organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­hydroxy­phenyl 3,4,5-tri­meth­oxy­benzoate

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 13 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title compound, C16H16O7, the dihedral angle between the two benzene rings is 82.02 (7)°. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into a two-dimensional network.

Related literature

For details of the general background of whitening agents, see: Nerya et al. (2003[Nerya, O., Vaya, J., Musa, R., Izrael, S., Arie, R. B. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201-1207.]); Dawley et al. (1993[Dawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609-610.]); Maeda et al. (1991[Maeda, K. & Fukuda, M. (1991). J. Soc. Cosmet. Chem. 42, 361-368.]); Lee, et al. (2007[Lee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bio. Med. Chem. Lett. 17, 5462-5464.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O7

  • Mr = 320.29

  • Monoclinic, P 21 /c

  • a = 11.552 (2) Å

  • b = 12.817 (3) Å

  • c = 10.572 (2) Å

  • β = 105.57 (3)°

  • V = 1507.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 (2) K

  • 0.2 × 0.2 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4251 measured reflections

  • 3444 independent reflections

  • 2176 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 400 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.126

  • S = 1.01

  • 3444 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O3i 0.83 (3) 2.13 (4) 2.882 (2) 150 (3)
O7—H7O⋯O4ii 0.84 (3) 2.02 (3) 2.855 (3) 179 (3)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A number of whitening agents (Nerya et al., 2003; Dawley et al., 1993; Maeda et al., 1991) are containing hydroxyl (Lee et al., 2007), aromatic, alkene, carbonyl and ether inside their structure and acting as a specific functional group to make the skin white by inhibiting the produce of melanin. In the course of our work on the development of new whitening agents, to complement the inadequacy of current whitening agents and maximize the inhibitory effects of melanin creation, we have synthesized the title compound. Herein we report the molecular and crystal structure of 3,4-dihydroxyphenyl 3,4,5-trimethoxybenzoate (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety (except C15 methyl group) and a 3,4-dihydroxyphenyl ring are essentially planar, with a mean devation of 0.018 Å and 0.008 Å, respectively, from the least-squares plane defined by the ten and eght, respectively, constituent aoms. C15H3 methyl group direct toward upside in the plane(Fig. 2), and the angle of C4—O2—C15 is 116.9 (2)°. The dihedral angle between two phenyl rings is 82.02(0.07)°. The intermolecular O—H···O hydrogen bonds link the molecules into a two-dimensional network (Table 1 & Fig.2).

Related literature top

For details of the general background of whitening agents, see: Nerya et al. (2003); Dawley et al. (1993); Maeda et al. (1991); Lee, et al. (2007).

Experimental top

The synthesis of the title compound started from sesamol (1 mmol) in THF and 3,4,5-trimethoxybenzoyl chloride (1.2 mmol) with NaH(1.5 mmol) as a catalyst by nucleophilic acyl substitution, then the deprotection of methylenedioxy group was accomplished by treatment of Pb(OAc)4 (1.5 mmol) in refluxing benzene, which generated the intermediate alkoxylated ester. Hydrolysis of alkoxylated ester in aqueous acetic acid gave a mixture as yellowish oil. The mixture was chromatographed on silica gel (30/1 = dichloromethane/ethyl acetate) to give the title compound as light yellow solid (61.8%, m.p. 408 K). Single crystals were obtained by slow evaporation from a solution of the title compound in ethyl acetate at room temperature.

Refinement top

Atoms H6O and H7O of the OH group were found in a difference Fourier map and refined freely with an isotropic displacement parameter. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Structure description top

A number of whitening agents (Nerya et al., 2003; Dawley et al., 1993; Maeda et al., 1991) are containing hydroxyl (Lee et al., 2007), aromatic, alkene, carbonyl and ether inside their structure and acting as a specific functional group to make the skin white by inhibiting the produce of melanin. In the course of our work on the development of new whitening agents, to complement the inadequacy of current whitening agents and maximize the inhibitory effects of melanin creation, we have synthesized the title compound. Herein we report the molecular and crystal structure of 3,4-dihydroxyphenyl 3,4,5-trimethoxybenzoate (Fig. 1).

The 3,4,5-trimethoxybenzoic acid moiety (except C15 methyl group) and a 3,4-dihydroxyphenyl ring are essentially planar, with a mean devation of 0.018 Å and 0.008 Å, respectively, from the least-squares plane defined by the ten and eght, respectively, constituent aoms. C15H3 methyl group direct toward upside in the plane(Fig. 2), and the angle of C4—O2—C15 is 116.9 (2)°. The dihedral angle between two phenyl rings is 82.02(0.07)°. The intermolecular O—H···O hydrogen bonds link the molecules into a two-dimensional network (Table 1 & Fig.2).

For details of the general background of whitening agents, see: Nerya et al. (2003); Dawley et al. (1993); Maeda et al. (1991); Lee, et al. (2007).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 30% probability level.
[Figure 2] Fig. 2. The O—H···O hydrogen bond interaction (dotted lines) in the title compound. [Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, y + 1/2, -z + 1/2; (iii) -x + 1, y - 1/2, -z + 1/2.]
3,4-Dihydroxyphenyl 3,4,5-trimethoxybenzoate top
Crystal data top
C16H16O7F(000) = 672
Mr = 320.29Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.552 (2) Åθ = 11.4–14.2°
b = 12.817 (3) ŵ = 0.11 mm1
c = 10.572 (2) ÅT = 295 K
β = 105.57 (3)°Block, colorless
V = 1507.9 (6) Å30.2 × 0.2 × 0.16 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 27.5°, θmin = 2.4°
Non–profiled ω/2θ scansh = 014
4251 measured reflectionsk = 162
3444 independent reflectionsl = 1313
2176 reflections with I > 2σ(I)3 standard reflections every 400 reflections
Rint = 0.030 intensity decay: 2%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3432P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.23 e Å3
3444 reflectionsΔρmin = 0.20 e Å3
219 parameters
Crystal data top
C16H16O7V = 1507.9 (6) Å3
Mr = 320.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.552 (2) ŵ = 0.11 mm1
b = 12.817 (3) ÅT = 295 K
c = 10.572 (2) Å0.2 × 0.2 × 0.16 mm
β = 105.57 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
4251 measured reflections3 standard reflections every 400 reflections
3444 independent reflections intensity decay: 2%
2176 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
3444 reflectionsΔρmin = 0.20 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00088 (14)0.18103 (12)0.14141 (16)0.0519 (4)
O20.09341 (15)0.33144 (11)0.01850 (15)0.0509 (4)
O30.27941 (14)0.29798 (11)0.07081 (15)0.0463 (4)
O40.41661 (13)0.07744 (11)0.09149 (15)0.0434 (4)
O50.24027 (13)0.13828 (11)0.11272 (16)0.0482 (4)
O60.24533 (18)0.48003 (14)0.05695 (17)0.0619 (5)
H6O0.261 (3)0.541 (3)0.030 (3)0.107 (12)*
O70.39231 (17)0.54885 (12)0.17566 (19)0.0554 (5)
H7O0.448 (3)0.556 (2)0.244 (3)0.083 (11)*
C10.25245 (18)0.04039 (15)0.07245 (19)0.0339 (5)
C20.15217 (18)0.05794 (16)0.1181 (2)0.0374 (5)
H20.12140.00470.15940.045*
C30.09822 (18)0.15538 (17)0.1017 (2)0.0384 (5)
C40.14486 (19)0.23470 (15)0.0401 (2)0.0369 (5)
C50.24393 (19)0.21565 (15)0.00864 (19)0.0348 (5)
C60.29865 (18)0.11831 (15)0.0089 (2)0.0350 (5)
H60.36570.10540.02160.042*
C70.31335 (19)0.06225 (15)0.09277 (19)0.0353 (5)
C80.28605 (19)0.24148 (15)0.1316 (2)0.0388 (5)
C90.2473 (2)0.31040 (16)0.0299 (2)0.0421 (5)
H90.19660.28810.04950.05*
C100.28413 (19)0.41347 (16)0.0461 (2)0.0402 (5)
C110.35900 (18)0.44546 (15)0.1663 (2)0.0383 (5)
C120.3939 (2)0.37553 (18)0.2672 (2)0.0441 (5)
H120.44240.39780.34780.053*
C130.3579 (2)0.27155 (17)0.2510 (2)0.0444 (5)
H130.3820.2240.31940.053*
C140.0468 (2)0.1053 (2)0.2138 (2)0.0520 (6)
H14A0.01530.08510.29010.078*
H14B0.11310.13460.24050.078*
H14C0.07370.04520.15960.078*
C150.0859 (2)0.38926 (18)0.1315 (3)0.0591 (7)
H15A0.15180.37060.20480.089*
H15B0.08930.46260.11410.089*
H15C0.01150.37350.15140.089*
C160.3815 (2)0.28499 (19)0.1210 (3)0.0572 (7)
H16A0.36590.23040.18550.086*
H16B0.39710.3490.16060.086*
H16C0.45020.26680.05050.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0493 (9)0.0470 (9)0.0685 (11)0.0157 (8)0.0314 (8)0.0152 (8)
O20.0682 (11)0.0364 (8)0.0530 (9)0.0229 (8)0.0249 (8)0.0078 (7)
O30.0567 (10)0.0310 (8)0.0592 (9)0.0067 (7)0.0293 (8)0.0079 (7)
O40.0393 (9)0.0319 (8)0.0603 (10)0.0038 (7)0.0155 (7)0.0008 (7)
O50.0411 (8)0.0249 (7)0.0802 (12)0.0018 (7)0.0189 (8)0.0017 (7)
O60.0868 (14)0.0336 (9)0.0539 (11)0.0055 (9)0.0011 (9)0.0021 (8)
O70.0614 (11)0.0327 (9)0.0638 (11)0.0104 (8)0.0026 (9)0.0078 (8)
C10.0359 (11)0.0267 (10)0.0374 (11)0.0018 (9)0.0069 (9)0.0021 (9)
C20.0389 (11)0.0303 (10)0.0433 (12)0.0017 (9)0.0112 (9)0.0036 (9)
C30.0375 (11)0.0394 (12)0.0395 (12)0.0068 (9)0.0123 (10)0.0023 (10)
C40.0434 (12)0.0304 (11)0.0357 (11)0.0090 (9)0.0086 (9)0.0013 (9)
C50.0426 (12)0.0277 (10)0.0345 (11)0.0003 (9)0.0110 (9)0.0001 (9)
C60.0350 (11)0.0305 (10)0.0408 (12)0.0022 (9)0.0124 (9)0.0043 (9)
C70.0381 (12)0.0283 (10)0.0379 (11)0.0007 (9)0.0075 (9)0.0026 (9)
C80.0370 (11)0.0251 (10)0.0575 (14)0.0007 (9)0.0182 (10)0.0037 (10)
C90.0418 (12)0.0322 (11)0.0489 (13)0.0027 (10)0.0066 (10)0.0087 (10)
C100.0445 (12)0.0290 (11)0.0457 (13)0.0012 (9)0.0096 (10)0.0008 (10)
C110.0381 (11)0.0278 (10)0.0494 (13)0.0009 (9)0.0124 (10)0.0085 (10)
C120.0439 (12)0.0441 (13)0.0420 (12)0.0013 (10)0.0074 (10)0.0054 (10)
C130.0477 (13)0.0381 (12)0.0487 (13)0.0031 (10)0.0150 (11)0.0049 (10)
C140.0499 (13)0.0566 (15)0.0554 (15)0.0032 (12)0.0241 (12)0.0083 (12)
C150.0704 (17)0.0391 (13)0.0760 (18)0.0060 (12)0.0340 (15)0.0078 (13)
C160.0606 (16)0.0463 (14)0.0754 (17)0.0061 (12)0.0369 (14)0.0136 (13)
Geometric parameters (Å, º) top
O1—C31.361 (2)C5—C61.388 (3)
O1—C141.424 (3)C6—H60.93
O2—C41.367 (2)C8—C131.366 (3)
O2—C151.428 (3)C8—C91.371 (3)
O3—C51.363 (2)C9—C101.384 (3)
O3—C161.427 (3)C9—H90.93
O4—C71.212 (2)C10—C111.393 (3)
O5—C71.343 (2)C11—C121.369 (3)
O5—C81.419 (2)C12—C131.393 (3)
O6—C101.362 (3)C12—H120.93
O6—H6O0.83 (3)C13—H130.93
O7—C111.376 (2)C14—H14A0.96
O7—H7O0.84 (3)C14—H14B0.96
C1—C21.388 (3)C14—H14C0.96
C1—C61.388 (3)C15—H15A0.96
C1—C71.480 (3)C15—H15B0.96
C2—C31.386 (3)C15—H15C0.96
C2—H20.93C16—H16A0.96
C3—C41.391 (3)C16—H16B0.96
C4—C51.397 (3)C16—H16C0.96
C3—O1—C14117.83 (17)C10—C9—H9120.2
C4—O2—C15116.87 (18)O6—C10—C9118.3 (2)
C5—O3—C16118.32 (16)O6—C10—C11122.40 (19)
C7—O5—C8118.20 (16)C9—C10—C11119.3 (2)
C10—O6—H6O109 (2)C12—C11—O7123.8 (2)
C11—O7—H7O108 (2)C12—C11—C10119.94 (19)
C2—C1—C6121.14 (18)O7—C11—C10116.3 (2)
C2—C1—C7120.15 (18)C11—C12—C13121.0 (2)
C6—C1—C7118.70 (18)C11—C12—H12119.5
C3—C2—C1119.46 (19)C13—C12—H12119.5
C3—C2—H2120.3C8—C13—C12118.1 (2)
C1—C2—H2120.3C8—C13—H13120.9
O1—C3—C2124.49 (19)C12—C13—H13120.9
O1—C3—C4115.54 (18)O1—C14—H14A109.5
C2—C3—C4119.97 (19)O1—C14—H14B109.5
O2—C4—C3122.36 (19)H14A—C14—H14B109.5
O2—C4—C5117.33 (19)O1—C14—H14C109.5
C3—C4—C5120.22 (18)H14A—C14—H14C109.5
O3—C5—C6125.10 (18)H14B—C14—H14C109.5
O3—C5—C4115.13 (17)O2—C15—H15A109.5
C6—C5—C4119.77 (18)O2—C15—H15B109.5
C1—C6—C5119.39 (19)H15A—C15—H15B109.5
C1—C6—H6120.3O2—C15—H15C109.5
C5—C6—H6120.3H15A—C15—H15C109.5
O4—C7—O5123.18 (18)H15B—C15—H15C109.5
O4—C7—C1124.89 (19)O3—C16—H16A109.5
O5—C7—C1111.93 (17)O3—C16—H16B109.5
C13—C8—C9122.2 (2)H16A—C16—H16B109.5
C13—C8—O5120.3 (2)O3—C16—H16C109.5
C9—C8—O5117.3 (2)H16A—C16—H16C109.5
C8—C9—C10119.5 (2)H16B—C16—H16C109.5
C8—C9—H9120.2
C6—C1—C2—C30.9 (3)C8—O5—C7—O40.8 (3)
C7—C1—C2—C3178.15 (18)C8—O5—C7—C1179.03 (18)
C14—O1—C3—C25.1 (3)C2—C1—C7—O4158.2 (2)
C14—O1—C3—C4175.30 (19)C6—C1—C7—O421.0 (3)
C1—C2—C3—O1179.38 (19)C2—C1—C7—O522.1 (3)
C1—C2—C3—C40.2 (3)C6—C1—C7—O5158.83 (18)
C15—O2—C4—C360.4 (3)C7—O5—C8—C1379.4 (3)
C15—O2—C4—C5123.0 (2)C7—O5—C8—C9105.9 (2)
O1—C3—C4—O21.2 (3)C13—C8—C9—C101.8 (3)
C2—C3—C4—O2178.35 (19)O5—C8—C9—C10176.44 (19)
O1—C3—C4—C5177.74 (18)C8—C9—C10—O6179.3 (2)
C2—C3—C4—C51.9 (3)C8—C9—C10—C110.7 (3)
C16—O3—C5—C60.8 (3)O6—C10—C11—C12179.1 (2)
C16—O3—C5—C4178.79 (19)C9—C10—C11—C120.9 (3)
O2—C4—C5—O31.2 (3)O6—C10—C11—O70.1 (3)
C3—C4—C5—O3177.91 (18)C9—C10—C11—O7179.9 (2)
O2—C4—C5—C6179.11 (19)O7—C11—C12—C13179.4 (2)
C3—C4—C5—C62.4 (3)C10—C11—C12—C131.5 (3)
C2—C1—C6—C50.3 (3)C9—C8—C13—C121.3 (3)
C7—C1—C6—C5178.76 (18)O5—C8—C13—C12175.74 (19)
O3—C5—C6—C1179.05 (18)C11—C12—C13—C80.4 (3)
C4—C5—C6—C11.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O3i0.83 (3)2.13 (4)2.882 (2)150 (3)
O7—H7O···O4ii0.84 (3)2.02 (3)2.855 (3)179 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16O7
Mr320.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.552 (2), 12.817 (3), 10.572 (2)
β (°) 105.57 (3)
V3)1507.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.2 × 0.2 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4251, 3444, 2176
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 1.02
No. of reflections3444
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C31.361 (2)O5—C81.419 (2)
O2—C41.367 (2)O6—C101.362 (3)
O3—C51.363 (2)O6—H6O0.83 (3)
O4—C71.212 (2)O7—C111.376 (2)
O5—C71.343 (2)O7—H7O0.84 (3)
C3—O1—C14117.83 (17)O4—C7—O5123.18 (18)
C4—O2—C15116.87 (18)O5—C7—C1111.93 (17)
C5—O3—C16118.32 (16)O6—C10—C9118.3 (2)
C7—O5—C8118.20 (16)O7—C11—C10116.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O3i0.83 (3)2.13 (4)2.882 (2)150 (3)
O7—H7O···O4ii0.84 (3)2.02 (3)2.855 (3)179 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

X-ray data were collected at the Center for Research Facilities in Chungnam National University. This work was partially supported by the New Universities for Regional Innovation fund (05-Na-A-01) from the Ministry of Education and Human Resources Department, Republic of Korea.

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationDawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609–610.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). Appl. Cryst. 32, 837–838.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bio. Med. Chem. Lett. 17, 5462–5464.  Web of Science CrossRef CAS Google Scholar
First citationMaeda, K. & Fukuda, M. (1991). J. Soc. Cosmet. Chem. 42, 361–368.  CAS Google Scholar
First citationNerya, O., Vaya, J., Musa, R., Izrael, S., Arie, R. B. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201–1207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds