organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,5-Di­phenyl­pent-4-yn-1-en-3-yl­­idene)tri­phenyl­phospho­rane

aSchool of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, Jinan 250100, People's Republic of China
*Correspondence e-mail: xli63@sdu.edu.cn

(Received 20 November 2007; accepted 22 November 2007; online 6 December 2007)

The title compound, C45H27P, was obtained as a product of the reaction of triphenyl­methyl­enephospho­rane with one molar equivalent of 1,4-diphenyl­butadiyne in toluene. The compound was very stable under ambient conditions, but rapidly decomposed in solution when exposed to the air. The P atom is tetra­coordinated in an approximately tetrahedral geometry. The length of the C≡C triple bond [1.206 (2) Å] is in the normal range.

Related literature

Related crystal structures of α,β-unsaturated-C,P ylides have been reported, see: Koollenz et al. (1996[Koollenz, G., Penn, G., Theuer, R., Fabian, W. M. F., Abd El-Nabi, H. A., Xiong, Z., Peters, K., Peters, E.-M. & von Schnering, H. G. (1996). Tetrahedron, 52, 15, 5427-5440.]).

[Scheme 1]

Experimental

Crystal data
  • C35H27P

  • Mr = 478.54

  • Triclinic, [P \overline 1]

  • a = 11.439 (2) Å

  • b = 11.609 (2) Å

  • c = 11.913 (2) Å

  • α = 116.00 (3)°

  • β = 97.24 (3)°

  • γ = 108.47 (3)°

  • V = 1281.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 383 (2) K

  • 0.27 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.972

  • 9166 measured reflections

  • 4661 independent reflections

  • 4077 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.133

  • S = 1.06

  • 4661 reflections

  • 433 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—C19 1.7294 (15)
P1—C13 1.8104 (15)
P1—C7 1.8132 (18)
P1—C1 1.8178 (19)
C20—C21 1.206 (2)
C28—C29 1.343 (2)
C19—P1—C13 108.20 (7)
C19—P1—C7 117.53 (8)
C13—P1—C7 105.18 (7)
C19—P1—C1 111.39 (7)
C13—P1—C1 107.73 (7)
C7—P1—C1 106.29 (8)
C21—C20—C19 179.42 (18)
C20—C21—C22 164.32 (18)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title molecule (Fig.1) the phosphorane atom is coordinated in a tetragonal pyramid by three C atoms of phenyl groups and one sp2-C atom. The length of the C—C triple bond is in the range of classic one, and the carbon atoms linked to the C—C triple bond lie in nearly a line.

Related literature top

Related crystal structures of α,β-unsaturated-C,P ylide have been reported, see: Koollenz et al. (1996).

Experimental top

To the solution of triphenylmethylenephosphorane(1.41 g, 5.11 mmol) in 30 ml of toluene was added 1,4-diphenylbutadiyne(1.05 g, 5.20 mmol) at room temperature, a deep red solution formed rapidly. After stirring for at least 24 h the reaction solution was filtrated. The solid residue was dried and extracted with pentane and diethyl ether, respectively. Purple red crystals were obtained suitable for X-ray diffraction analysis. (yield:1.59 g, 65.1%, d.p.: 87 °C)

Refinement top

All H atoms were positioned geometrically. All the H atoms are refined using a riding model with C—H = 0.92–1.02 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

In the title molecule (Fig.1) the phosphorane atom is coordinated in a tetragonal pyramid by three C atoms of phenyl groups and one sp2-C atom. The length of the C—C triple bond is in the range of classic one, and the carbon atoms linked to the C—C triple bond lie in nearly a line.

Related crystal structures of α,β-unsaturated-C,P ylide have been reported, see: Koollenz et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001) and SHELXTL (Sheldrick, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
(2,5-Diphenylpent-4-yn-1-en-3-ylidene)triphenylphosphorane top
Crystal data top
C35H27PZ = 2
Mr = 478.54F(000) = 504
Triclinic, P1Dx = 1.240 Mg m3
a = 11.439 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.609 (2) ÅCell parameters from 5612 reflections
c = 11.913 (2) Åθ = 2.2–23.2°
α = 116.00 (3)°µ = 0.13 mm1
β = 97.24 (3)°T = 383 K
γ = 108.47 (3)°Cubic, purple red
V = 1281.9 (4) Å30.27 × 0.25 × 0.22 mm
Data collection top
Bruker SMART
diffractometer
4661 independent reflections
Radiation source: fine-focus sealed tube4077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.966, Tmax = 0.972k = 1314
9166 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4661 reflections(Δ/σ)max = 0.002
433 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C35H27Pγ = 108.47 (3)°
Mr = 478.54V = 1281.9 (4) Å3
Triclinic, P1Z = 2
a = 11.439 (2) ÅMo Kα radiation
b = 11.609 (2) ŵ = 0.13 mm1
c = 11.913 (2) ÅT = 383 K
α = 116.00 (3)°0.27 × 0.25 × 0.22 mm
β = 97.24 (3)°
Data collection top
Bruker SMART
diffractometer
4661 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4077 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.972Rint = 0.043
9166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
4661 reflectionsΔρmin = 0.29 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.68533 (3)0.36252 (4)0.11133 (3)0.01164 (15)
C10.56521 (14)0.24722 (17)0.05062 (14)0.0144 (3)
C20.47129 (15)0.11909 (18)0.07668 (15)0.0164 (3)
C30.38692 (16)0.02065 (19)0.20295 (16)0.0187 (4)
C40.39421 (15)0.04989 (18)0.30372 (15)0.0193 (4)
C50.48380 (16)0.1796 (2)0.27692 (16)0.0206 (4)
C60.56947 (15)0.27875 (19)0.15066 (15)0.0168 (3)
C70.76840 (14)0.52987 (17)0.12146 (14)0.0147 (3)
C80.74427 (15)0.64557 (19)0.19848 (16)0.0188 (4)
C90.80051 (17)0.7702 (2)0.19820 (18)0.0242 (4)
C100.88218 (17)0.7816 (2)0.12299 (18)0.0243 (4)
C110.90960 (16)0.6678 (2)0.04955 (16)0.0223 (4)
C120.85367 (15)0.54293 (18)0.04849 (15)0.0163 (3)
C130.80689 (14)0.29439 (18)0.11596 (14)0.0142 (3)
C140.92794 (15)0.38344 (19)0.21428 (15)0.0163 (3)
C151.01613 (16)0.3280 (2)0.22863 (16)0.0197 (4)
C160.98606 (16)0.1863 (2)0.14545 (17)0.0222 (4)
C170.86805 (17)0.0994 (2)0.04615 (17)0.0224 (4)
C180.77842 (16)0.15322 (18)0.03089 (16)0.0191 (4)
C190.61694 (14)0.36449 (17)0.23325 (14)0.0135 (3)
C200.68991 (14)0.36051 (16)0.33433 (14)0.0132 (3)
C210.75197 (14)0.35583 (17)0.42069 (14)0.0156 (3)
C220.80550 (14)0.30986 (17)0.49926 (14)0.0153 (3)
C230.90307 (15)0.26281 (19)0.47269 (16)0.0199 (4)
C240.94525 (16)0.2043 (2)0.53938 (17)0.0232 (4)
C250.89336 (17)0.1928 (2)0.63495 (16)0.0233 (4)
C260.80095 (17)0.24431 (19)0.66597 (16)0.0211 (4)
C270.75698 (15)0.30231 (18)0.59963 (15)0.0182 (3)
C280.48816 (14)0.36477 (17)0.22947 (14)0.0142 (3)
C290.42860 (16)0.4080 (2)0.16165 (16)0.0205 (4)
C300.41673 (14)0.30236 (17)0.30066 (14)0.0143 (3)
C310.34931 (15)0.36725 (18)0.37822 (15)0.0167 (3)
C320.27977 (15)0.30599 (19)0.44037 (16)0.0199 (4)
C330.27776 (17)0.1813 (2)0.42805 (17)0.0234 (4)
C340.34548 (17)0.1160 (2)0.35238 (18)0.0233 (4)
C350.41519 (15)0.17774 (18)0.29087 (15)0.0185 (3)
H210.3514 (19)0.457 (2)0.3947 (19)0.024 (5)*
H50.630 (2)0.366 (2)0.1330 (17)0.017 (4)*
H10.4642 (19)0.099 (2)0.0043 (18)0.021 (5)*
H140.844 (2)0.003 (3)0.013 (2)0.042 (6)*
H20.328 (2)0.064 (2)0.2167 (19)0.025 (5)*
H60.691 (2)0.639 (2)0.2514 (19)0.023 (5)*
H230.229 (2)0.134 (2)0.4727 (19)0.027 (5)*
H110.9484 (19)0.480 (2)0.2726 (19)0.021 (5)*
H30.338 (2)0.017 (2)0.390 (2)0.023 (5)*
H100.871 (2)0.462 (3)0.004 (2)0.030 (5)*
H160.9390 (19)0.268 (2)0.4059 (19)0.021 (5)*
H240.348 (2)0.034 (3)0.343 (2)0.032 (6)*
H190.768 (2)0.240 (2)0.735 (2)0.028 (5)*
H270.475 (2)0.451 (2)0.1141 (19)0.025 (5)*
H40.487 (2)0.202 (2)0.345 (2)0.028 (5)*
H150.698 (2)0.092 (2)0.0382 (19)0.021 (5)*
H180.921 (2)0.153 (2)0.682 (2)0.029 (5)*
H131.050 (2)0.147 (2)0.1566 (19)0.027 (5)*
H121.095 (2)0.388 (2)0.295 (2)0.025 (5)*
H220.234 (2)0.355 (2)0.496 (2)0.028 (5)*
H250.461 (2)0.133 (3)0.238 (2)0.034 (6)*
H70.787 (2)0.853 (3)0.255 (2)0.042 (6)*
H200.693 (2)0.338 (2)0.621 (2)0.031 (5)*
H171.009 (2)0.167 (2)0.513 (2)0.032 (6)*
H80.924 (2)0.870 (3)0.125 (2)0.032 (6)*
H90.966 (2)0.670 (3)0.001 (2)0.033 (6)*
H260.339 (2)0.390 (2)0.1535 (18)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0118 (2)0.0110 (3)0.0152 (2)0.00594 (17)0.00547 (16)0.00793 (17)
C10.0143 (7)0.0151 (9)0.0155 (7)0.0084 (6)0.0046 (6)0.0077 (6)
C20.0179 (7)0.0137 (9)0.0211 (8)0.0078 (6)0.0067 (6)0.0106 (6)
C30.0175 (7)0.0137 (9)0.0246 (8)0.0072 (7)0.0055 (6)0.0092 (7)
C40.0178 (8)0.0172 (9)0.0186 (8)0.0085 (7)0.0038 (6)0.0054 (7)
C50.0194 (8)0.0279 (11)0.0186 (8)0.0114 (7)0.0076 (6)0.0136 (7)
C60.0149 (7)0.0145 (9)0.0229 (8)0.0053 (7)0.0066 (6)0.0115 (7)
C70.0128 (7)0.0152 (9)0.0180 (7)0.0061 (6)0.0030 (6)0.0101 (6)
C80.0160 (7)0.0181 (10)0.0266 (8)0.0090 (7)0.0082 (7)0.0131 (7)
C90.0214 (8)0.0144 (10)0.0413 (10)0.0104 (7)0.0079 (7)0.0161 (8)
C100.0196 (8)0.0217 (11)0.0393 (10)0.0057 (7)0.0050 (7)0.0248 (8)
C110.0189 (8)0.0272 (11)0.0235 (8)0.0068 (7)0.0059 (7)0.0173 (7)
C120.0159 (7)0.0156 (9)0.0182 (7)0.0049 (6)0.0052 (6)0.0105 (6)
C130.0157 (7)0.0175 (9)0.0184 (7)0.0108 (7)0.0101 (6)0.0125 (6)
C140.0171 (7)0.0167 (9)0.0202 (7)0.0086 (7)0.0095 (6)0.0113 (7)
C150.0170 (8)0.0278 (10)0.0238 (8)0.0128 (7)0.0096 (7)0.0175 (7)
C160.0237 (8)0.0287 (11)0.0337 (9)0.0196 (8)0.0181 (7)0.0231 (8)
C170.0291 (9)0.0138 (10)0.0349 (9)0.0138 (7)0.0185 (7)0.0153 (7)
C180.0179 (8)0.0154 (9)0.0238 (8)0.0075 (7)0.0086 (7)0.0089 (7)
C190.0144 (7)0.0145 (9)0.0164 (7)0.0076 (6)0.0072 (6)0.0100 (6)
C200.0139 (7)0.0100 (8)0.0165 (7)0.0055 (6)0.0075 (6)0.0064 (6)
C210.0157 (7)0.0170 (9)0.0169 (7)0.0083 (6)0.0076 (6)0.0092 (6)
C220.0144 (7)0.0110 (8)0.0164 (7)0.0031 (6)0.0014 (6)0.0061 (6)
C230.0180 (8)0.0241 (10)0.0217 (8)0.0095 (7)0.0077 (6)0.0140 (7)
C240.0187 (8)0.0281 (11)0.0282 (9)0.0135 (8)0.0066 (7)0.0162 (7)
C250.0245 (8)0.0242 (11)0.0233 (8)0.0100 (8)0.0018 (7)0.0152 (7)
C260.0253 (8)0.0200 (10)0.0176 (8)0.0069 (7)0.0070 (6)0.0110 (7)
C270.0186 (7)0.0171 (9)0.0195 (7)0.0082 (7)0.0078 (6)0.0087 (6)
C280.0147 (7)0.0127 (8)0.0172 (7)0.0077 (6)0.0062 (6)0.0074 (6)
C290.0180 (8)0.0257 (10)0.0266 (8)0.0133 (7)0.0099 (6)0.0165 (7)
C300.0108 (7)0.0135 (8)0.0167 (7)0.0054 (6)0.0034 (6)0.0063 (6)
C310.0157 (7)0.0153 (9)0.0205 (7)0.0088 (7)0.0061 (6)0.0086 (6)
C320.0185 (8)0.0191 (9)0.0244 (8)0.0095 (7)0.0109 (7)0.0107 (7)
C330.0237 (8)0.0243 (10)0.0286 (9)0.0098 (7)0.0144 (7)0.0171 (7)
C340.0268 (9)0.0169 (10)0.0340 (9)0.0115 (8)0.0148 (7)0.0161 (8)
C350.0193 (8)0.0151 (9)0.0224 (8)0.0092 (7)0.0091 (6)0.0086 (6)
Geometric parameters (Å, º) top
P1—C191.7294 (15)C17—C181.390 (2)
P1—C131.8104 (15)C17—H140.95 (3)
P1—C71.8132 (18)C18—H150.95 (2)
P1—C11.8178 (19)C19—C201.403 (2)
C1—C61.394 (2)C19—C281.4693 (19)
C1—C21.401 (2)C20—C211.206 (2)
C2—C31.389 (2)C21—C221.427 (2)
C2—H10.99 (2)C22—C231.403 (2)
C3—C41.388 (2)C22—C271.405 (2)
C3—H20.92 (2)C23—C241.382 (2)
C4—C51.392 (3)C23—H160.96 (2)
C4—H30.95 (2)C24—C251.385 (3)
C5—C61.394 (3)C24—H170.98 (2)
C5—H40.96 (2)C25—C261.384 (2)
C6—H50.94 (2)C25—H180.95 (2)
C7—C81.393 (2)C26—C271.383 (2)
C7—C121.402 (2)C26—H190.96 (2)
C8—C91.387 (3)C27—H200.96 (2)
C8—H60.94 (2)C28—C291.343 (2)
C9—C101.389 (3)C28—C301.500 (2)
C9—H70.98 (2)C29—H271.00 (2)
C10—C111.388 (3)C29—H260.96 (2)
C10—H80.97 (3)C30—C351.394 (2)
C11—C121.381 (3)C30—C311.398 (2)
C11—H90.92 (2)C31—C321.392 (2)
C12—H100.97 (2)C31—H210.96 (2)
C13—C181.393 (2)C32—C331.382 (3)
C13—C141.407 (2)C32—H220.99 (2)
C14—C151.388 (2)C33—C341.391 (2)
C14—H110.95 (2)C33—H231.02 (2)
C15—C161.390 (3)C34—C351.390 (2)
C15—H120.93 (2)C34—H240.92 (2)
C16—C171.388 (3)C35—H250.96 (2)
C16—H131.00 (2)
C19—P1—C13108.20 (7)C16—C17—C18120.08 (17)
C19—P1—C7117.53 (8)C16—C17—H14123.3 (15)
C13—P1—C7105.18 (7)C18—C17—H14116.6 (15)
C19—P1—C1111.39 (7)C17—C18—C13119.88 (16)
C13—P1—C1107.73 (7)C17—C18—H15118.6 (12)
C7—P1—C1106.29 (8)C13—C18—H15121.5 (12)
C6—C1—C2119.66 (15)C20—C19—C28121.62 (13)
C6—C1—P1121.88 (13)C20—C19—P1115.92 (10)
C2—C1—P1118.32 (12)C28—C19—P1122.42 (11)
C3—C2—C1120.33 (15)C21—C20—C19179.42 (18)
C3—C2—H1119.9 (12)C20—C21—C22164.32 (18)
C1—C2—H1119.8 (12)C23—C22—C27118.19 (15)
C4—C3—C2119.99 (17)C23—C22—C21120.51 (14)
C4—C3—H2122.2 (12)C27—C22—C21121.19 (14)
C2—C3—H2117.8 (12)C24—C23—C22120.55 (15)
C3—C4—C5119.77 (16)C24—C23—H16119.4 (12)
C3—C4—H3120.6 (13)C22—C23—H16120.1 (12)
C5—C4—H3119.6 (13)C23—C24—C25120.65 (15)
C4—C5—C6120.66 (16)C23—C24—H17117.8 (13)
C4—C5—H4120.6 (13)C25—C24—H17121.4 (13)
C6—C5—H4118.8 (13)C26—C25—C24119.34 (16)
C1—C6—C5119.49 (16)C26—C25—H18118.5 (12)
C1—C6—H5120.1 (11)C24—C25—H18122.1 (12)
C5—C6—H5120.4 (11)C27—C26—C25120.76 (15)
C8—C7—C12119.35 (16)C27—C26—H19120.4 (13)
C8—C7—P1120.06 (12)C25—C26—H19118.8 (13)
C12—C7—P1120.55 (13)C26—C27—C22120.41 (15)
C9—C8—C7119.84 (15)C26—C27—H20121.1 (13)
C9—C8—H6120.2 (13)C22—C27—H20118.5 (13)
C7—C8—H6119.9 (13)C29—C28—C19125.09 (15)
C8—C9—C10120.66 (16)C29—C28—C30118.87 (14)
C8—C9—H7119.9 (15)C19—C28—C30115.91 (13)
C10—C9—H7119.4 (15)C28—C29—H27120.4 (11)
C11—C10—C9119.51 (18)C28—C29—H26118.9 (12)
C11—C10—H8119.9 (13)H27—C29—H26120.5 (16)
C9—C10—H8120.5 (12)C35—C30—C31118.12 (15)
C12—C11—C10120.36 (16)C35—C30—C28120.97 (13)
C12—C11—H9116.2 (15)C31—C30—C28120.91 (15)
C10—C11—H9123.4 (15)C32—C31—C30120.45 (16)
C11—C12—C7120.22 (16)C32—C31—H21116.8 (12)
C11—C12—H10120.6 (14)C30—C31—H21122.6 (12)
C7—C12—H10119.1 (14)C33—C32—C31120.64 (15)
C18—C13—C14120.01 (15)C33—C32—H22120.8 (13)
C18—C13—P1120.91 (12)C31—C32—H22118.5 (13)
C14—C13—P1118.87 (12)C32—C33—C34119.68 (16)
C15—C14—C13119.37 (16)C32—C33—H23122.9 (12)
C15—C14—H11119.8 (12)C34—C33—H23117.5 (12)
C13—C14—H11120.7 (12)C35—C34—C33119.51 (18)
C14—C15—C16120.36 (16)C35—C34—H24118.0 (13)
C14—C15—H12117.8 (13)C33—C34—H24122.4 (14)
C16—C15—H12121.8 (13)C34—C35—C30121.56 (15)
C17—C16—C15120.25 (15)C34—C35—H25119.7 (14)
C17—C16—H13120.0 (12)C30—C35—H25118.7 (14)
C15—C16—H13119.8 (13)

Experimental details

Crystal data
Chemical formulaC35H27P
Mr478.54
Crystal system, space groupTriclinic, P1
Temperature (K)383
a, b, c (Å)11.439 (2), 11.609 (2), 11.913 (2)
α, β, γ (°)116.00 (3), 97.24 (3), 108.47 (3)
V3)1281.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.27 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.966, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
9166, 4661, 4077
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.133, 1.06
No. of reflections4661
No. of parameters433
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.29

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001) and SHELXTL (Sheldrick, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) top
P1—C191.7294 (15)P1—C11.8178 (19)
P1—C131.8104 (15)C20—C211.206 (2)
P1—C71.8132 (18)C28—C291.343 (2)
C19—P1—C13108.20 (7)C13—P1—C1107.73 (7)
C19—P1—C7117.53 (8)C7—P1—C1106.29 (8)
C13—P1—C7105.18 (7)C21—C20—C19179.42 (18)
C19—P1—C1111.39 (7)C20—C21—C22164.32 (18)
 

Acknowledgements

This work was supported by the NSFC (Nos. 20572062 and 20372042) and by the Doctoral Program of the MOE (Nos. 20050422010 and 20050422011).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoollenz, G., Penn, G., Theuer, R., Fabian, W. M. F., Abd El-Nabi, H. A., Xiong, Z., Peters, K., Peters, E.-M. & von Schnering, H. G. (1996). Tetrahedron, 52, 15, 5427–5440.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds