 (3)0.060 (3)0.061 (3)
O20.0835 (13)0.0536 (10)0.1117 (15)0.0016 (9)0.0232 (11)0.0266 (10)
N20.0678 (12)0.0451 (10)0.0776 (13)0.0025 (9)0.0202 (11)0.0051 (9)
C110.0581 (13)0.0532 (13)0.0713 (15)0.0023 (10)0.0100 (12)0.0011 (11)
C120.0714 (16)0.0664 (16)0.0741 (16)0.0001 (12)0.0187 (14)0.0102 (12)
C130.0732 (17)0.094 (2)0.0659 (16)0.0067 (15)0.0133 (14)0.0036 (14)
C140.0640 (16)0.089 (2)0.0840 (19)0.0010 (15)0.0099 (15)0.0200 (16)
C150.0762 (19)0.0631 (17)0.132 (3)0.0055 (14)0.0238 (19)0.0067 (18)
C160.0772 (18)0.0521 (14)0.122 (2)0.0023 (12)0.0285 (18)0.0108 (15)
C170.0597 (14)0.0531 (13)0.0713 (15)0.0071 (10)0.0063 (12)0.0077 (11)
C180.0770 (17)0.0628 (15)0.0889 (19)0.0060 (13)0.0286 (15)0.0025 (13)
C190.108 (3)0.130 (3)0.107 (3)0.004 (2)0.044 (2)0.030 (2)
C200.088 (2)0.131 (3)0.116 (3)0.004 (2)0.029 (2)0.033 (2)
O30.0991 (14)0.0402 (9)0.1004 (14)0.0032 (8)0.0406 (11)0.0032 (8)
N30.0747 (13)0.0378 (10)0.0753 (13)0.0002 (9)0.0272 (11)0.0072 (9)
C210.0622 (14)0.0466 (12)0.0624 (13)0.0019 (10)0.0150 (11)0.0074 (10)
C220.0681 (15)0.0503 (12)0.0650 (14)0.0039 (10)0.0144 (12)0.0051 (10)
C230.0603 (14)0.0786 (17)0.0635 (15)0.0098 (12)0.0093 (12)0.0006 (12)
C240.0604 (15)0.098 (2)0.0734 (17)0.0008 (14)0.0160 (13)0.0144 (15)
C250.085 (2)0.0730 (18)0.098 (2)0.0096 (15)0.0327 (17)0.0188 (15)
C260.0814 (18)0.0517 (14)0.0914 (19)0.0013 (12)0.0318 (15)0.0141 (12)
C270.0740 (15)0.0439 (12)0.0643 (14)0.0023 (10)0.0202 (12)0.0016 (10)
C280.111 (2)0.0558 (15)0.099 (2)0.0038 (14)0.0545 (19)0.0015 (14)
C290.085 (2)0.104 (2)0.100 (2)0.0300 (18)0.0245 (18)0.0084 (19)
C300.076 (2)0.159 (4)0.093 (2)0.002 (2)0.0321 (18)0.026 (2)
Geometric parameters (Å, º) top
O1—C71.226 (3)C15—H150.9300
N1—C71.342 (3)C16—H160.9300
N1—C11.410 (3)C17—C181.494 (4)
N1—H1N0.88 (3)C18—H18A0.9600
C1—C61.382 (4)C18—H18B0.9600
C1—C21.383 (4)C18—H18C0.9600
C2—C31.391 (4)C19—H19A0.9600
C2—H20.9300C19—H19B0.9600
C3—C41.376 (5)C19—H19C0.9600
C3—C91.500 (5)C20—H20A0.9600
C4—C51.376 (5)C20—H20B0.9600
C4—C101.514 (4)C20—H20C0.9600
C5—C61.382 (4)O3—C271.229 (3)
C5—H50.9300N3—C271.347 (3)
C6—H60.9300N3—C211.399 (3)
C7—C81.488 (4)N3—H3N0.86 (3)
C8—H8A0.9600C21—C221.390 (3)
C8—H8B0.9600C21—C261.395 (3)
C8—H8C0.9600C22—C231.374 (4)
C9—H9A0.9600C22—H220.9300
C9—H9B0.9600C23—C241.400 (4)
C9—H9C0.9600C23—C291.503 (4)
C10—H10A0.9600C24—C251.382 (4)
C10—H10B0.9600C24—C301.504 (4)
C10—H10C0.9600C25—C261.372 (4)
O2—C171.228 (3)C25—H250.9300
N2—C171.346 (3)C26—H260.9300
N2—C111.408 (3)C27—C281.486 (4)
N2—H2N0.98 (3)C28—H28A0.9600
C11—C161.388 (4)C28—H28B0.9600
C11—C121.393 (4)C28—H28C0.9600
C12—C131.376 (4)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—C141.401 (5)C29—H29C0.9600
C13—C191.487 (4)C30—H30A0.9600
C14—C151.366 (5)C30—H30B0.9600
C14—C201.499 (4)C30—H30C0.9600
C15—C161.378 (4)
C7—N1—C1127.2 (2)O2—C17—N2123.6 (2)
C7—N1—H1N119.3 (19)O2—C17—C18120.6 (2)
C1—N1—H1N113.3 (19)N2—C17—C18115.8 (2)
C6—C1—C2118.2 (3)C17—C18—H18A109.5
C6—C1—N1123.0 (3)C17—C18—H18B109.5
C2—C1—N1118.6 (2)H18A—C18—H18B109.5
C1—C2—C3121.8 (3)C17—C18—H18C109.5
C1—C2—H2119.1H18A—C18—H18C109.5
C3—C2—H2119.1H18B—C18—H18C109.5
C4—C3—C2119.6 (3)C13—C19—H19A109.5
C4—C3—C9121.2 (3)C13—C19—H19B109.5
C2—C3—C9119.2 (3)H19A—C19—H19B109.5
C5—C4—C3118.5 (3)C13—C19—H19C109.5
C5—C4—C10119.9 (4)H19A—C19—H19C109.5
C3—C4—C10121.7 (4)H19B—C19—H19C109.5
C4—C5—C6122.2 (3)C14—C20—H20A109.5
C4—C5—H5118.9C14—C20—H20B109.5
C6—C5—H5118.9H20A—C20—H20B109.5
C1—C6—C5119.7 (3)C14—C20—H20C109.5
C1—C6—H6120.2H20A—C20—H20C109.5
C5—C6—H6120.2H20B—C20—H20C109.5
O1—C7—N1122.5 (2)C27—N3—C21129.3 (2)
O1—C7—C8121.8 (2)C27—N3—H3N114.5 (19)
N1—C7—C8115.7 (2)C21—N3—H3N116.2 (18)
C7—C8—H8A109.5C22—C21—C26118.2 (2)
C7—C8—H8B109.5C22—C21—N3117.3 (2)
H8A—C8—H8B109.5C26—C21—N3124.5 (2)
C7—C8—H8C109.5C23—C22—C21122.9 (2)
H8A—C8—H8C109.5C23—C22—H22118.6
H8B—C8—H8C109.5C21—C22—H22118.6
C3—C9—H9A109.5C22—C23—C24119.0 (2)
C3—C9—H9B109.5C22—C23—C29119.8 (3)
H9A—C9—H9B109.5C24—C23—C29121.2 (3)
C3—C9—H9C109.5C25—C24—C23117.7 (3)
H9A—C9—H9C109.5C25—C24—C30120.7 (3)
H9B—C9—H9C109.5C23—C24—C30121.5 (3)
C4—C10—H10A109.5C26—C25—C24123.7 (3)
C4—C10—H10B109.5C26—C25—H25118.2
H10A—C10—H10B109.5C24—C25—H25118.2
C4—C10—H10C109.5C25—C26—C21118.6 (3)
H10A—C10—H10C109.5C25—C26—H26120.7
H10B—C10—H10C109.5C21—C26—H26120.7
C17—N2—C11129.2 (2)O3—C27—N3123.1 (2)
C17—N2—H2N116.1 (16)O3—C27—C28121.4 (2)
C11—N2—H2N114.7 (16)N3—C27—C28115.5 (2)
C16—C11—C12117.6 (3)C27—C28—H28A109.5
C16—C11—N2123.8 (2)C27—C28—H28B109.5
C12—C11—N2118.5 (2)H28A—C28—H28B109.5
C13—C12—C11122.6 (3)C27—C28—H28C109.5
C13—C12—H12118.7H28A—C28—H28C109.5
C11—C12—H12118.7H28B—C28—H28C109.5
C12—C13—C14119.0 (3)C23—C29—H29A109.5
C12—C13—C19120.8 (3)C23—C29—H29B109.5
C14—C13—C19120.1 (3)H29A—C29—H29B109.5
C15—C14—C13118.1 (3)C23—C29—H29C109.5
C15—C14—C20120.5 (3)H29A—C29—H29C109.5
C13—C14—C20121.3 (3)H29B—C29—H29C109.5
C14—C15—C16123.1 (3)C24—C30—H30A109.5
C14—C15—H15118.5C24—C30—H30B109.5
C16—C15—H15118.5H30A—C30—H30B109.5
C15—C16—C11119.5 (3)C24—C30—H30C109.5
C15—C16—H16120.3H30A—C30—H30C109.5
C11—C16—H16120.3H30B—C30—H30C109.5
C7—N1—C1—C629.7 (4)C19—C13—C14—C203.1 (5)
C7—N1—C1—C2154.5 (3)C13—C14—C15—C161.3 (5)
C6—C1—C2—C30.6 (4)C20—C14—C15—C16179.1 (3)
N1—C1—C2—C3175.4 (2)C14—C15—C16—C111.2 (5)
C1—C2—C3—C42.2 (4)C12—C11—C16—C152.9 (4)
C1—C2—C3—C9175.8 (3)N2—C11—C16—C15178.6 (3)
C2—C3—C4—C51.6 (4)C11—N2—C17—O21.1 (4)
C9—C3—C4—C5176.3 (3)C11—N2—C17—C18178.3 (2)
C2—C3—C4—C10178.8 (3)C27—N3—C21—C22178.8 (2)
C9—C3—C4—C103.3 (5)C27—N3—C21—C260.5 (4)
C3—C4—C5—C60.5 (5)C26—C21—C22—C230.2 (4)
C10—C4—C5—C6179.2 (3)N3—C21—C22—C23179.1 (2)
C2—C1—C6—C51.4 (4)C21—C22—C23—C240.1 (4)
N1—C1—C6—C5177.3 (3)C21—C22—C23—C29179.6 (3)
C4—C5—C6—C12.0 (5)C22—C23—C24—C250.1 (4)
C1—N1—C7—O14.0 (5)C29—C23—C24—C25179.9 (3)
C1—N1—C7—C8175.1 (2)C22—C23—C24—C30179.9 (3)
C17—N2—C11—C167.9 (4)C29—C23—C24—C300.4 (4)
C17—N2—C11—C12173.6 (3)C23—C24—C25—C260.3 (5)
C16—C11—C12—C132.1 (4)C30—C24—C25—C26179.9 (3)
N2—C11—C12—C13179.3 (2)C24—C25—C26—C210.3 (5)
C11—C12—C13—C140.4 (4)C22—C21—C26—C250.0 (4)
C11—C12—C13—C19178.2 (3)N3—C21—C26—C25179.3 (3)
C12—C13—C14—C152.1 (4)C21—N3—C27—O30.7 (4)
C19—C13—C14—C15176.5 (3)C21—N3—C27—C28178.2 (3)
C12—C13—C14—C20178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.88 (3)2.08 (3)2.956 (3)177 (3)
N3—H3N···O20.86 (3)2.14 (3)2.989 (3)172 (3)
N2—H2N···O1i0.98 (3)1.92 (3)2.893 (3)170 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H13NO
Mr163.21
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)6.749 (1), 14.281 (2), 15.005 (2)
α, β, γ (°)85.33 (1), 79.81 (1), 87.58 (1)
V3)1418.1 (3)
Z6
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.35 × 0.33 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5528, 5025, 3386
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.210, 1.03
No. of reflections5025
No. of parameters344
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: CAD-4-PC Version (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.88 (3)2.08 (3)2.956 (3)177 (3)
N3—H3N···O20.86 (3)2.14 (3)2.989 (3)172 (3)
N2—H2N···O1i0.98 (3)1.92 (3)2.893 (3)170 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

B.T.G. thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2341–o2342.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78–81.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds