organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(2-nitro­benzyl­­idene)di­thio­carbazate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 17 November 2007; accepted 19 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C9H9N3O2S2, contains two independent mol­ecules, A and B, with similar bond dimensions. In both mol­ecules, the nitro group is tilted with respect to the aromatic ring [dihedral angles 32.0 (1)° in mol­ecule A and 34.0 (1)° in mol­ecule B]. The dithio­carbazate unit is nearly coplanar with the aromatic ring in both mol­ecules. For mol­ecule B, pairs of mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds about a centre of symmetry to form a dimer, whereas mol­ecules A are not involved in hydrogen bonding in the crystal structure.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]). For related structures, see: Chen et al. (2007[Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919-o1920.]); Shan & Zhang, 2006[Shan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051-o2052.]; Zhang et al. 2005[Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173-o1175.]). For synthesis, see: Hu et al. (2001[Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014-2017.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O2S2

  • Mr = 255.31

  • Triclinic, [P \overline 1]

  • a = 7.5261 (12) Å

  • b = 10.7128 (16) Å

  • c = 14.5343 (17) Å

  • α = 78.588 (6)°

  • β = 87.095 (5)°

  • γ = 84.612 (6)°

  • V = 1143.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 (2) K

  • 0.36 × 0.30 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.795, Tmax = 0.930

  • 11206 measured reflections

  • 5127 independent reflections

  • 3773 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.10

  • 5127 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13N⋯O11i 0.86 2.16 3.014 (3) 174
C17—H17⋯O12i 0.93 2.55 3.373 (3) 148
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrazone and its derivatives have attracted our much attention because of their application in biological field (Okabe et al., 1993). As part of our ongoing investigation on anti-cancer compounds (Hu et al., 2001), the title compound has been prepared and its structure is presented here.

The asymmetric unit of the title compound contains two crystallographic independent molecules, A (C1-containing molecule) and B (C11-containing molecule), with the similar structure (Fig. 1). In the two molecules, the nitro groups are tilted with respect to the connected benzene rings by dihedral angles of 31.96 (11) and 33.96 (11)°, respectively; while dithiocarbazate moieties are nearly co-planar with the benzene rings, dihedral angles being 3.00 (6) and 4.03 (6)°, respectively. The centro-symmetry related B molecules are linked by N—H···O hydrogen bonding to form the supramolecular dimer (Table 2). Whereas the A molecules are not involved in hydrogen bonding in the crystal structure. The N2?C7 and N12?C17 bond distances (Table 1) indicate the typical N?C double bonds. Around the N?C double bonds, both molecules A and B exhibit the E configuration, similar to those found in related compounds (Chen et al., 2007; Shan & Zhang, 2006; Zhang et al., 2005).

Related literature top

For general background, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Chen et al. (2007); Shan & Zhang, 2006; Zhang et al. 2005). For synthesis, see: Hu et al. (2001).

Experimental top

Methyl dithiocarbazate was synthesized in the manner reported previously (Hu et al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and 2-nitrobenzaldehyde (1.51 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Fine yellow crystals appeared on cooling. They were separated and washed with cold water three times. Single crystals of the title compound were obtained by recrystallization from an absolute ethanol solution.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.97 and N—H = 0.86 Å, and refined in the riding mode, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

Hydrazone and its derivatives have attracted our much attention because of their application in biological field (Okabe et al., 1993). As part of our ongoing investigation on anti-cancer compounds (Hu et al., 2001), the title compound has been prepared and its structure is presented here.

The asymmetric unit of the title compound contains two crystallographic independent molecules, A (C1-containing molecule) and B (C11-containing molecule), with the similar structure (Fig. 1). In the two molecules, the nitro groups are tilted with respect to the connected benzene rings by dihedral angles of 31.96 (11) and 33.96 (11)°, respectively; while dithiocarbazate moieties are nearly co-planar with the benzene rings, dihedral angles being 3.00 (6) and 4.03 (6)°, respectively. The centro-symmetry related B molecules are linked by N—H···O hydrogen bonding to form the supramolecular dimer (Table 2). Whereas the A molecules are not involved in hydrogen bonding in the crystal structure. The N2?C7 and N12?C17 bond distances (Table 1) indicate the typical N?C double bonds. Around the N?C double bonds, both molecules A and B exhibit the E configuration, similar to those found in related compounds (Chen et al., 2007; Shan & Zhang, 2006; Zhang et al., 2005).

For general background, see: Okabe et al. (1993); Hu et al. (2001). For related structures, see: Chen et al. (2007); Shan & Zhang, 2006; Zhang et al. 2005). For synthesis, see: Hu et al. (2001).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids (arbitrary spheres for H atoms).
(E)-Methyl 3-(2-nitrobenzylidene)dithiocarbazate top
Crystal data top
C9H9N3O2S2Z = 4
Mr = 255.31F(000) = 528
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5261 (12) ÅCell parameters from 8768 reflections
b = 10.7128 (16) Åθ = 3.5–25.2°
c = 14.5343 (17) ŵ = 0.45 mm1
α = 78.588 (6)°T = 291 K
β = 87.095 (5)°Prism, yellow
γ = 84.612 (6)°0.36 × 0.30 × 0.16 mm
V = 1143.0 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5127 independent reflections
Radiation source: fine-focus sealed tube3773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.795, Tmax = 0.930l = 1818
11206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.2566P]
where P = (Fo2 + 2Fc2)/3
5127 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H9N3O2S2γ = 84.612 (6)°
Mr = 255.31V = 1143.0 (3) Å3
Triclinic, P1Z = 4
a = 7.5261 (12) ÅMo Kα radiation
b = 10.7128 (16) ŵ = 0.45 mm1
c = 14.5343 (17) ÅT = 291 K
α = 78.588 (6)°0.36 × 0.30 × 0.16 mm
β = 87.095 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5127 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3773 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.930Rint = 0.024
11206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
5127 reflectionsΔρmin = 0.31 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10244 (10)0.28477 (6)0.50066 (5)0.0686 (2)
S20.04064 (8)0.25046 (5)0.29873 (4)0.05480 (17)
S110.67348 (9)0.86939 (5)0.15976 (5)0.06155 (19)
S120.62739 (8)0.64462 (5)0.06773 (4)0.05198 (16)
N10.1634 (3)0.88846 (18)0.18824 (14)0.0555 (5)
N20.0369 (2)0.50343 (16)0.26593 (12)0.0470 (4)
N30.0124 (3)0.46023 (17)0.35805 (13)0.0545 (5)
H3N0.01850.51140.39700.065*
N110.3762 (3)0.30552 (17)0.50958 (12)0.0499 (4)
N120.5421 (2)0.52269 (15)0.24812 (12)0.0420 (4)
N130.5836 (3)0.64538 (16)0.24503 (12)0.0477 (4)
H13N0.58230.67450.29610.057*
O10.1188 (3)1.00252 (16)0.16247 (14)0.0801 (6)
O20.2133 (3)0.84171 (18)0.26726 (13)0.0751 (5)
O110.4082 (3)0.23524 (18)0.58419 (12)0.0875 (7)
O120.3194 (3)0.41716 (15)0.50380 (12)0.0646 (5)
C10.1201 (3)0.67717 (18)0.14835 (14)0.0404 (4)
C20.1581 (3)0.80514 (18)0.12003 (14)0.0427 (4)
C30.1920 (3)0.8603 (2)0.02687 (15)0.0496 (5)
H30.21250.94630.01030.060*
C40.1951 (3)0.7869 (2)0.04046 (16)0.0535 (5)
H40.21870.82260.10310.064*
C50.1629 (3)0.6593 (2)0.01493 (16)0.0532 (5)
H50.16680.60910.06050.064*
C60.1251 (3)0.6061 (2)0.07770 (16)0.0494 (5)
H60.10250.52050.09330.059*
C70.0663 (3)0.6209 (2)0.24519 (15)0.0480 (5)
H70.05390.67080.29110.058*
C80.0516 (3)0.3381 (2)0.38814 (16)0.0504 (5)
C90.0977 (4)0.0963 (2)0.3612 (2)0.0689 (7)
H9A0.01820.06640.41210.103*
H9B0.08690.03690.31930.103*
H9C0.21830.10320.38570.103*
C110.4580 (3)0.32678 (17)0.33941 (13)0.0382 (4)
C120.4033 (3)0.25252 (18)0.42419 (13)0.0390 (4)
C130.3699 (3)0.12543 (18)0.43353 (15)0.0453 (5)
H130.33410.07890.49140.054*
C140.3904 (3)0.06946 (19)0.35602 (16)0.0514 (5)
H140.36770.01550.36080.062*
C150.4450 (3)0.1400 (2)0.27100 (16)0.0511 (5)
H150.45850.10200.21850.061*
C160.4798 (3)0.2658 (2)0.26259 (15)0.0451 (5)
H160.51860.31090.20480.054*
C170.5029 (3)0.45918 (19)0.32906 (14)0.0454 (5)
H170.50280.49670.38160.054*
C180.6263 (3)0.72055 (18)0.16279 (14)0.0427 (5)
C190.6919 (4)0.7682 (3)0.02735 (17)0.0663 (7)
H19A0.59850.83660.03680.099*
H19B0.71190.73400.08360.099*
H19C0.79960.80020.01240.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0862 (5)0.0596 (4)0.0520 (3)0.0072 (3)0.0147 (3)0.0049 (3)
S20.0588 (3)0.0460 (3)0.0564 (3)0.0097 (3)0.0041 (3)0.0011 (2)
S110.0834 (4)0.0354 (3)0.0657 (4)0.0174 (3)0.0141 (3)0.0080 (3)
S120.0637 (4)0.0490 (3)0.0444 (3)0.0098 (3)0.0008 (3)0.0096 (2)
N10.0720 (13)0.0434 (10)0.0562 (12)0.0216 (9)0.0085 (10)0.0167 (9)
N20.0487 (10)0.0401 (9)0.0482 (10)0.0041 (8)0.0011 (8)0.0004 (7)
N30.0682 (12)0.0446 (10)0.0471 (10)0.0055 (9)0.0062 (9)0.0023 (8)
N110.0681 (12)0.0432 (10)0.0405 (9)0.0102 (9)0.0001 (9)0.0114 (8)
N120.0511 (10)0.0315 (8)0.0441 (9)0.0073 (7)0.0019 (8)0.0068 (7)
N130.0674 (12)0.0347 (8)0.0425 (9)0.0142 (8)0.0037 (8)0.0078 (7)
O10.1226 (17)0.0372 (9)0.0830 (13)0.0105 (10)0.0093 (12)0.0194 (9)
O20.1115 (16)0.0655 (11)0.0557 (11)0.0289 (11)0.0109 (10)0.0178 (9)
O110.164 (2)0.0608 (11)0.0367 (9)0.0046 (12)0.0097 (11)0.0065 (8)
O120.0928 (13)0.0452 (9)0.0593 (10)0.0055 (9)0.0089 (9)0.0219 (7)
C10.0378 (10)0.0347 (9)0.0481 (11)0.0036 (8)0.0020 (8)0.0063 (8)
C20.0452 (11)0.0369 (10)0.0475 (11)0.0076 (8)0.0004 (9)0.0105 (8)
C30.0563 (13)0.0400 (11)0.0509 (12)0.0102 (9)0.0048 (10)0.0038 (9)
C40.0555 (13)0.0572 (13)0.0467 (12)0.0055 (11)0.0023 (10)0.0085 (10)
C50.0584 (13)0.0542 (13)0.0519 (13)0.0078 (11)0.0006 (11)0.0206 (10)
C60.0528 (12)0.0370 (10)0.0610 (13)0.0088 (9)0.0024 (10)0.0139 (10)
C70.0537 (12)0.0409 (11)0.0491 (12)0.0083 (9)0.0005 (10)0.0067 (9)
C80.0464 (11)0.0455 (11)0.0530 (12)0.0008 (9)0.0043 (10)0.0027 (10)
C90.0703 (16)0.0472 (13)0.0838 (19)0.0125 (12)0.0040 (14)0.0016 (12)
C110.0435 (10)0.0327 (9)0.0396 (10)0.0055 (8)0.0058 (8)0.0079 (8)
C120.0455 (11)0.0346 (9)0.0385 (10)0.0037 (8)0.0069 (8)0.0096 (8)
C130.0546 (12)0.0329 (10)0.0476 (11)0.0077 (9)0.0073 (10)0.0026 (8)
C140.0628 (14)0.0309 (10)0.0635 (14)0.0070 (9)0.0164 (11)0.0113 (9)
C150.0617 (14)0.0444 (11)0.0527 (12)0.0000 (10)0.0101 (10)0.0230 (10)
C160.0522 (12)0.0437 (11)0.0417 (10)0.0062 (9)0.0022 (9)0.0129 (9)
C170.0615 (13)0.0379 (10)0.0398 (10)0.0119 (9)0.0023 (9)0.0110 (8)
C180.0462 (11)0.0357 (10)0.0457 (11)0.0050 (8)0.0023 (9)0.0072 (8)
C190.0759 (17)0.0732 (17)0.0450 (12)0.0097 (14)0.0031 (12)0.0006 (11)
Geometric parameters (Å, º) top
S1—C81.660 (2)C3—H30.9300
S2—C81.742 (3)C4—C51.385 (3)
S2—C91.800 (2)C4—H40.9300
S11—C181.657 (2)C5—C61.381 (3)
S12—C181.736 (2)C5—H50.9300
S12—C191.797 (2)C6—H60.9300
N1—O21.221 (3)C7—H70.9300
N1—O11.225 (2)C9—H9A0.9600
N1—C21.464 (3)C9—H9B0.9600
N2—C71.272 (3)C9—H9C0.9600
N2—N31.372 (2)C11—C121.394 (3)
N3—C81.350 (3)C11—C161.396 (3)
N3—H3N0.8600C11—C171.466 (3)
N11—O111.212 (2)C12—C131.387 (3)
N11—O121.220 (2)C13—C141.373 (3)
N11—C121.461 (3)C13—H130.9300
N12—C171.273 (3)C14—C151.380 (3)
N12—N131.371 (2)C14—H140.9300
N13—C181.345 (2)C15—C161.378 (3)
N13—H13N0.8600C15—H150.9300
C1—C61.391 (3)C16—H160.9300
C1—C21.403 (3)C17—H170.9300
C1—C71.470 (3)C19—H19A0.9600
C2—C31.387 (3)C19—H19B0.9600
C3—C41.369 (3)C19—H19C0.9600
C8—S2—C9101.93 (12)N3—C8—S2113.24 (16)
C18—S12—C19101.57 (11)S1—C8—S2126.39 (13)
O2—N1—O1123.3 (2)S2—C9—H9A109.5
O2—N1—C2118.83 (19)S2—C9—H9B109.5
O1—N1—C2117.9 (2)H9A—C9—H9B109.5
C7—N2—N3115.10 (19)S2—C9—H9C109.5
C8—N3—N2120.7 (2)H9A—C9—H9C109.5
C8—N3—H3N119.7H9B—C9—H9C109.5
N2—N3—H3N119.7C12—C11—C16116.26 (17)
O11—N11—O12122.41 (19)C12—C11—C17123.88 (18)
O11—N11—C12118.20 (18)C16—C11—C17119.74 (18)
O12—N11—C12119.38 (17)C13—C12—C11123.03 (19)
C17—N12—N13115.97 (17)C13—C12—N11115.63 (18)
C18—N13—N12120.58 (17)C11—C12—N11121.34 (17)
C18—N13—H13N119.7C14—C13—C12118.95 (19)
N12—N13—H13N119.7C14—C13—H13120.5
C6—C1—C2116.07 (19)C12—C13—H13120.5
C6—C1—C7120.58 (18)C13—C14—C15119.60 (19)
C2—C1—C7123.24 (19)C13—C14—H14120.2
C3—C2—C1122.61 (19)C15—C14—H14120.2
C3—C2—N1116.12 (17)C16—C15—C14121.1 (2)
C1—C2—N1121.27 (18)C16—C15—H15119.5
C4—C3—C2119.33 (19)C14—C15—H15119.5
C4—C3—H3120.3C15—C16—C11121.1 (2)
C2—C3—H3120.3C15—C16—H16119.5
C3—C4—C5119.7 (2)C11—C16—H16119.5
C3—C4—H4120.1N12—C17—C11119.89 (18)
C5—C4—H4120.1N12—C17—H17120.1
C6—C5—C4120.4 (2)C11—C17—H17120.1
C6—C5—H5119.8N13—C18—S11120.14 (16)
C4—C5—H5119.8N13—C18—S12113.32 (14)
C5—C6—C1121.75 (19)S11—C18—S12126.54 (12)
C5—C6—H6119.1S12—C19—H19A109.5
C1—C6—H6119.1S12—C19—H19B109.5
N2—C7—C1119.6 (2)H19A—C19—H19B109.5
N2—C7—H7120.2S12—C19—H19C109.5
C1—C7—H7120.2H19A—C19—H19C109.5
N3—C8—S1120.37 (19)H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13N···O11i0.862.163.014 (3)174
C17—H17···O12i0.932.553.373 (3)148
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H9N3O2S2
Mr255.31
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.5261 (12), 10.7128 (16), 14.5343 (17)
α, β, γ (°)78.588 (6), 87.095 (5), 84.612 (6)
V3)1143.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.36 × 0.30 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.795, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
11206, 5127, 3773
Rint0.024
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.10
No. of reflections5127
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N2—C71.272 (3)N12—C171.273 (3)
N2—N31.372 (2)N12—N131.371 (2)
N3—C81.350 (3)N13—C181.345 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13N···O11i0.862.163.014 (3)174
C17—H17···O12i0.932.553.373 (3)148
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919–o1920.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017.  CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051–o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173–o1175.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds