organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(Hydr­­oxy)(4-isoprop­­oxy-2-meth­oxy­phen­yl)methyl­ene]-1-iso­propyl­pyrrol­idine-2,4-dione

aCollege of Chemistry and Life Sciences, Tianjin Normal University, Weijin Road No. 241, Tianjin, People's Republic of China, and bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hsxyxhz@mail.tjnu.edu.cn

(Received 17 November 2007; accepted 19 November 2007; online 6 December 2007)

The title compound, C18H23NO5, a potential herbicide, has an enol group that is intra­molecularly hydrogen bonded to a keto O atom. The dihedral angle between the six-membered ring formed by the enol group and the aromatic benzene ring is 53.35 (6)°.

Related literature

For structural and herbicidal literature on this class of compounds, see: Ellis & Spek (2001[Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433-434.]); Holzapfel et al. (1970[Holzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.]); Rinehart et al. (1971[Rinehart, K. L., MacKellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J. & Branfman, A. R. (1971). J. Am. Chem. Soc. 93, 4943-4945.], 1963[Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039.]); Matsuo et al. (1980[Matsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.]); van Rooyen (1992[Rooyen, P. H. van (1992). Acta Cryst. C48, 551-552.]); Stickings (1959[Stickings, C. E. (1959). Biochem. J. 72, 332-334.]); Van Der Baan et al. (1978[Van Der Baan, J. L., Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.]); Xu (2005[Xu, H.-Z. (2005). Acta Cryst. E61, o292-o294.]); Zhu, Hu & Yang (2004[Zhu, Y.-Q., Hu, F.-Z. & Yang, H.-Z. (2004). Huaxue Tongbao, 67, 1-7.]); Zhu, Song, Li et al. (2004[Zhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o196-o198.]); Zhu, Song, Yao et al. (2004[Zhu, Y.-Q., Song, H.-B., Yao, C.-S., Gao, Y., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o599-o601.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23NO5

  • Mr = 333.37

  • Monoclinic, C 2/c

  • a = 14.694 (2) Å

  • b = 12.249 (2) Å

  • c = 20.308 (3) Å

  • β = 103.864 (3)°

  • V = 3548.5 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9820 measured reflections

  • 3622 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.04

  • 3622 reflections

  • 223 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.80 2.555 (2) 152
C16—H16⋯O4 0.98 2.50 2.891 (2) 104

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many compounds containing the 3-acylpyrrolidine-2,4-dione system belong to heterocycles with antibiotic activity, suchas tenuazonic acid (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Rinehart et al., 1971), malonomycin (Van Der Baan et al., 1978), alpha-cyclopiazonic acid (Stickings, 1959; van Rooyen, 1992) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid grouping as a tricarbonylmethane fragment. Most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu, Hu & Yang, 2004). In order to develop new herbicides, we synthesized the title compound. The molecular structure of the title compound is shown in Fig. 1. Atom H3, involved in intramolecular hydrogen bonding between atoms O3 and O4, was assigned to O3 rather than to O4. The C13?O4 distance is 1.251 (2) Å, which is longer than the normal carbonyl bond length (C13?O1) of 1.219 (2) Å. In contrast, the C11?O3 distance [1.318 (2) Å] is intermediate between a normal carbonyl C?O double bond and a C—O single-bond length (Allen et al., 1987) (Table 1). A similar situation was reported for 3-(1-hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis & Spek, 2001), 1-benzyl-3-(alpha-hydroxybenzylidene)pyrrolidine-2,4-dione, (I) (Zhu, Song, Li et al., 2004), 1-tert-butyl-3-(alpha-hydroxy-4-isopropylbenzylidene)pyrrolidine-2,4-dione, (II) (Xu, 2005), and 3-(alpha-hydroxyl-2-methoxylbenzylidene)-1-isopropylpyrrolidine-2,4-dione, (III) (Zhu, Song, Yao et al., 2004). The dihedral angle formed by the enol ring A with the benzene ring is 53.35 (6)°, which is larger than the dihedral angles for (I), (II) (10 and 21°, respectively) and smaller than the dihedral angle for (III) (53°). The crystal structure of the title compound also involves a weak intramolecular C—H···O hydrogenbonding interactions (Table 2).

Related literature top

For structural and herbicidal literature on this class of compounds, see: Ellis & Spek (2001); Holzapfel et al. (1970); Rinehart et al. (1971, 1963); Matsuo et al. (1980); van Rooyen (1992); Stickings (1959); Van Der Baan et al. (1978); Xu (2005); Zhu, Hu & Yang (2004); Zhu, Song, Li et al. (2004); Zhu, Song, Yao et al. (2004). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained according to the procedure reported by Matsuo et al. (1980). Colourless single crystals of the title compound were obtained by recrystallization of 1-isopropyl-3-(α<i/>-hydroxy-4-isopropoxyl-2-methoxybenzylidene) pyrrolidine-2,4-dione from petroleum ether and ethyl acetate(1:3).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å and O—H = 0.82 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). Friedel pairs were not merged.

Structure description top

Many compounds containing the 3-acylpyrrolidine-2,4-dione system belong to heterocycles with antibiotic activity, suchas tenuazonic acid (Stickings, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Rinehart et al., 1971), malonomycin (Van Der Baan et al., 1978), alpha-cyclopiazonic acid (Stickings, 1959; van Rooyen, 1992) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid grouping as a tricarbonylmethane fragment. Most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu, Hu & Yang, 2004). In order to develop new herbicides, we synthesized the title compound. The molecular structure of the title compound is shown in Fig. 1. Atom H3, involved in intramolecular hydrogen bonding between atoms O3 and O4, was assigned to O3 rather than to O4. The C13?O4 distance is 1.251 (2) Å, which is longer than the normal carbonyl bond length (C13?O1) of 1.219 (2) Å. In contrast, the C11?O3 distance [1.318 (2) Å] is intermediate between a normal carbonyl C?O double bond and a C—O single-bond length (Allen et al., 1987) (Table 1). A similar situation was reported for 3-(1-hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione (Ellis & Spek, 2001), 1-benzyl-3-(alpha-hydroxybenzylidene)pyrrolidine-2,4-dione, (I) (Zhu, Song, Li et al., 2004), 1-tert-butyl-3-(alpha-hydroxy-4-isopropylbenzylidene)pyrrolidine-2,4-dione, (II) (Xu, 2005), and 3-(alpha-hydroxyl-2-methoxylbenzylidene)-1-isopropylpyrrolidine-2,4-dione, (III) (Zhu, Song, Yao et al., 2004). The dihedral angle formed by the enol ring A with the benzene ring is 53.35 (6)°, which is larger than the dihedral angles for (I), (II) (10 and 21°, respectively) and smaller than the dihedral angle for (III) (53°). The crystal structure of the title compound also involves a weak intramolecular C—H···O hydrogenbonding interactions (Table 2).

For structural and herbicidal literature on this class of compounds, see: Ellis & Spek (2001); Holzapfel et al. (1970); Rinehart et al. (1971, 1963); Matsuo et al. (1980); van Rooyen (1992); Stickings (1959); Van Der Baan et al. (1978); Xu (2005); Zhu, Hu & Yang (2004); Zhu, Song, Li et al. (2004); Zhu, Song, Yao et al. (2004). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 30% probability level.
3-[(Hydroxy)(4-isopropoxy-2-methoxyphenyl)methylene]-1- isopropylpyrrolidine-2,4-dione top
Crystal data top
C18H23NO5Z = 8
Mr = 333.37F(000) = 1424
Monoclinic, C2/cDx = 1.248 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 14.694 (2) Åθ = 2.6–23.1°
b = 12.249 (2) ŵ = 0.09 mm1
c = 20.308 (3) ÅT = 294 K
β = 103.864 (3)°Prism, colourless
V = 3548.5 (10) Å30.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2199 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.4°, θmin = 2.1°
φ and ω scansh = 188
9820 measured reflectionsk = 1515
3622 independent reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.066P)2 + 0.41P]
where P = (Fo2 + 2Fc2)/3
3622 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.19 e Å3
12 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H23NO5V = 3548.5 (10) Å3
Mr = 333.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.694 (2) ŵ = 0.09 mm1
b = 12.249 (2) ÅT = 294 K
c = 20.308 (3) Å0.26 × 0.24 × 0.20 mm
β = 103.864 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2199 reflections with I > 2σ(I)
9820 measured reflectionsRint = 0.032
3622 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04412 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3622 reflectionsΔρmin = 0.20 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08411 (12)0.33480 (12)0.57101 (7)0.0604 (4)
O20.17331 (10)0.25752 (11)0.36755 (7)0.0532 (4)
O30.10441 (13)0.05253 (13)0.31692 (7)0.0695 (5)
H30.11640.00470.29210.104*
O40.18049 (11)0.11472 (12)0.27727 (7)0.0566 (4)
O50.28614 (11)0.06071 (13)0.51329 (7)0.0625 (5)
N10.28941 (12)0.19911 (14)0.36200 (8)0.0452 (4)
C10.0325 (2)0.2778 (3)0.63023 (14)0.0851 (9)
H1A0.07070.33960.61240.128*
H1B0.04170.25970.67420.128*
H1C0.04990.21670.60030.128*
C20.06866 (16)0.30512 (19)0.63625 (11)0.0552 (6)
H20.10760.24190.65420.066*
C30.1002 (2)0.4022 (2)0.68087 (13)0.0837 (9)
H3A0.16480.41720.68260.126*
H3B0.09310.38710.72580.126*
H3C0.06280.46450.66280.126*
C40.09829 (14)0.25628 (16)0.52731 (10)0.0441 (5)
C50.12539 (13)0.29580 (16)0.47092 (10)0.0427 (5)
H50.13140.37060.46550.051*
C60.14353 (13)0.22495 (16)0.42277 (9)0.0400 (5)
C70.13459 (14)0.11166 (15)0.43064 (10)0.0416 (5)
C80.10772 (15)0.07488 (17)0.48725 (11)0.0509 (5)
H80.10230.00010.49310.061*
C90.08852 (16)0.14464 (17)0.53562 (11)0.0531 (6)
H90.06950.11750.57290.064*
C100.18157 (18)0.37182 (18)0.35704 (11)0.0608 (6)
H10A0.12050.40480.34770.091*
H10B0.20910.38350.31930.091*
H10C0.22060.40410.39700.091*
C110.15126 (14)0.03387 (16)0.37983 (10)0.0442 (5)
C120.20977 (14)0.05513 (15)0.39318 (9)0.0391 (5)
C130.22342 (14)0.12462 (15)0.33812 (10)0.0409 (5)
C140.32846 (17)0.18606 (18)0.43457 (10)0.0555 (6)
H14A0.39480.16920.44390.067*
H14B0.31990.25200.45890.067*
C150.27400 (14)0.09173 (16)0.45477 (10)0.0449 (5)
C160.32451 (15)0.27819 (16)0.31986 (10)0.0477 (5)
H160.28100.27830.27500.057*
C170.41877 (18)0.2440 (2)0.31078 (13)0.0768 (8)
H17A0.41490.17110.29300.115*
H17B0.43810.29300.27980.115*
H17C0.46360.24610.35380.115*
C180.3244 (3)0.3906 (2)0.34875 (15)0.1083 (12)
H18A0.36910.39420.39170.162*
H18B0.34080.44270.31820.162*
H18C0.26300.40710.35480.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0880 (12)0.0482 (9)0.0541 (9)0.0052 (8)0.0351 (8)0.0034 (7)
O20.0704 (10)0.0466 (9)0.0480 (8)0.0046 (7)0.0246 (8)0.0024 (7)
O30.0945 (13)0.0603 (11)0.0440 (9)0.0274 (9)0.0025 (9)0.0056 (7)
O40.0720 (11)0.0573 (10)0.0373 (8)0.0081 (8)0.0068 (7)0.0042 (7)
O50.0824 (12)0.0634 (10)0.0395 (9)0.0174 (8)0.0101 (8)0.0075 (7)
N10.0523 (10)0.0456 (10)0.0383 (9)0.0075 (8)0.0118 (8)0.0051 (7)
C10.0769 (19)0.102 (2)0.0840 (19)0.0169 (16)0.0350 (15)0.0154 (17)
C20.0629 (15)0.0592 (14)0.0482 (13)0.0004 (11)0.0226 (11)0.0032 (11)
C30.104 (2)0.087 (2)0.0674 (17)0.0210 (17)0.0350 (16)0.0227 (15)
C40.0459 (12)0.0423 (12)0.0453 (11)0.0049 (9)0.0131 (9)0.0042 (10)
C50.0466 (12)0.0352 (11)0.0465 (12)0.0000 (9)0.0120 (9)0.0009 (9)
C60.0353 (10)0.0439 (11)0.0399 (11)0.0016 (9)0.0072 (8)0.0001 (9)
C70.0433 (11)0.0403 (11)0.0399 (11)0.0061 (9)0.0071 (9)0.0007 (9)
C80.0634 (14)0.0361 (11)0.0548 (13)0.0048 (10)0.0175 (11)0.0019 (10)
C90.0662 (15)0.0485 (13)0.0504 (13)0.0024 (11)0.0254 (11)0.0041 (10)
C100.0796 (17)0.0506 (14)0.0574 (14)0.0129 (12)0.0266 (13)0.0002 (11)
C110.0503 (12)0.0426 (12)0.0384 (11)0.0009 (10)0.0082 (9)0.0016 (9)
C120.0456 (11)0.0357 (10)0.0373 (11)0.0017 (9)0.0123 (9)0.0014 (8)
C130.0449 (12)0.0377 (11)0.0413 (12)0.0047 (9)0.0129 (9)0.0008 (9)
C140.0636 (15)0.0585 (14)0.0424 (12)0.0162 (11)0.0087 (10)0.0029 (10)
C150.0532 (13)0.0428 (11)0.0401 (12)0.0016 (9)0.0137 (10)0.0014 (9)
C160.0599 (14)0.0442 (12)0.0418 (11)0.0064 (10)0.0178 (10)0.0059 (9)
C170.0618 (16)0.100 (2)0.0716 (16)0.0071 (14)0.0221 (13)0.0198 (14)
C180.200 (3)0.0501 (16)0.099 (2)0.0141 (18)0.084 (2)0.0003 (14)
Geometric parameters (Å, º) top
O1—C41.358 (2)C6—C71.407 (3)
O1—C21.443 (3)C7—C81.378 (3)
O2—C61.358 (2)C7—C111.468 (3)
O2—C101.426 (2)C8—C91.381 (3)
O3—C111.318 (2)C8—H80.9300
O3—H30.8200C9—H90.9300
O4—C131.251 (2)C10—H10A0.9600
O5—C151.219 (2)C10—H10B0.9600
N1—C131.335 (3)C10—H10C0.9600
N1—C141.457 (3)C11—C121.375 (3)
N1—C161.466 (2)C12—C151.446 (3)
C1—C21.500 (4)C12—C131.457 (3)
C1—H1A0.9600C14—C151.517 (3)
C1—H1B0.9600C14—H14A0.9700
C1—H1C0.9600C14—H14B0.9700
C2—C31.500 (3)C16—C181.497 (3)
C2—H20.9800C16—C171.500 (3)
C3—H3A0.9600C16—H160.9800
C3—H3B0.9600C17—H17A0.9600
C3—H3C0.9600C17—H17B0.9600
C4—C51.387 (3)C17—H17C0.9600
C4—C91.389 (3)C18—H18A0.9600
C5—C61.380 (3)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C4—O1—C2120.27 (16)O2—C10—H10A109.5
C6—O2—C10117.91 (15)O2—C10—H10B109.5
C11—O3—H3109.5H10A—C10—H10B109.5
C13—N1—C14111.61 (16)O2—C10—H10C109.5
C13—N1—C16124.48 (16)H10A—C10—H10C109.5
C14—N1—C16123.71 (16)H10B—C10—H10C109.5
C2—C1—H1A109.5O3—C11—C12119.05 (17)
C2—C1—H1B109.5O3—C11—C7115.64 (17)
H1A—C1—H1B109.5C12—C11—C7125.31 (18)
C2—C1—H1C109.5C11—C12—C15131.63 (18)
H1A—C1—H1C109.5C11—C12—C13120.43 (17)
H1B—C1—H1C109.5C15—C12—C13107.55 (17)
O1—C2—C3105.14 (19)O4—C13—N1125.12 (18)
O1—C2—C1110.6 (2)O4—C13—C12124.87 (18)
C3—C2—C1112.5 (2)N1—C13—C12110.00 (17)
O1—C2—H2109.5N1—C14—C15104.58 (16)
C3—C2—H2109.5N1—C14—H14A110.8
C1—C2—H2109.5C15—C14—H14A110.8
C2—C3—H3A109.5N1—C14—H14B110.8
C2—C3—H3B109.5C15—C14—H14B110.8
H3A—C3—H3B109.5H14A—C14—H14B108.9
C2—C3—H3C109.5O5—C15—C12131.24 (19)
H3A—C3—H3C109.5O5—C15—C14122.51 (18)
H3B—C3—H3C109.5C12—C15—C14106.23 (16)
O1—C4—C5114.32 (18)N1—C16—C18110.20 (17)
O1—C4—C9125.52 (19)N1—C16—C17110.60 (18)
C5—C4—C9120.15 (18)C18—C16—C17113.1 (2)
C6—C5—C4120.53 (18)N1—C16—H16107.6
C6—C5—H5119.7C18—C16—H16107.6
C4—C5—H5119.7C17—C16—H16107.6
O2—C6—C5123.75 (18)C16—C17—H17A109.5
O2—C6—C7116.18 (17)C16—C17—H17B109.5
C5—C6—C7120.04 (18)H17A—C17—H17B109.5
C8—C7—C6118.08 (18)C16—C17—H17C109.5
C8—C7—C11120.26 (18)H17A—C17—H17C109.5
C6—C7—C11121.64 (18)H17B—C17—H17C109.5
C7—C8—C9122.64 (19)C16—C18—H18A109.5
C7—C8—H8118.7C16—C18—H18B109.5
C9—C8—H8118.7H18A—C18—H18B109.5
C8—C9—C4118.54 (19)C16—C18—H18C109.5
C8—C9—H9120.7H18A—C18—H18C109.5
C4—C9—H9120.7H18B—C18—H18C109.5
C4—O1—C2—C3154.3 (2)C7—C11—C12—C155.9 (4)
C4—O1—C2—C184.0 (2)O3—C11—C12—C133.1 (3)
C2—O1—C4—C5171.26 (18)C7—C11—C12—C13177.76 (17)
C2—O1—C4—C98.2 (3)C14—N1—C13—O4177.57 (19)
O1—C4—C5—C6179.05 (17)C16—N1—C13—O42.7 (3)
C9—C4—C5—C60.4 (3)C14—N1—C13—C121.4 (2)
C10—O2—C6—C53.4 (3)C16—N1—C13—C12176.37 (17)
C10—O2—C6—C7178.82 (18)C11—C12—C13—O44.9 (3)
C4—C5—C6—O2177.72 (17)C15—C12—C13—O4178.60 (18)
C4—C5—C6—C70.0 (3)C11—C12—C13—N1174.08 (18)
O2—C6—C7—C8177.77 (18)C15—C12—C13—N10.4 (2)
C5—C6—C7—C80.1 (3)C13—N1—C14—C151.8 (2)
O2—C6—C7—C113.5 (3)C16—N1—C14—C15176.78 (18)
C5—C6—C7—C11178.64 (18)C11—C12—C15—O59.5 (4)
C6—C7—C8—C90.7 (3)C13—C12—C15—O5177.8 (2)
C11—C7—C8—C9178.1 (2)C11—C12—C15—C14172.0 (2)
C7—C8—C9—C41.1 (3)C13—C12—C15—C140.7 (2)
O1—C4—C9—C8178.5 (2)N1—C14—C15—O5177.22 (19)
C5—C4—C9—C81.0 (3)N1—C14—C15—C121.5 (2)
C8—C7—C11—O3126.2 (2)C13—N1—C16—C18130.9 (3)
C6—C7—C11—O352.5 (3)C14—N1—C16—C1854.8 (3)
C8—C7—C11—C1253.0 (3)C13—N1—C16—C17103.3 (2)
C6—C7—C11—C12128.3 (2)C14—N1—C16—C1771.0 (3)
O3—C11—C12—C15175.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.802.555 (2)152
C16—H16···O40.982.502.891 (2)104

Experimental details

Crystal data
Chemical formulaC18H23NO5
Mr333.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)14.694 (2), 12.249 (2), 20.308 (3)
β (°) 103.864 (3)
V3)3548.5 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9820, 3622, 2199
Rint0.032
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.04
No. of reflections3622
No. of parameters223
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

Selected bond lengths (Å) top
O3—C111.318 (2)C11—C121.375 (3)
O4—C131.251 (2)C12—C131.457 (3)
O5—C151.219 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.802.555 (2)152
C16—H16···O40.982.502.891 (2)104
 

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20772066).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART (Version 5.618), SAINT (Version 6.45) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433–434.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239–5246.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMatsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494–2502.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038–4039.  CrossRef CAS Web of Science Google Scholar
First citationRinehart, K. L., MacKellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J. & Branfman, A. R. (1971). J. Am. Chem. Soc. 93, 4943–4945.  CrossRef CAS PubMed Google Scholar
First citationRooyen, P. H. van (1992). Acta Cryst. C48, 551–552.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStickings, C. E. (1959). Biochem. J. 72, 332–334.  PubMed CAS Web of Science Google Scholar
First citationVan Der Baan, J. L., Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223–231.  CrossRef CAS Web of Science Google Scholar
First citationXu, H.-Z. (2005). Acta Cryst. E61, o292–o294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-Q., Hu, F.-Z. & Yang, H.-Z. (2004). Huaxue Tongbao, 67, 1–7.  Google Scholar
First citationZhu, Y.-Q., Song, H.-B., Li, J.-R., Yao, C.-S., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o196–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Y.-Q., Song, H.-B., Yao, C.-S., Gao, Y., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2004). Acta Cryst. E60, o599–o601.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds