organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2,6-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 November 2007; accepted 8 December 2007; online 18 December 2007)

The crystal structure of the title compound (26DMPCA), C10H12ClNO, is closely related to those of side-chain-unsubstituted N-(2,6-dimethyl­phen­yl)acetamide and side-chain-substituted 2,2,2-trichloro-N-(2,6-dimethyl­phen­yl)­acet­amide and N-(2,6-dimethyl­phen­yl)-2,2,2-trimethylacet­amide, with slightly different bond parameters. The mol­ecules in 26DMPCA are linked into chains through N—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2004[Gowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69-76.], 2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975-o1976.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2333-o2334.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2335-o2336.],d[Gowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o3364.],e[Gowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o2343-o2344.],f[Gowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o3154.]); Gowda, Kozisek et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.]); Gowda, Svoboda & Fuess (2007[Gowda, B. T., Svoboda, I.. & Fuess, H. (2007). Acta Cryst. E63, o3324.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12ClNO

  • Mr = 197.66

  • Monoclinic, P 21 /c

  • a = 13.766 (3) Å

  • b = 8.911 (2) Å

  • c = 8.538 (2) Å

  • β = 99.00 (1)°

  • V = 1034.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 300 (2) K

  • 0.50 × 0.15 × 0.12 mm

Data collection
  • Stoe Stadi-4 diffractometer

  • Absorption correction: numerical (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.952, Tmax = 0.968

  • 1318 measured reflections

  • 1188 independent reflections

  • 1053 reflections with I > 2σ(I)

  • Rint = 0.015

  • θmax = 22.5°

  • 3 standard reflections frequency: 200 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.10

  • 1188 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯O4i 0.86 (3) 2.04 (3) 2.866 (3) 161 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(2,6-dimethylphenyl)- acetamide (26DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of chemically and biologically significant compounds such as acetanilides (Gowda et al., 2007a, 2007b, 2007c, 2007d, 2007e). The structure of 26DMPCA is closely related to the side chain unsubstituted N-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda et al., 2007c) and side chain substituted, 2,2,2-trichloro-N-(2,6-dimethylphenyl)-acetamide (26DMPTCA) (Gowda et al., 2007b) and 2,2,2-trimethyl-N- (2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda et al., 2007d). The bond parameters in 26DMPCA are similar to those in 26DMPA, 26DMPTCA, 26DMPTMA and other acetanilides (Gowda et al., 2007a, 2007b, 2007c, 2007d, 2007e). The molecules in 26DMPcA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2004, 2007a,b,c,d,e,f); Gowda, Kozisek et al. (2007); Gowda, Svoboda & Fuess (2007).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2004). The purity of the compound was checked by determining its melting point. The compound was further characterized by recording its infrared and NMR spectra (Gowda et al., 2004). Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.97 Å (CH2Cl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).

Since the compound was prepared in a project that ended a few years ago, the measurement was performed using the theta range that was routinely applied at that time. In view of the fact that the structure is an organic compound, which scatters with minor intensity at high theta values we feel that the presented structural information on this compound is reliable enough in order to unambigiously solve the structure and refine the structure model reliably.

Structure description top

In the present work, the structure of 2-chloro-N-(2,6-dimethylphenyl)- acetamide (26DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of chemically and biologically significant compounds such as acetanilides (Gowda et al., 2007a, 2007b, 2007c, 2007d, 2007e). The structure of 26DMPCA is closely related to the side chain unsubstituted N-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda et al., 2007c) and side chain substituted, 2,2,2-trichloro-N-(2,6-dimethylphenyl)-acetamide (26DMPTCA) (Gowda et al., 2007b) and 2,2,2-trimethyl-N- (2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda et al., 2007d). The bond parameters in 26DMPCA are similar to those in 26DMPA, 26DMPTCA, 26DMPTMA and other acetanilides (Gowda et al., 2007a, 2007b, 2007c, 2007d, 2007e). The molecules in 26DMPcA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

For related literature, see: Gowda et al. (2004, 2007a,b,c,d,e,f); Gowda, Kozisek et al. (2007); Gowda, Svoboda & Fuess (2007).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1987); cell refinement: STADI4 (Stoe & Cie, 1987); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2-Chloro-N-(2,6-dimethylphenyl)acetamide top
Crystal data top
C10H12ClNOF(000) = 416
Mr = 197.66Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 40 reflections
a = 13.766 (3) Åθ = 18.0–20.9°
b = 8.911 (2) ŵ = 0.33 mm1
c = 8.538 (2) ÅT = 300 K
β = 99.00 (1)°Needle, colourless
V = 1034.4 (4) Å30.50 × 0.15 × 0.12 mm
Z = 4
Data collection top
Stoe Stadi-4
diffractometer
1053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 22.5°, θmin = 2.7°
Profile fitted scans 2θ/ω=1/1h = 1414
Absorption correction: numerical
(North et al., 1968)
k = 09
Tmin = 0.952, Tmax = 0.968l = 09
1318 measured reflections3 standard reflections every 200 min
1188 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4775P]
where P = (Fo2 + 2Fc2)/3
1188 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H12ClNOV = 1034.4 (4) Å3
Mr = 197.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.766 (3) ŵ = 0.33 mm1
b = 8.911 (2) ÅT = 300 K
c = 8.538 (2) Å0.50 × 0.15 × 0.12 mm
β = 99.00 (1)°
Data collection top
Stoe Stadi-4
diffractometer
1053 reflections with I > 2σ(I)
Absorption correction: numerical
(North et al., 1968)
Rint = 0.015
Tmin = 0.952, Tmax = 0.968θmax = 22.5°
1318 measured reflections3 standard reflections every 200 min
1188 independent reflections intensity decay: 2%
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.18 e Å3
1188 reflectionsΔρmin = 0.20 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57659 (6)0.28510 (10)0.14255 (11)0.0828 (3)
C20.49079 (17)0.1523 (3)0.1922 (3)0.0513 (6)
H2A0.51640.05160.18450.062*
H2B0.47980.16840.30050.062*
C30.39513 (17)0.1690 (3)0.0802 (3)0.0429 (6)
O40.39022 (12)0.1400 (2)0.06122 (19)0.0558 (5)
N50.31738 (15)0.2133 (2)0.1451 (3)0.0453 (5)
H5N0.327 (2)0.249 (3)0.240 (4)0.054*
C60.22271 (18)0.2355 (3)0.0519 (3)0.0427 (6)
C70.19078 (19)0.3809 (3)0.0168 (3)0.0523 (6)
C80.0989 (2)0.3999 (3)0.0760 (3)0.0649 (8)
H80.07530.49630.10020.078*
C90.0431 (2)0.2789 (4)0.1320 (4)0.0708 (9)
H90.01760.29350.19520.085*
C100.0758 (2)0.1364 (4)0.0957 (3)0.0646 (8)
H100.03690.05520.13420.077*
C110.16630 (19)0.1110 (3)0.0023 (3)0.0520 (6)
C120.2526 (2)0.5139 (3)0.0770 (4)0.0811 (9)
H12A0.22180.60410.03220.097*
H12B0.31660.50440.04680.097*
H12C0.25880.51810.19050.097*
C130.2003 (2)0.0464 (3)0.0398 (4)0.0719 (8)
H13A0.25430.07110.01430.086*
H13B0.14710.11520.00830.086*
H13C0.22110.05360.15220.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0568 (5)0.1009 (7)0.0869 (6)0.0204 (4)0.0005 (4)0.0113 (4)
C20.0438 (13)0.0629 (16)0.0463 (13)0.0064 (12)0.0042 (11)0.0048 (11)
C30.0452 (14)0.0458 (14)0.0374 (14)0.0021 (11)0.0058 (10)0.0056 (10)
O40.0506 (10)0.0790 (13)0.0375 (10)0.0091 (9)0.0060 (7)0.0012 (8)
N50.0404 (12)0.0594 (13)0.0347 (10)0.0028 (9)0.0016 (9)0.0026 (9)
C60.0374 (14)0.0539 (15)0.0372 (11)0.0012 (11)0.0073 (11)0.0023 (10)
C70.0493 (15)0.0548 (15)0.0522 (14)0.0009 (12)0.0062 (12)0.0040 (12)
C80.0547 (17)0.0666 (18)0.0711 (17)0.0146 (14)0.0022 (14)0.0140 (15)
C90.0447 (17)0.094 (2)0.0687 (18)0.0043 (16)0.0070 (15)0.0096 (16)
C100.0479 (16)0.076 (2)0.0657 (17)0.0097 (14)0.0029 (14)0.0065 (14)
C110.0483 (15)0.0563 (15)0.0505 (13)0.0007 (12)0.0053 (12)0.0026 (12)
C120.085 (2)0.0578 (18)0.096 (2)0.0039 (16)0.0008 (18)0.0036 (16)
C130.0662 (19)0.0567 (17)0.091 (2)0.0056 (14)0.0051 (16)0.0014 (15)
Geometric parameters (Å, º) top
Cl1—C21.770 (3)C8—H80.9300
C2—C31.509 (3)C9—C101.366 (4)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.389 (4)
C3—O41.227 (3)C10—H100.9300
C3—N51.339 (3)C11—C131.505 (4)
N5—C61.431 (3)C12—H12A0.9600
N5—H5N0.86 (3)C12—H12B0.9600
C6—C71.386 (3)C12—H12C0.9600
C6—C111.391 (3)C13—H13A0.9600
C7—C81.394 (4)C13—H13B0.9600
C7—C121.501 (4)C13—H13C0.9600
C8—C91.367 (4)
C3—C2—Cl1109.33 (17)C10—C9—C8120.4 (3)
C3—C2—H2A109.8C10—C9—H9119.8
Cl1—C2—H2A109.8C8—C9—H9119.8
C3—C2—H2B109.8C9—C10—C11121.1 (3)
Cl1—C2—H2B109.8C9—C10—H10119.5
H2A—C2—H2B108.3C11—C10—H10119.5
O4—C3—N5123.0 (2)C10—C11—C6117.7 (2)
O4—C3—C2120.8 (2)C10—C11—C13120.4 (2)
N5—C3—C2116.2 (2)C6—C11—C13121.9 (2)
C3—N5—C6121.9 (2)C7—C12—H12A109.5
C3—N5—H5N119 (2)C7—C12—H12B109.5
C6—N5—H5N117.6 (19)H12A—C12—H12B109.5
C7—C6—C11122.1 (2)C7—C12—H12C109.5
C7—C6—N5118.7 (2)H12A—C12—H12C109.5
C11—C6—N5119.2 (2)H12B—C12—H12C109.5
C6—C7—C8117.7 (2)C11—C13—H13A109.5
C6—C7—C12121.3 (2)C11—C13—H13B109.5
C8—C7—C12120.9 (3)H13A—C13—H13B109.5
C9—C8—C7120.9 (3)C11—C13—H13C109.5
C9—C8—H8119.5H13A—C13—H13C109.5
C7—C8—H8119.5H13B—C13—H13C109.5
Cl1—C2—C3—O466.1 (3)C6—C7—C8—C90.9 (4)
Cl1—C2—C3—N5115.4 (2)C12—C7—C8—C9179.4 (3)
O4—C3—N5—C62.4 (4)C7—C8—C9—C101.0 (5)
C2—C3—N5—C6179.1 (2)C8—C9—C10—C110.3 (5)
C3—N5—C6—C7103.9 (3)C9—C10—C11—C60.5 (4)
C3—N5—C6—C1175.3 (3)C9—C10—C11—C13178.5 (3)
C11—C6—C7—C80.0 (4)C7—C6—C11—C100.7 (4)
N5—C6—C7—C8179.2 (2)N5—C6—C11—C10178.5 (2)
C11—C6—C7—C12179.7 (3)C7—C6—C11—C13178.4 (3)
N5—C6—C7—C121.1 (4)N5—C6—C11—C132.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O4i0.86 (3)2.04 (3)2.866 (3)161 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H12ClNO
Mr197.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)300
a, b, c (Å)13.766 (3), 8.911 (2), 8.538 (2)
β (°) 99.00 (1)
V3)1034.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.50 × 0.15 × 0.12
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical
(North et al., 1968)
Tmin, Tmax0.952, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
1318, 1188, 1053
Rint0.015
θmax (°)22.5
(sin θ/λ)max1)0.538
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.10
No. of reflections1188
No. of parameters123
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: STADI4 (Stoe & Cie, 1987), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···O4i0.86 (3)2.04 (3)2.866 (3)161 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2333–o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2335–o2336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o2343–o2344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o3154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I.. & Fuess, H. (2007). Acta Cryst. E63, o3324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationGowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69–76.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds