metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­bromidozinc(II)]-μ-3-(1H-benzimidazol-2-yl)[2,6-2H2]pyridine N-oxide]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: hyye@seu.edu.cn

(Received 17 November 2007; accepted 17 December 2007; online 21 December 2007)

In the crystal structure of the title compound, [ZnBr2(C12H7D2N3O)]n, the Zn atoms are coordinated by two Br atoms and by one N atom and one O atom of two symmetry-related 3-(1H-benzimidazol-2-yl)[2,6-2H2]pyridine N-oxide ligands in a slightly distorted tetra­hedral geometry. The ZnBr2 units are connected by the organic ligands into chains.

Related literature

For the deuteration effect (DEF) on physical properties, see: Akutagawa et al. (2004[Akutagawa, T., Takeda, S., Hasegawa, T. & Nakamura, T. (2004). J. Am. Chem. Soc. 126, 291-294.]); Ye et al. (2007[Ye, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C12H7D2N3O)]

  • Mr = 438.42

  • Monoclinic, P 21 /n

  • a = 7.4071 (15) Å

  • b = 15.017 (3) Å

  • c = 12.174 (2) Å

  • β = 98.52 (3)°

  • V = 1339.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.79 mm−1

  • T = 293 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.261, Tmax = 0.463

  • 13680 measured reflections

  • 3070 independent reflections

  • 2538 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.072

  • S = 1.09

  • 3070 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL

Supporting information


Comment top

Recently, investigations on the effect of deuteration onto the physical properties like permittivity has become of increasing interest (Akutagawa, et al., 2004) and (Ye, et al., 2007). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound, poly bis(bromo)-(3-(1H-benzo[d]imidazole-2)–2,6-dideuterium-pyridine N-oxide)-zinc(II) (I).

In the crystal structure of the title compound the zinc atoms are coordinated by two bromo atoms and by one nitrogen atom and one oxygen atom of two symmetry related 3-(1H-benzo[d]imidazole-2)–2,6-dideuterium-pyridine ligands within slightly distorted tetrahedra (Fig. 1). The ZnBr2 units are connected by the ligands into chains. The dihedral angle between the 1H-benzo[d]imidazole and the pyridine ring amount to 35.87 (8) °.

Related literature top

For deuteration effect (DEF) on physical properties, see: Akutagawa et al. (2004); Ye et al. (2007).

Experimental top

3-(1H-benzo[d]imidazole-2)–2,6-dideuterium-pyridine N-oxide (0.21 g 0.1 mmol) ZnBr2 (0.027 g, 0.2 mmol), ethanol (0.8 ml) and water (0.4 ml) are transfered into a sealed Pyrex tube and heated at 100 °C for 2 d. On cooling colorless block-like crystals of the title compound are obtained, which are suitable for X-ray ananlysis.

Refinement top

For the refinement of the D atoms, the atomic scattering factors for H were used. All H and D atoms were positioned with idealized geometry and were refined isotropic Uiso(H) = 1.2Ueq(C or N) using a riding model with d(C—H/D) = 0.93 and d(N—H) = 0.86 Å.

Structure description top

Recently, investigations on the effect of deuteration onto the physical properties like permittivity has become of increasing interest (Akutagawa, et al., 2004) and (Ye, et al., 2007). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound, poly bis(bromo)-(3-(1H-benzo[d]imidazole-2)–2,6-dideuterium-pyridine N-oxide)-zinc(II) (I).

In the crystal structure of the title compound the zinc atoms are coordinated by two bromo atoms and by one nitrogen atom and one oxygen atom of two symmetry related 3-(1H-benzo[d]imidazole-2)–2,6-dideuterium-pyridine ligands within slightly distorted tetrahedra (Fig. 1). The ZnBr2 units are connected by the ligands into chains. The dihedral angle between the 1H-benzo[d]imidazole and the pyridine ring amount to 35.87 (8) °.

For deuteration effect (DEF) on physical properties, see: Akutagawa et al. (2004); Ye et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level. The H and D atoms are shown as spheres of arbitrary size. Symmetry code: A = 1.5 + x, -1/2 + y,1.5 + z.
catena-Poly[[dibromidozinc(II)]-µ-3-(1H-benzimidazol-2-yl)[2,6-^2H2]pyridine N-oxide] top
Crystal data top
[ZnBr2(C12H7D2N3O)]F(000) = 840
Mr = 438.42Dx = 2.175 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12253 reflections
a = 7.4071 (15) Åθ = 3.0–27.5°
b = 15.017 (3) ŵ = 7.79 mm1
c = 12.174 (2) ÅT = 293 K
β = 98.52 (3)°Block, colorless
V = 1339.2 (5) Å30.2 × 0.15 × 0.1 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3070 independent reflections
Radiation source: fine-focus sealed tube2538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.261, Tmax = 0.463l = 1515
13680 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0204P)2 + 0.5716P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3070 reflectionsΔρmax = 0.43 e Å3
173 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (3)
Crystal data top
[ZnBr2(C12H7D2N3O)]V = 1339.2 (5) Å3
Mr = 438.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4071 (15) ŵ = 7.79 mm1
b = 15.017 (3) ÅT = 293 K
c = 12.174 (2) Å0.2 × 0.15 × 0.1 mm
β = 98.52 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3070 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2538 reflections with I > 2σ(I)
Tmin = 0.261, Tmax = 0.463Rint = 0.058
13680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
3070 reflectionsΔρmin = 0.57 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.18024 (5)0.76280 (2)0.56995 (3)0.02687 (12)
Br10.43934 (6)0.68154 (3)0.53737 (4)0.05495 (15)
Br20.05935 (5)0.71851 (2)0.73359 (3)0.03347 (12)
C10.2625 (4)1.0321 (2)0.4904 (3)0.0270 (7)
C20.2551 (5)1.0978 (2)0.4096 (3)0.0348 (8)
H2B0.27621.15740.42770.042*
C30.2151 (5)1.0700 (3)0.3022 (3)0.0376 (9)
H3A0.20731.11190.24550.045*
C40.1855 (5)0.9800 (3)0.2749 (3)0.0376 (9)
H4A0.16100.96380.20040.045*
C50.1914 (5)0.9149 (2)0.3545 (3)0.0333 (8)
H5A0.17120.85540.33570.040*
C60.2292 (4)0.9425 (2)0.4644 (3)0.0255 (7)
C70.2883 (4)0.9521 (2)0.6446 (3)0.0242 (7)
C80.4011 (4)0.8528 (2)0.8000 (3)0.0258 (7)
D20.44650.81480.75030.031*
C90.3176 (4)0.9318 (2)0.7629 (3)0.0235 (7)
C100.2589 (4)0.9895 (2)0.8391 (3)0.0290 (8)
H10A0.20691.04400.81600.035*
C110.2781 (5)0.9656 (2)0.9485 (3)0.0326 (8)
H11A0.23911.00381.00030.039*
C120.3550 (4)0.8850 (2)0.9822 (3)0.0312 (8)
D10.36450.86791.05620.037*
N10.2441 (3)0.89347 (17)0.5628 (2)0.0246 (6)
N20.2984 (4)1.03547 (18)0.6041 (2)0.0299 (6)
H2A0.32321.08280.64310.036*
N30.4165 (4)0.83101 (18)0.9080 (2)0.0282 (6)
O10.4873 (3)0.75130 (15)0.9391 (2)0.0386 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0340 (2)0.0198 (2)0.0252 (2)0.00331 (15)0.00104 (17)0.00046 (15)
Br10.0509 (3)0.0317 (2)0.0885 (4)0.00727 (18)0.0311 (2)0.0069 (2)
Br20.0438 (2)0.0292 (2)0.0269 (2)0.00230 (15)0.00361 (15)0.00400 (14)
C10.0279 (18)0.0246 (18)0.0273 (19)0.0010 (13)0.0006 (14)0.0017 (14)
C20.044 (2)0.0230 (19)0.038 (2)0.0001 (15)0.0108 (16)0.0038 (15)
C30.037 (2)0.042 (2)0.035 (2)0.0040 (17)0.0088 (16)0.0182 (17)
C40.041 (2)0.048 (3)0.024 (2)0.0048 (17)0.0054 (16)0.0033 (17)
C50.041 (2)0.030 (2)0.028 (2)0.0040 (16)0.0037 (15)0.0001 (15)
C60.0269 (17)0.0226 (18)0.0269 (19)0.0018 (13)0.0038 (13)0.0011 (14)
C70.0261 (17)0.0191 (17)0.0267 (18)0.0004 (13)0.0015 (13)0.0009 (13)
C80.0300 (18)0.0231 (18)0.0225 (18)0.0030 (13)0.0019 (13)0.0046 (13)
C90.0239 (16)0.0234 (18)0.0220 (17)0.0039 (13)0.0007 (13)0.0014 (13)
C100.0313 (19)0.0235 (19)0.032 (2)0.0028 (14)0.0031 (15)0.0008 (14)
C110.038 (2)0.032 (2)0.027 (2)0.0069 (15)0.0039 (15)0.0022 (15)
C120.038 (2)0.032 (2)0.0216 (18)0.0032 (15)0.0007 (14)0.0005 (15)
N10.0303 (15)0.0196 (14)0.0218 (15)0.0021 (11)0.0024 (11)0.0004 (11)
N20.0447 (18)0.0187 (15)0.0247 (16)0.0034 (12)0.0002 (13)0.0023 (11)
N30.0295 (15)0.0227 (15)0.0284 (16)0.0003 (11)0.0092 (12)0.0007 (12)
O10.0521 (16)0.0247 (14)0.0333 (15)0.0125 (11)0.0125 (12)0.0008 (10)
Geometric parameters (Å, º) top
Zn1—O1i1.987 (2)C7—N11.333 (4)
Zn1—N12.023 (3)C7—N21.352 (4)
Zn1—Br12.3569 (7)C7—C91.457 (4)
Zn1—Br22.3960 (7)C8—N31.343 (4)
C1—N21.371 (4)C8—C91.383 (4)
C1—C21.388 (5)C8—D20.9300
C1—C61.397 (4)C9—C101.385 (4)
C2—C31.362 (5)C10—C111.367 (5)
C2—H2B0.9300C10—H10A0.9300
C3—C41.402 (5)C11—C121.373 (5)
C3—H3A0.9300C11—H11A0.9300
C4—C51.372 (5)C12—N31.343 (4)
C4—H4A0.9300C12—D10.9300
C5—C61.389 (4)N2—H2A0.8600
C5—H5A0.9300N3—O11.339 (3)
C6—N11.397 (4)O1—Zn1ii1.987 (2)
O1i—Zn1—N1102.35 (10)N2—C7—C9123.1 (3)
O1i—Zn1—Br1108.47 (8)N3—C8—C9119.8 (3)
N1—Zn1—Br1107.08 (8)N3—C8—D2120.1
O1i—Zn1—Br2108.89 (8)C9—C8—D2120.1
N1—Zn1—Br2115.04 (8)C8—C9—C10119.2 (3)
Br1—Zn1—Br2114.22 (3)C8—C9—C7119.7 (3)
N2—C1—C2132.1 (3)C10—C9—C7121.1 (3)
N2—C1—C6105.4 (3)C11—C10—C9119.3 (3)
C2—C1—C6122.5 (3)C11—C10—H10A120.3
C3—C2—C1116.3 (3)C9—C10—H10A120.3
C3—C2—H2B121.9C10—C11—C12120.1 (3)
C1—C2—H2B121.9C10—C11—H11A120.0
C2—C3—C4121.8 (3)C12—C11—H11A120.0
C2—C3—H3A119.1N3—C12—C11119.9 (3)
C4—C3—H3A119.1N3—C12—D1120.0
C5—C4—C3122.1 (3)C11—C12—D1120.0
C5—C4—H4A119.0C7—N1—C6105.8 (3)
C3—C4—H4A119.0C7—N1—Zn1129.9 (2)
C4—C5—C6116.7 (3)C6—N1—Zn1123.9 (2)
C4—C5—H5A121.6C7—N2—C1108.7 (3)
C6—C5—H5A121.6C7—N2—H2A125.6
C5—C6—N1130.5 (3)C1—N2—H2A125.6
C5—C6—C1120.6 (3)O1—N3—C12120.5 (3)
N1—C6—C1108.9 (3)O1—N3—C8117.9 (3)
N1—C7—N2111.1 (3)C12—N3—C8121.6 (3)
N1—C7—C9125.8 (3)N3—O1—Zn1ii121.83 (19)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C12H7D2N3O)]
Mr438.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4071 (15), 15.017 (3), 12.174 (2)
β (°) 98.52 (3)
V3)1339.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)7.79
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.261, 0.463
No. of measured, independent and
observed [I > 2σ(I)] reflections
13680, 3070, 2538
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.072, 1.09
No. of reflections3070
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.57

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAkutagawa, T., Takeda, S., Hasegawa, T. & Nakamura, T. (2004). J. Am. Chem. Soc. 126, 291–294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds