metal-organic compounds
Bis(di-n-propylamine-κN)bis(tri-tert-butoxysilanethiolato-κS)chromium(II)
aDepartment of Chemistry, Technical University of Gdańsk, 11/12 G. Narutowicz Street, 80952 – PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl
The title compound, [Cr(C12H27O3SSi)2(C6H15N)2], is a molecular chromium(II) thiolate that is coordinated by two dipropylamine ligands in a square-planar environment. The molecule lies on an inversion site.
Related literature
For (tetrahydrofuran)bis(tri-tert-butoxysilanethiolato)chromium(II), see: Ciborska et al. (2007). For the synthetic procedures, see: Perrin & Armarego (1988); Piękoś & Wojnowski (1962); Wojnowska & Wojnowski (1974). For comparison of Cr—S bond lengths, see: Okura et al. (1985); Ito (2002); Ciborska et al. (2007).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807050283/ng2337sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807050283/ng2337Isup2.hkl
All manipulations were conducted under an atmosphere of nitrogen using standard Schlenk techniques. Solvents and the amine were purified and dried by standard methods (Perrin & Armarego, 1988). The substrate (tBuO)3SiSNa was prepared according to literature methods (Piękoś & Wojnowski, 1962; Wojnowska & Wojnowski, 1974). The compound was synthesized by addition of the CrCl2 solution (0.26 g, 2.13 mmol) in tetrahydrofuran (20 ml) to (tBuO)3SiSNa solution (1.24 g, 4.12 mmol) in toluene (15 ml) and stirring for 1 h. Then, to the pale-green solution dipropylamine (0.55 ml, 0.4 g, 4 mmol) was added and stirred for next 12 h. After that the mixture was filtered. The dark blue filtrate was concentrated and cooled (250 K) afford blue crystals.
All H atoms were refined as riding on C atoms with methyl C—H = 0.98 Å, methylene C—H = 0.99 Å, N–H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for CH2 and amino groups and 1.5Ueq(C) for CH3 groups.
We present here the
of the title compound (I), which is the first example of square-planar chromium(II) complex (Fig.1). It was obtained in the reaction of anhydrous Cr(II) chloride with sodium tri-tert-butoxysilanethiolate and dipropylamine. The Cr(II) ion is coordinated by two S atoms of the tri-tert-butoxysilanethiolate ligand, and two N atoms of the amine. The central Cr atom sits on an inversion centre at a (1/2, 1/2, 1/2). The amine ligand forms intramolecular hydrogen bonds of the N–H···O type. The trans angles of the square base are then described by S–Cr–S and N–Cr–N. The Cr–S bond lengths are typical of Cr-thiolate complexes (Okura et al., 1985; Ito 2002; Ciborska et al., 2007). Selected data on important bond lengths and angles are compared in Table.1. Molecules of (I) pack in the as discrete entities with no interactions other than von der Waals. Compound (I) is one of the few structurally defined planar, four-coordinate Cr(II) thiolate complexes.For (tetrahydrofuran)bis(tri-tert-butoxysilanethiolato)chromium(II), see: Ciborska et al. (2007). For the synthetic procedures, see Perrin & Armarego (1988); Piękoś & Wojnowski (1962); Wojnowska & Wojnowski (1974). For comparison of Cr—S bond lengths, see: Okura et al. (1985); Ito (2002); Ciborska et al. (2007).
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell
CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cr(C12H27O3SSi)2(C6H15N)2] | F(000) = 892 |
Mr = 813.35 | Dx = 1.126 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8752 reflections |
a = 9.3573 (8) Å | θ = 2.9–32.5° |
b = 15.6328 (12) Å | µ = 0.41 mm−1 |
c = 16.4333 (12) Å | T = 120 K |
β = 93.296 (7)° | Prism, blue |
V = 2399.9 (3) Å3 | 0.52 × 0.27 × 0.22 mm |
Z = 2 |
Oxford Diffraction KM-4 CCD diffractometer | 3916 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 8.1883 pixels mm-1 | θmax = 25.1°, θmin = 2.8° |
ω (0.75° width) scans | h = −11→11 |
15205 measured reflections | k = −18→16 |
4230 independent reflections | l = −19→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0625P)2 + 4.3543P] where P = (Fo2 + 2Fc2)/3 |
4230 reflections | (Δ/σ)max = 0.001 |
234 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cr(C12H27O3SSi)2(C6H15N)2] | V = 2399.9 (3) Å3 |
Mr = 813.35 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.3573 (8) Å | µ = 0.41 mm−1 |
b = 15.6328 (12) Å | T = 120 K |
c = 16.4333 (12) Å | 0.52 × 0.27 × 0.22 mm |
β = 93.296 (7)° |
Oxford Diffraction KM-4 CCD diffractometer | 3916 reflections with I > 2σ(I) |
15205 measured reflections | Rint = 0.056 |
4230 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.59 e Å−3 |
4230 reflections | Δρmin = −0.37 e Å−3 |
234 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8592 (3) | 0.30282 (17) | 0.12476 (17) | 0.0227 (6) | |
C2 | 0.8284 (3) | 0.25962 (19) | 0.20505 (17) | 0.0282 (6) | |
H2A | 0.775 | 0.2066 | 0.1939 | 0.042* | |
H2B | 0.7715 | 0.2981 | 0.2374 | 0.042* | |
H2C | 0.9189 | 0.2464 | 0.2354 | 0.042* | |
C3 | 0.7208 (3) | 0.31714 (19) | 0.07329 (19) | 0.0300 (7) | |
H3A | 0.7428 | 0.3422 | 0.0208 | 0.045* | |
H3B | 0.6588 | 0.3562 | 0.1019 | 0.045* | |
H3C | 0.6717 | 0.2623 | 0.0641 | 0.045* | |
C4 | 0.9378 (3) | 0.38698 (18) | 0.14046 (17) | 0.0264 (6) | |
H4A | 1.0292 | 0.376 | 0.1708 | 0.04* | |
H4B | 0.8791 | 0.4249 | 0.1723 | 0.04* | |
H4C | 0.9558 | 0.4143 | 0.0883 | 0.04* | |
C5 | 1.2379 (3) | 0.35502 (17) | −0.01745 (16) | 0.0212 (6) | |
C6 | 1.1047 (3) | 0.35943 (19) | −0.07507 (17) | 0.0288 (6) | |
H6A | 1.0755 | 0.3014 | −0.0914 | 0.043* | |
H6B | 1.1258 | 0.3926 | −0.1235 | 0.043* | |
H6C | 1.027 | 0.3871 | −0.0474 | 0.043* | |
C7 | 1.2852 (4) | 0.44407 (18) | 0.00984 (18) | 0.0310 (7) | |
H7A | 1.2078 | 0.472 | 0.0375 | 0.046* | |
H7B | 1.3084 | 0.478 | −0.0378 | 0.046* | |
H7C | 1.3701 | 0.4397 | 0.0474 | 0.046* | |
C8 | 1.3579 (3) | 0.30911 (19) | −0.05804 (18) | 0.0292 (6) | |
H8A | 1.4401 | 0.3025 | −0.0188 | 0.044* | |
H8B | 1.3864 | 0.3426 | −0.1048 | 0.044* | |
H8C | 1.3246 | 0.2526 | −0.0767 | 0.044* | |
C9 | 1.2921 (3) | 0.1975 (2) | 0.22075 (18) | 0.0282 (6) | |
C10 | 1.3575 (4) | 0.2848 (2) | 0.2355 (2) | 0.0414 (8) | |
H10A | 1.3828 | 0.3095 | 0.1835 | 0.062* | |
H10B | 1.4438 | 0.2794 | 0.2718 | 0.062* | |
H10C | 1.2883 | 0.322 | 0.2607 | 0.062* | |
C11 | 1.3932 (4) | 0.1416 (3) | 0.1761 (3) | 0.0706 (15) | |
H11A | 1.3511 | 0.0846 | 0.1682 | 0.106* | |
H11B | 1.4844 | 0.1368 | 0.2083 | 0.106* | |
H11C | 1.4098 | 0.1671 | 0.123 | 0.106* | |
C12 | 1.2512 (4) | 0.1601 (3) | 0.3016 (2) | 0.0618 (13) | |
H12A | 1.1754 | 0.1949 | 0.3236 | 0.093* | |
H12B | 1.3351 | 0.1598 | 0.3401 | 0.093* | |
H12C | 1.2167 | 0.1014 | 0.2931 | 0.093* | |
C13 | 0.8096 (3) | 0.02560 (17) | 0.14156 (15) | 0.0203 (5) | |
H13A | 0.7703 | −0.033 | 0.136 | 0.024* | |
H13B | 0.7394 | 0.061 | 0.1693 | 0.024* | |
C14 | 0.9489 (3) | 0.02298 (18) | 0.19315 (16) | 0.0233 (6) | |
H14A | 0.9898 | 0.0813 | 0.1973 | 0.028* | |
H14B | 1.018 | −0.014 | 0.1664 | 0.028* | |
C15 | 0.9268 (3) | −0.0110 (2) | 0.27823 (17) | 0.0311 (7) | |
H15A | 0.8585 | 0.0256 | 0.3049 | 0.047* | |
H15B | 1.0184 | −0.011 | 0.3103 | 0.047* | |
H15C | 0.8893 | −0.0695 | 0.2744 | 0.047* | |
C16 | 0.6911 (3) | 0.06510 (17) | 0.01127 (16) | 0.0203 (5) | |
H16A | 0.622 | 0.0987 | 0.0416 | 0.024* | |
H16B | 0.6525 | 0.0064 | 0.0042 | 0.024* | |
C17 | 0.7052 (3) | 0.10509 (19) | −0.07170 (17) | 0.0254 (6) | |
H17A | 0.7743 | 0.0717 | −0.1023 | 0.03* | |
H17B | 0.7425 | 0.1641 | −0.065 | 0.03* | |
C18 | 0.5605 (3) | 0.1073 (2) | −0.12003 (19) | 0.0324 (7) | |
H18A | 0.529 | 0.0487 | −0.1325 | 0.049* | |
H18B | 0.5701 | 0.1389 | −0.171 | 0.049* | |
H18C | 0.4898 | 0.1358 | −0.0876 | 0.049* | |
N1 | 0.8296 (2) | 0.06135 (14) | 0.05944 (13) | 0.0187 (5) | |
H1 | 0.8581 | 0.1178 | 0.0677 | 0.022* | |
O1 | 0.94135 (19) | 0.24496 (11) | 0.07689 (11) | 0.0196 (4) | |
O2 | 1.2078 (2) | 0.31042 (11) | 0.05632 (11) | 0.0209 (4) | |
O3 | 1.15806 (19) | 0.20698 (12) | 0.17357 (11) | 0.0217 (4) | |
Si1 | 1.11443 (7) | 0.22632 (4) | 0.07776 (4) | 0.01703 (19) | |
S1 | 1.14306 (7) | 0.12779 (4) | −0.00428 (4) | 0.02372 (19) | |
Cr1 | 1 | 0 | 0 | 0.01522 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0202 (13) | 0.0198 (13) | 0.0281 (14) | 0.0042 (11) | 0.0011 (11) | −0.0043 (11) |
C2 | 0.0295 (15) | 0.0251 (15) | 0.0303 (15) | 0.0039 (12) | 0.0060 (12) | −0.0023 (12) |
C3 | 0.0247 (15) | 0.0274 (15) | 0.0374 (16) | 0.0083 (12) | −0.0041 (12) | −0.0095 (13) |
C4 | 0.0271 (15) | 0.0223 (14) | 0.0299 (15) | 0.0012 (11) | 0.0033 (11) | −0.0072 (11) |
C5 | 0.0239 (14) | 0.0159 (13) | 0.0234 (13) | −0.0055 (11) | −0.0009 (10) | 0.0030 (10) |
C6 | 0.0293 (16) | 0.0282 (15) | 0.0280 (14) | 0.0020 (12) | −0.0056 (12) | 0.0024 (12) |
C7 | 0.0415 (18) | 0.0208 (14) | 0.0306 (15) | −0.0107 (13) | 0.0018 (13) | 0.0018 (12) |
C8 | 0.0266 (15) | 0.0293 (15) | 0.0321 (15) | −0.0011 (12) | 0.0057 (12) | 0.0033 (12) |
C9 | 0.0190 (14) | 0.0318 (16) | 0.0327 (15) | 0.0001 (12) | −0.0083 (11) | 0.0045 (12) |
C10 | 0.0363 (18) | 0.047 (2) | 0.0396 (18) | −0.0114 (16) | −0.0104 (14) | −0.0010 (15) |
C11 | 0.040 (2) | 0.081 (3) | 0.087 (3) | 0.033 (2) | −0.028 (2) | −0.038 (3) |
C12 | 0.040 (2) | 0.090 (3) | 0.052 (2) | −0.025 (2) | −0.0263 (17) | 0.041 (2) |
C13 | 0.0223 (13) | 0.0174 (13) | 0.0218 (13) | −0.0021 (10) | 0.0066 (10) | −0.0014 (10) |
C14 | 0.0236 (14) | 0.0256 (14) | 0.0212 (13) | −0.0027 (11) | 0.0044 (10) | 0.0032 (11) |
C15 | 0.0342 (17) | 0.0349 (17) | 0.0243 (14) | −0.0046 (13) | 0.0021 (12) | 0.0041 (12) |
C16 | 0.0152 (12) | 0.0195 (13) | 0.0265 (13) | 0.0034 (10) | 0.0041 (10) | −0.0005 (10) |
C17 | 0.0240 (14) | 0.0258 (14) | 0.0260 (14) | −0.0004 (11) | −0.0016 (11) | 0.0027 (11) |
C18 | 0.0288 (16) | 0.0348 (17) | 0.0330 (15) | 0.0069 (13) | −0.0036 (12) | 0.0028 (13) |
N1 | 0.0197 (11) | 0.0154 (11) | 0.0211 (11) | 0.0002 (9) | 0.0034 (8) | 0.0000 (8) |
O1 | 0.0179 (9) | 0.0176 (9) | 0.0231 (9) | 0.0021 (7) | −0.0002 (7) | −0.0033 (7) |
O2 | 0.0230 (10) | 0.0175 (9) | 0.0220 (9) | −0.0046 (7) | 0.0002 (7) | 0.0003 (7) |
O3 | 0.0159 (9) | 0.0234 (10) | 0.0253 (10) | −0.0014 (8) | −0.0023 (7) | 0.0034 (8) |
Si1 | 0.0162 (4) | 0.0147 (4) | 0.0202 (4) | −0.0003 (3) | 0.0011 (3) | −0.0008 (3) |
S1 | 0.0239 (4) | 0.0162 (3) | 0.0321 (4) | −0.0046 (3) | 0.0113 (3) | −0.0061 (3) |
Cr1 | 0.0152 (3) | 0.0136 (3) | 0.0171 (3) | −0.0002 (2) | 0.0027 (2) | −0.0008 (2) |
C1—O1 | 1.448 (3) | C11—H11B | 0.98 |
C1—C3 | 1.522 (4) | C11—H11C | 0.98 |
C1—C4 | 1.522 (4) | C12—H12A | 0.98 |
C1—C2 | 1.524 (4) | C12—H12B | 0.98 |
C2—H2A | 0.98 | C12—H12C | 0.98 |
C2—H2B | 0.98 | C13—N1 | 1.482 (3) |
C2—H2C | 0.98 | C13—C14 | 1.514 (4) |
C3—H3A | 0.98 | C13—H13A | 0.99 |
C3—H3B | 0.98 | C13—H13B | 0.99 |
C3—H3C | 0.98 | C14—C15 | 1.521 (4) |
C4—H4A | 0.98 | C14—H14A | 0.99 |
C4—H4B | 0.98 | C14—H14B | 0.99 |
C4—H4C | 0.98 | C15—H15A | 0.98 |
C5—O2 | 1.440 (3) | C15—H15B | 0.98 |
C5—C8 | 1.519 (4) | C15—H15C | 0.98 |
C5—C7 | 1.521 (4) | C16—N1 | 1.480 (3) |
C5—C6 | 1.523 (4) | C16—C17 | 1.513 (4) |
C6—H6A | 0.98 | C16—H16A | 0.99 |
C6—H6B | 0.98 | C16—H16B | 0.99 |
C6—H6C | 0.98 | C17—C18 | 1.530 (4) |
C7—H7A | 0.98 | C17—H17A | 0.99 |
C7—H7B | 0.98 | C17—H17B | 0.99 |
C7—H7C | 0.98 | C18—H18A | 0.98 |
C8—H8A | 0.98 | C18—H18B | 0.98 |
C8—H8B | 0.98 | C18—H18C | 0.98 |
C8—H8C | 0.98 | N1—Cr1 | 2.144 (2) |
C9—O3 | 1.444 (3) | N1—H1 | 0.93 |
C9—C11 | 1.508 (5) | O1—Si1 | 1.6448 (19) |
C9—C10 | 1.509 (4) | O2—Si1 | 1.6283 (19) |
C9—C12 | 1.520 (4) | O3—Si1 | 1.6320 (19) |
C10—H10A | 0.98 | Si1—S1 | 2.0744 (9) |
C10—H10B | 0.98 | S1—Cr1 | 2.4080 (7) |
C10—H10C | 0.98 | Cr1—N1i | 2.144 (2) |
C11—H11A | 0.98 | Cr1—S1i | 2.4080 (7) |
O1—C1—C3 | 104.6 (2) | H11B—C11—H11C | 109.5 |
O1—C1—C4 | 111.4 (2) | C9—C12—H12A | 109.5 |
C3—C1—C4 | 110.8 (2) | C9—C12—H12B | 109.5 |
O1—C1—C2 | 109.0 (2) | H12A—C12—H12B | 109.5 |
C3—C1—C2 | 110.4 (2) | C9—C12—H12C | 109.5 |
C4—C1—C2 | 110.5 (2) | H12A—C12—H12C | 109.5 |
C1—C2—H2A | 109.5 | H12B—C12—H12C | 109.5 |
C1—C2—H2B | 109.5 | N1—C13—C14 | 111.8 (2) |
H2A—C2—H2B | 109.5 | N1—C13—H13A | 109.3 |
C1—C2—H2C | 109.5 | C14—C13—H13A | 109.3 |
H2A—C2—H2C | 109.5 | N1—C13—H13B | 109.3 |
H2B—C2—H2C | 109.5 | C14—C13—H13B | 109.3 |
C1—C3—H3A | 109.5 | H13A—C13—H13B | 107.9 |
C1—C3—H3B | 109.5 | C13—C14—C15 | 111.5 (2) |
H3A—C3—H3B | 109.5 | C13—C14—H14A | 109.3 |
C1—C3—H3C | 109.5 | C15—C14—H14A | 109.3 |
H3A—C3—H3C | 109.5 | C13—C14—H14B | 109.3 |
H3B—C3—H3C | 109.5 | C15—C14—H14B | 109.3 |
C1—C4—H4A | 109.5 | H14A—C14—H14B | 108 |
C1—C4—H4B | 109.5 | C14—C15—H15A | 109.5 |
H4A—C4—H4B | 109.5 | C14—C15—H15B | 109.5 |
C1—C4—H4C | 109.5 | H15A—C15—H15B | 109.5 |
H4A—C4—H4C | 109.5 | C14—C15—H15C | 109.5 |
H4B—C4—H4C | 109.5 | H15A—C15—H15C | 109.5 |
O2—C5—C8 | 109.0 (2) | H15B—C15—H15C | 109.5 |
O2—C5—C7 | 105.2 (2) | N1—C16—C17 | 112.3 (2) |
C8—C5—C7 | 110.6 (2) | N1—C16—H16A | 109.1 |
O2—C5—C6 | 110.6 (2) | C17—C16—H16A | 109.1 |
C8—C5—C6 | 110.3 (2) | N1—C16—H16B | 109.1 |
C7—C5—C6 | 110.9 (2) | C17—C16—H16B | 109.1 |
C5—C6—H6A | 109.5 | H16A—C16—H16B | 107.9 |
C5—C6—H6B | 109.5 | C16—C17—C18 | 110.9 (2) |
H6A—C6—H6B | 109.5 | C16—C17—H17A | 109.5 |
C5—C6—H6C | 109.5 | C18—C17—H17A | 109.5 |
H6A—C6—H6C | 109.5 | C16—C17—H17B | 109.5 |
H6B—C6—H6C | 109.5 | C18—C17—H17B | 109.5 |
C5—C7—H7A | 109.5 | H17A—C17—H17B | 108 |
C5—C7—H7B | 109.5 | C17—C18—H18A | 109.5 |
H7A—C7—H7B | 109.5 | C17—C18—H18B | 109.5 |
C5—C7—H7C | 109.5 | H18A—C18—H18B | 109.5 |
H7A—C7—H7C | 109.5 | C17—C18—H18C | 109.5 |
H7B—C7—H7C | 109.5 | H18A—C18—H18C | 109.5 |
C5—C8—H8A | 109.5 | H18B—C18—H18C | 109.5 |
C5—C8—H8B | 109.5 | C16—N1—C13 | 110.5 (2) |
H8A—C8—H8B | 109.5 | C16—N1—Cr1 | 115.17 (15) |
C5—C8—H8C | 109.5 | C13—N1—Cr1 | 112.46 (16) |
H8A—C8—H8C | 109.5 | C16—N1—H1 | 106 |
H8B—C8—H8C | 109.5 | C13—N1—H1 | 106 |
O3—C9—C11 | 110.4 (3) | Cr1—N1—H1 | 106 |
O3—C9—C10 | 109.0 (2) | C1—O1—Si1 | 131.23 (16) |
C11—C9—C10 | 110.0 (3) | C5—O2—Si1 | 134.93 (16) |
O3—C9—C12 | 104.7 (2) | C9—O3—Si1 | 134.30 (17) |
C11—C9—C12 | 113.5 (4) | O2—Si1—O3 | 104.52 (10) |
C10—C9—C12 | 109.1 (3) | O2—Si1—O1 | 113.29 (10) |
C9—C10—H10A | 109.5 | O3—Si1—O1 | 103.46 (9) |
C9—C10—H10B | 109.5 | O2—Si1—S1 | 111.60 (7) |
H10A—C10—H10B | 109.5 | O3—Si1—S1 | 117.06 (8) |
C9—C10—H10C | 109.5 | O1—Si1—S1 | 106.85 (7) |
H10A—C10—H10C | 109.5 | Si1—S1—Cr1 | 120.28 (3) |
H10B—C10—H10C | 109.5 | N1i—Cr1—N1 | 180.00 (15) |
C9—C11—H11A | 109.5 | N1i—Cr1—S1 | 85.90 (6) |
C9—C11—H11B | 109.5 | N1—Cr1—S1 | 94.10 (6) |
H11A—C11—H11B | 109.5 | N1i—Cr1—S1i | 94.10 (6) |
C9—C11—H11C | 109.5 | N1—Cr1—S1i | 85.90 (6) |
H11A—C11—H11C | 109.5 | S1—Cr1—S1i | 180.000 (17) |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cr(C12H27O3SSi)2(C6H15N)2] |
Mr | 813.35 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 9.3573 (8), 15.6328 (12), 16.4333 (12) |
β (°) | 93.296 (7) |
V (Å3) | 2399.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.52 × 0.27 × 0.22 |
Data collection | |
Diffractometer | Oxford Diffraction KM-4 CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15205, 4230, 3916 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.139, 1.07 |
No. of reflections | 4230 |
No. of parameters | 234 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.59, −0.37 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Acknowledgements
This work was carried out with financial support from the Polish State Committee (grant No. 3 T09A 12028).
References
Ciborska, A., Baranowska, K. & Wojnowski, W. (2007). Acta Cryst. E63, m1239–m1241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Ito, T. (2002). Acta Cryst. E58, m517–m518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okura, I., Kaji, N., Aono, S., Kita, T. & Yamada, A. (1985). Inorg. Chem. 24, 453–454. CrossRef Web of Science Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Perrin, D. D. & Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press. Google Scholar
Piękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212–216. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Wojnowska, M. & Wojnowski, W. (1974). Z. Anorg. Allg. Chem. 403, 179–185. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We present here the crystal structure of the title compound (I), which is the first example of square-planar chromium(II) complex (Fig.1). It was obtained in the reaction of anhydrous Cr(II) chloride with sodium tri-tert-butoxysilanethiolate and dipropylamine. The Cr(II) ion is coordinated by two S atoms of the tri-tert-butoxysilanethiolate ligand, and two N atoms of the amine. The central Cr atom sits on an inversion centre at Wyckoff position a (1/2, 1/2, 1/2). The amine ligand forms intramolecular hydrogen bonds of the N–H···O type. The trans angles of the square base are then described by S–Cr–S and N–Cr–N. The Cr–S bond lengths are typical of Cr-thiolate complexes (Okura et al., 1985; Ito 2002; Ciborska et al., 2007). Selected data on important bond lengths and angles are compared in Table.1. Molecules of (I) pack in the crystal structure as discrete entities with no interactions other than von der Waals. Compound (I) is one of the few structurally defined planar, four-coordinate Cr(II) thiolate complexes.