organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 4-hy­droxy­benzaldehyde

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574199, India, dDepartment Chemistry, Sambhram Institute of Technology, Bangalore 560 097, India, and eDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 22 November 2007; accepted 27 November 2007; online 6 December 2007)

This is a redetermination of the structure of the title compound, C7H6O2, which was first reported by Iwasaki [Acta Cryst. (1977[Iwasaki, F. (1977). Acta Cryst. B33, 1646-1648.]), B33, 1646–1648]. The results are obtained with greater precision in the present study. Crystal packing is stabilized by inter­molecular O—H⋯O inter­actions between the hydroxyl and aldehyde groups which link the mol­ecules into chains in a zigzag pattern along the [110] plane of the unit cell.

Related literature

For the previous structure determination, see: Iwasaki (1977[Iwasaki, F. (1977). Acta Cryst. B33, 1646-1648.]). Forrelated structures, see: Matos Beja et al. (1997[Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494-496.], 2000[Matos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A. & Serra, A. C. (2000). Acta Cryst. C56, 354-355.]); Paixão et al. (2000[Paixão, J. A., Matos Beja, A., Ramos Silva, M., Alte da Veiga, L. & Serra, A. C. (2000). Acta Cryst. C56, 1348-1350.]); Silva et al. (2004[Silva, M. R., Paixão, J. A., Beja, A. M., Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d'A. (2004). Acta Cryst. E60, o84-o85.]). For related literature, see: Antonucci (1978[Antonucci, J. M. (1978). J. Dent. Res. 57, 500-505.]); Bigi et al. (1999[Bigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem. 64, 1033-1035.]); Dean (1963[Dean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds. London: Butterworth.]); Samal et al. (1999[Samal, S., Das, R. R., Sahoo, D. & Acharya, S. (1999). Polym. Int. 44, 41-48.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6O2

  • Mr = 122.12

  • Monoclinic, P 21 /c

  • a = 6.6992 (8) Å

  • b = 13.5550 (12) Å

  • c = 7.1441 (11) Å

  • β = 112.871 (16)°

  • V = 597.74 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.49 × 0.37 × 0.24 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.949, Tmax = 0.970

  • 3559 measured reflections

  • 1170 independent reflections

  • 841 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.117

  • S = 1.06

  • 1170 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 (3) 1.92 (3) 2.731 (2) 171 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlisPro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 4-hydroxy benzaldehyde (Fig. 1) is used in the preparation of aldehyde methacrylates and finds application in the manufacture of dental materials which can form strong and durable bonds with dentin (Antonucci, 1978). It is used in the preparation of benzopyrans and have wide applications in the perfume, cosmetic and pharmaceutical industry (Dean, 1963; Bigi et al., 1999). They are also used in the preparation of chelating resins (Samal et al., 1999).

The crystal structures of p-hydroxybenzaldehyde (Iwasaki, 1977), 2-bromo-5-hydroxybenzaldehyde (Matos Beja et al., 2000), a new polymorph of 2-bromo-5-hydroxybenzaldehyde (Silva et al., 2004), 3-hydroxybenzaldehyde (Paixão et al., 2000) and 2,4-dibromo-5-hydroxybenzaldehyde, (Matos Beja et al., 1997) have been reported. In view of the importance of the title compound in the pharmaceutical industry, this paper reports a redetermination of the crystal structure with greater precision and accuracy. Crystal packing is stabilized by intermolecular O—H···O interactions between the hydroxyl and aldlehyde groups which link the molecules into chains in a zigzag pattern along the [110] plane of the unit cell (Fig. 2).

Related literature top

For related structures, see: Matos Beja et al. (1997, 2000); Iwasaki (1977); Paixão et al. (2000); Silva et al. (2004). For related literature, see: Antonucci (1978); Bigi et al. (1999); Dean (1963); Samal et al. (1999).

Experimental top

A sample of 4-hydroxybenzaldehyde was obtained from Sigma–Aldrich and was recrystallized from ethylacetate by slow evaporation to obtain good quality crystals (m.p.: 385–387 K).

Refinement top

The hydroxyl H was located in a difference Fourier map and all parameters were freely refined. All other H atoms were placed in their calculated places and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.21Ueq(C).

Structure description top

The title compound, 4-hydroxy benzaldehyde (Fig. 1) is used in the preparation of aldehyde methacrylates and finds application in the manufacture of dental materials which can form strong and durable bonds with dentin (Antonucci, 1978). It is used in the preparation of benzopyrans and have wide applications in the perfume, cosmetic and pharmaceutical industry (Dean, 1963; Bigi et al., 1999). They are also used in the preparation of chelating resins (Samal et al., 1999).

The crystal structures of p-hydroxybenzaldehyde (Iwasaki, 1977), 2-bromo-5-hydroxybenzaldehyde (Matos Beja et al., 2000), a new polymorph of 2-bromo-5-hydroxybenzaldehyde (Silva et al., 2004), 3-hydroxybenzaldehyde (Paixão et al., 2000) and 2,4-dibromo-5-hydroxybenzaldehyde, (Matos Beja et al., 1997) have been reported. In view of the importance of the title compound in the pharmaceutical industry, this paper reports a redetermination of the crystal structure with greater precision and accuracy. Crystal packing is stabilized by intermolecular O—H···O interactions between the hydroxyl and aldlehyde groups which link the molecules into chains in a zigzag pattern along the [110] plane of the unit cell (Fig. 2).

For related structures, see: Matos Beja et al. (1997, 2000); Iwasaki (1977); Paixão et al. (2000); Silva et al. (2004). For related literature, see: Antonucci (1978); Bigi et al. (1999); Dean (1963); Samal et al. (1999).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, showing the atom numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing for the title compound viewed down the c axis. Dashed lines indicate C—H···O intermolecular hydrogen bonds.
4-Hydroxybenzaldehyde top
Crystal data top
C7H6O2F(000) = 256
Mr = 122.12Dx = 1.357 Mg m3
Monoclinic, P21/cMelting point = 385–387 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.6992 (8) ÅCell parameters from 1669 reflections
b = 13.5550 (12) Åθ = 5.3–29.0°
c = 7.1441 (11) ŵ = 0.10 mm1
β = 112.871 (16)°T = 296 K
V = 597.74 (15) Å3Chunk, colourless
Z = 40.49 × 0.37 × 0.24 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1170 independent reflections
Radiation source: fine-focus sealed tube841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.5081 pixels mm-1θmax = 26.0°, θmin = 5.5°
φ and ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1516
Tmin = 0.949, Tmax = 0.970l = 88
3559 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
1170 reflections(Δ/σ)max < 0.001
86 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H6O2V = 597.74 (15) Å3
Mr = 122.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6992 (8) ŵ = 0.10 mm1
b = 13.5550 (12) ÅT = 296 K
c = 7.1441 (11) Å0.49 × 0.37 × 0.24 mm
β = 112.871 (16)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
1170 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
841 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.970Rint = 0.022
3559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.13 e Å3
1170 reflectionsΔρmin = 0.18 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1345 (2)0.72809 (8)0.1335 (2)0.0652 (4)
H10.016 (4)0.7359 (17)0.140 (3)0.092 (8)*
O20.2691 (2)0.26982 (8)0.3786 (2)0.0633 (4)
C10.1834 (2)0.63218 (11)0.1834 (2)0.0458 (4)
C20.3718 (2)0.59530 (11)0.1700 (2)0.0499 (4)
H20.45870.63590.12840.060*
C30.4277 (2)0.49829 (11)0.2187 (2)0.0465 (4)
H30.55420.47400.21120.056*
C40.2990 (2)0.43542 (11)0.2793 (2)0.0417 (4)
C50.1100 (2)0.47379 (11)0.2921 (2)0.0452 (4)
H50.02180.43300.33170.054*
C60.0543 (2)0.57089 (11)0.2467 (2)0.0470 (4)
H60.06980.59590.25810.056*
C70.3667 (3)0.33405 (12)0.3294 (2)0.0509 (4)
H70.49810.31610.32350.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0635 (8)0.0422 (7)0.1018 (10)0.0034 (6)0.0451 (7)0.0091 (6)
O20.0586 (7)0.0434 (7)0.0917 (9)0.0019 (5)0.0332 (7)0.0049 (6)
C10.0463 (8)0.0385 (8)0.0547 (9)0.0030 (6)0.0219 (7)0.0039 (7)
C20.0472 (9)0.0463 (9)0.0636 (10)0.0078 (7)0.0297 (8)0.0039 (7)
C30.0372 (7)0.0483 (9)0.0582 (9)0.0026 (6)0.0231 (7)0.0089 (7)
C40.0396 (8)0.0404 (8)0.0447 (8)0.0013 (6)0.0157 (6)0.0058 (6)
C50.0417 (8)0.0450 (9)0.0536 (9)0.0050 (7)0.0235 (7)0.0012 (7)
C60.0404 (8)0.0466 (9)0.0593 (9)0.0020 (7)0.0252 (7)0.0018 (7)
C70.0430 (8)0.0455 (9)0.0648 (10)0.0012 (7)0.0217 (8)0.0055 (7)
Geometric parameters (Å, º) top
O1—C11.354 (2)C3—H30.9300
O1—H10.82 (3)C4—C51.404 (2)
O2—C71.219 (2)C4—C71.448 (2)
C1—C21.395 (2)C5—C61.372 (2)
C1—C61.395 (2)C5—H50.9300
C2—C31.374 (2)C6—H60.9300
C2—H20.9300C7—H70.9300
C3—C41.395 (2)
C1—O1—H1104.4 (16)C3—C4—C7118.98 (13)
O1—C1—C2117.30 (14)C5—C4—C7122.62 (13)
O1—C1—C6122.68 (14)C6—C5—C4120.61 (13)
C2—C1—C6120.02 (14)C6—C5—H5119.7
C3—C2—C1119.35 (14)C4—C5—H5119.7
C3—C2—H2120.3C5—C6—C1120.12 (14)
C1—C2—H2120.3C5—C6—H6119.9
C2—C3—C4121.50 (14)C1—C6—H6119.9
C2—C3—H3119.3O2—C7—C4126.70 (15)
C4—C3—H3119.3O2—C7—H7116.7
C3—C4—C5118.39 (13)C4—C7—H7116.7
O1—C1—C2—C3179.85 (14)C7—C4—C5—C6178.77 (14)
C6—C1—C2—C30.3 (2)C4—C5—C6—C11.2 (2)
C1—C2—C3—C40.7 (2)O1—C1—C6—C5178.90 (14)
C2—C3—C4—C50.8 (2)C2—C1—C6—C51.2 (2)
C2—C3—C4—C7179.78 (14)C3—C4—C7—O2177.67 (15)
C3—C4—C5—C60.2 (2)C5—C4—C7—O23.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (3)1.92 (3)2.731 (2)171 (2)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H6O2
Mr122.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.6992 (8), 13.5550 (12), 7.1441 (11)
β (°) 112.871 (16)
V3)597.74 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.37 × 0.24
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.949, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3559, 1170, 841
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.06
No. of reflections1170
No. of parameters86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (3)1.92 (3)2.731 (2)171 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

MTS thanks the Sambhram Institute of Technology for the use of their research facilities. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationAntonucci, J. M. (1978). J. Dent. Res. 57, 500–505.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBigi, F., Chesini, L., Maggi, R. & Sartori, G. (1999). J. Org. Chem. 64, 1033–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds. London: Butterworth.  Google Scholar
First citationIwasaki, F. (1977). Acta Cryst. B33, 1646–1648.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMatos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A., Pereira, M. M. & Serra, A. C. (1997). Acta Cryst. C53, 494–496.  CSD CrossRef IUCr Journals Google Scholar
First citationMatos Beja, A., Paixão, J. A., Ramos Silva, M., Alte da Veiga, L., Rocha Gonsalves, A. M. d'A. & Serra, A. C. (2000). Acta Cryst. C56, 354–355.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlisPro (Version 171.31.8) and CrysAlis RED (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPaixão, J. A., Matos Beja, A., Ramos Silva, M., Alte da Veiga, L. & Serra, A. C. (2000). Acta Cryst. C56, 1348–1350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamal, S., Das, R. R., Sahoo, D. & Acharya, S. (1999). Polym. Int. 44, 41–48.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSilva, M. R., Paixão, J. A., Beja, A. M., Sobral, A. J. F. N. & Rocha Gonsalves, A. M. d'A. (2004). Acta Cryst. E60, o84–o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds