organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zwitterionic (4-benzyl­piperidinium-1-yl­meth­yl)phospho­nate

aDepartment of Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 19 November 2007; accepted 21 November 2007; online 6 December 2007)

The title compound, C13H20NO3P, exists as a zwitterion: the phospho­nic acid group has transferred its H atom to the amino group. The piperidine ring adopts a chair conformation. Mol­ecules are linked via hydrogen bonding to form a linear chain.

Related literature

For similar structures, see: Kotek et al. (2000[Kotek, J., Vojtisek, P., Cisarova, I., Hermann, P., Jurecka, P., Rohovec, J. & Lukes, I. (2000). Collect. Czech. Chem. Commun. 65, 1289-1316.]); Mao et al. (2002[Mao, J. G., Wang, Z. & Clearfield, A. (2002). J. Chem. Soc. Dalton Trans. pp. 4541-4546.]); Ying et al. (2007[Ying, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153-o1154.]); Vivani et al. (2004[Vivani, R., Costantino, R., Nocchetti, M. & Gatta, G. D. (2004). J. Solid State Chem. 177, 4013-4022.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20NO3P

  • Mr = 269.27

  • Orthorhombic, P b c a

  • a = 9.2791 (6) Å

  • b = 11.4916 (9) Å

  • c = 24.915 (2) Å

  • V = 2656.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 (2) K

  • 0.50 × 0.50 × 0.30 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED (Version 1.28b) and X-AREA (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.])] Tmin = 0.900, Tmax = 0.938

  • 9369 measured reflections

  • 3536 independent reflections

  • 3336 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.10

  • 3536 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.961 (16) 1.707 (16) 2.651 (1) 166 (2)
O1—H1D⋯O3i 0.877 (19) 1.682 (19) 2.549 (1) 169 (2)
Symmetry code: (i) [-{1 \over 2}+x, y, {1 \over 2}-z].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-RED (Version 1.28b) and X-AREA (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, an increasing attention has been focused on the synthesis and designing of aminodiphosphonic acids and new metal phosphonate inorganic–organic hybrid materials with one-, two- or three-dimensional structures due to their potential applications in porous materials, ion exchange reagents, catalysis, sensors, nonlinear optics materials, anti-tumour drugs, photovoltaic devices and biotechnologies (Kotek et al., 2000; Ying et al., 2007; Mao et al., 2002; Vivani et al., 2004). The title compounds, (I), Fig. 1, was prepared by the reaction of benzylpiperidine and formaldehyde with posphorus acid (Scheme I).

The coordination environment around the phosphorus atoms of compound (I) are approximately tetrahedral, since average of six angles involving P are 109.35°. However the coordination is clearly distorted, arising from the presence of different substituents at phosphorus center. The angles O2—P1—O3 and C1—P1—O2 have values of 104.59 (5) and 118.29 (4)°, respectively. The piperidine ring in the titled compound adopt a chair conformation similar to that of cyclohexane. Bond lengths involving phosphorus atom are in good agreement with values found in other similar compounds (Ying et al., 2007; Vivani et al., 2004). The molecules are linked via intermolecular hydrogen bonding to form a one-dimensional chain of fused rings (Fig. 2).

Related literature top

For similar structures, see: Kotek et al. (2000); Mao et al. (2002); Ying et al. (2007); Vivani et al. (2004).

Experimental top

A quantity of 0.33 mole of benzylpiperidne was dissolved in 75 ml of concentrated HCl and a concentrated aqueous solution of 2 moles of phosphorous acid. The resulting solution was heated to reflux temperature and 160 ml of 37% aqueous formaldehyde solution (2 moles) was added dropwise in the course of 1 hr and the reaction mixture was kept at reflux temperature for 3 additional hr. Upon cooling to room temperature the acids crystallized. Calc for C13H20NO3P: C 57.99, H 7.49, N 5.20%; found C 57.96, H 7.50, N 5.21%.

Refinement top

H1A, H1B (for CH2) and H1C, H1D (for NH and OH) were located in difference syntheses and refined isotropically [C—H = 0.955 (16) and 0.971 (15) Å, Uiso(H) = 0.024 (4) and 0.018 (4) Å2; N—H = 0.961 (16), Uiso(H) = 0.026 (4) Å2 and O—H = 0.87 (2), Uiso(H) = 0.025 (6) Å2]. The remaining H atoms were positioned geometrically, C—H = 0.93 and 0.97 Å, for aromatic and methylene H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, an increasing attention has been focused on the synthesis and designing of aminodiphosphonic acids and new metal phosphonate inorganic–organic hybrid materials with one-, two- or three-dimensional structures due to their potential applications in porous materials, ion exchange reagents, catalysis, sensors, nonlinear optics materials, anti-tumour drugs, photovoltaic devices and biotechnologies (Kotek et al., 2000; Ying et al., 2007; Mao et al., 2002; Vivani et al., 2004). The title compounds, (I), Fig. 1, was prepared by the reaction of benzylpiperidine and formaldehyde with posphorus acid (Scheme I).

The coordination environment around the phosphorus atoms of compound (I) are approximately tetrahedral, since average of six angles involving P are 109.35°. However the coordination is clearly distorted, arising from the presence of different substituents at phosphorus center. The angles O2—P1—O3 and C1—P1—O2 have values of 104.59 (5) and 118.29 (4)°, respectively. The piperidine ring in the titled compound adopt a chair conformation similar to that of cyclohexane. Bond lengths involving phosphorus atom are in good agreement with values found in other similar compounds (Ying et al., 2007; Vivani et al., 2004). The molecules are linked via intermolecular hydrogen bonding to form a one-dimensional chain of fused rings (Fig. 2).

For similar structures, see: Kotek et al. (2000); Mao et al. (2002); Ying et al. (2007); Vivani et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-labelling scheme with thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of molecules, I in the unit cell, showing the hydrogen bonding.
(4-benzylpiperidinium-1-ylmethyl)phosphonate top
Crystal data top
C13H20NO3PF(000) = 1152
Mr = 269.27Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2500 reflections
a = 9.2791 (6) Åθ = 2.7–29.2°
b = 11.4916 (9) ŵ = 0.21 mm1
c = 24.915 (2) ÅT = 120 K
V = 2656.7 (3) Å3Block, colourless
Z = 80.50 × 0.50 × 0.30 mm
Data collection top
Stoe IPDS II
diffractometer
3536 independent reflections
Radiation source: fine-focus sealed tube3336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.7°
rotation method scansh = 129
Absorption correction: numerical
shape of crystal determined optically
k = 1515
Tmin = 0.900, Tmax = 0.938l = 3422
9369 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.177P]
where P = (Fo2 + 2Fc2)/3
3536 reflections(Δ/σ)max = 0.013
179 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C13H20NO3PV = 2656.7 (3) Å3
Mr = 269.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.2791 (6) ŵ = 0.21 mm1
b = 11.4916 (9) ÅT = 120 K
c = 24.915 (2) Å0.50 × 0.50 × 0.30 mm
Data collection top
Stoe IPDS II
diffractometer
3536 independent reflections
Absorption correction: numerical
shape of crystal determined optically
3336 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.938Rint = 0.029
9369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.41 e Å3
3536 reflectionsΔρmin = 0.37 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13013 (11)0.26512 (9)0.27800 (4)0.01598 (19)
H1A0.0464 (18)0.3020 (14)0.2923 (6)0.024 (4)*
H1B0.1752 (16)0.3137 (13)0.2509 (6)0.018 (4)*
C20.17889 (11)0.19257 (9)0.37040 (4)0.01476 (19)
H2A0.15230.11450.35950.018*
H2B0.09290.23130.38340.018*
C30.28979 (12)0.18585 (9)0.41550 (4)0.0168 (2)
H3A0.37220.14110.40340.020*
H3B0.24780.14560.44600.020*
C40.34034 (11)0.30678 (9)0.43324 (4)0.0164 (2)
H40.25720.34920.44760.020*
C50.39579 (12)0.37187 (9)0.38385 (4)0.0187 (2)
H5A0.42300.45030.39410.022*
H5B0.48120.33300.37030.022*
C60.28336 (12)0.37782 (9)0.33957 (4)0.0186 (2)
H6A0.20030.42120.35220.022*
H6B0.32310.41840.30880.022*
C70.45790 (12)0.30258 (11)0.47679 (4)0.0205 (2)
H7A0.53860.25740.46340.025*
H7B0.49200.38110.48340.025*
C80.40779 (11)0.25042 (10)0.52920 (4)0.0171 (2)
C90.43625 (13)0.13470 (10)0.54190 (5)0.0232 (2)
H90.48780.08880.51790.028*
C100.38867 (15)0.08657 (11)0.59010 (6)0.0293 (3)
H100.40940.00930.59810.035*
C110.31058 (14)0.15354 (14)0.62611 (5)0.0308 (3)
H110.27750.12120.65800.037*
C120.28203 (13)0.26958 (13)0.61413 (5)0.0274 (3)
H120.23040.31520.63820.033*
C130.33060 (12)0.31742 (11)0.56609 (4)0.0206 (2)
H130.31140.39510.55850.025*
N10.23706 (9)0.25759 (7)0.32299 (3)0.01285 (16)
H1C0.3240 (17)0.2205 (14)0.3109 (7)0.026 (4)*
O10.02029 (8)0.06162 (7)0.28658 (3)0.01733 (16)
H1D0.112 (2)0.0696 (19)0.2790 (9)0.025 (6)*
O20.00660 (8)0.16513 (8)0.19677 (3)0.01869 (17)
O30.21224 (8)0.05809 (7)0.23662 (3)0.01744 (16)
P10.07816 (3)0.12808 (2)0.245156 (10)0.01325 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0144 (4)0.0193 (5)0.0142 (4)0.0022 (4)0.0014 (4)0.0033 (4)
C20.0152 (4)0.0181 (4)0.0110 (4)0.0024 (4)0.0017 (3)0.0016 (3)
C30.0185 (5)0.0196 (5)0.0123 (4)0.0013 (4)0.0011 (3)0.0014 (4)
C40.0143 (4)0.0206 (5)0.0144 (4)0.0008 (4)0.0003 (3)0.0030 (4)
C50.0190 (5)0.0178 (5)0.0194 (5)0.0033 (4)0.0016 (4)0.0003 (4)
C60.0208 (5)0.0148 (5)0.0202 (5)0.0024 (4)0.0025 (4)0.0020 (4)
C70.0150 (5)0.0308 (6)0.0158 (5)0.0019 (4)0.0005 (4)0.0032 (4)
C80.0124 (4)0.0241 (5)0.0147 (4)0.0007 (4)0.0027 (3)0.0044 (4)
C90.0218 (5)0.0224 (5)0.0252 (5)0.0018 (4)0.0047 (4)0.0074 (4)
C100.0274 (6)0.0255 (6)0.0349 (6)0.0099 (5)0.0105 (5)0.0052 (5)
C110.0208 (6)0.0496 (8)0.0220 (5)0.0131 (6)0.0042 (4)0.0084 (5)
C120.0158 (5)0.0493 (8)0.0170 (5)0.0011 (5)0.0009 (4)0.0057 (5)
C130.0158 (5)0.0286 (6)0.0175 (5)0.0049 (4)0.0022 (4)0.0054 (4)
N10.0119 (4)0.0149 (4)0.0117 (3)0.0007 (3)0.0013 (3)0.0012 (3)
O10.0094 (3)0.0269 (4)0.0157 (3)0.0011 (3)0.0008 (3)0.0056 (3)
O20.0117 (3)0.0317 (4)0.0127 (3)0.0020 (3)0.0013 (3)0.0044 (3)
O30.0094 (3)0.0236 (4)0.0194 (4)0.0015 (3)0.0004 (3)0.0001 (3)
P10.00793 (13)0.02066 (14)0.01116 (12)0.00100 (9)0.00030 (8)0.00220 (9)
Geometric parameters (Å, º) top
C1—N11.4993 (13)C7—C81.5101 (15)
C1—P11.8391 (11)C7—H7A0.9700
C1—H1A0.955 (16)C7—H7B0.9700
C1—H1B0.971 (15)C8—C91.3922 (16)
C2—N11.4984 (12)C8—C131.3966 (15)
C2—C31.5256 (14)C9—C101.3939 (18)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.386 (2)
C3—C41.5319 (15)C10—H100.9300
C3—H3A0.9700C11—C121.392 (2)
C3—H3B0.9700C11—H110.9300
C4—C51.5293 (15)C12—C131.3921 (17)
C4—C71.5394 (15)C12—H120.9300
C4—H40.9800C13—H130.9300
C5—C61.5199 (15)N1—H1C0.961 (16)
C5—H5A0.9700O1—P11.5758 (8)
C5—H5B0.9700O1—H1D0.87 (2)
C6—N11.5047 (13)O2—P11.5010 (8)
C6—H6A0.9700O3—P11.4967 (8)
C6—H6B0.9700
N1—C1—P1117.17 (7)C8—C7—H7A108.8
N1—C1—H1A106.5 (9)C4—C7—H7A108.8
P1—C1—H1A109.5 (10)C8—C7—H7B108.8
N1—C1—H1B105.6 (9)C4—C7—H7B108.8
P1—C1—H1B107.1 (9)H7A—C7—H7B107.7
H1A—C1—H1B110.8 (13)C9—C8—C13118.31 (11)
N1—C2—C3111.28 (8)C9—C8—C7121.14 (10)
N1—C2—H2A109.4C13—C8—C7120.54 (11)
C3—C2—H2A109.4C8—C9—C10120.98 (11)
N1—C2—H2B109.4C8—C9—H9119.5
C3—C2—H2B109.4C10—C9—H9119.5
H2A—C2—H2B108.0C11—C10—C9120.19 (12)
C2—C3—C4111.91 (8)C11—C10—H10119.9
C2—C3—H3A109.2C9—C10—H10119.9
C4—C3—H3A109.2C10—C11—C12119.50 (12)
C2—C3—H3B109.2C10—C11—H11120.2
C4—C3—H3B109.2C12—C11—H11120.2
H3A—C3—H3B107.9C11—C12—C13120.07 (12)
C5—C4—C3108.33 (8)C11—C12—H12120.0
C5—C4—C7110.13 (9)C13—C12—H12120.0
C3—C4—C7113.07 (9)C12—C13—C8120.94 (12)
C5—C4—H4108.4C12—C13—H13119.5
C3—C4—H4108.4C8—C13—H13119.5
C7—C4—H4108.4C2—N1—C1112.32 (8)
C6—C5—C4112.03 (9)C2—N1—C6110.13 (8)
C6—C5—H5A109.2C1—N1—C6109.95 (8)
C4—C5—H5A109.2C2—N1—H1C109.2 (10)
C6—C5—H5B109.2C1—N1—H1C110.3 (10)
C4—C5—H5B109.2C6—N1—H1C104.7 (9)
H5A—C5—H5B107.9P1—O1—H1D111.8 (14)
N1—C6—C5110.74 (8)O3—P1—O2118.29 (4)
N1—C6—H6A109.5O3—P1—O1108.33 (5)
C5—C6—H6A109.5O2—P1—O1111.09 (4)
N1—C6—H6B109.5O3—P1—C1107.78 (5)
C5—C6—H6B109.5O2—P1—C1104.59 (5)
H6A—C6—H6B108.1O1—P1—C1106.00 (5)
C8—C7—C4113.81 (9)
N1—C2—C3—C457.02 (11)C10—C11—C12—C130.56 (18)
C2—C3—C4—C554.79 (11)C11—C12—C13—C80.24 (17)
C2—C3—C4—C7177.15 (9)C9—C8—C13—C120.62 (16)
C3—C4—C5—C655.62 (11)C7—C8—C13—C12178.99 (10)
C7—C4—C5—C6179.76 (9)C3—C2—N1—C1179.84 (8)
C4—C5—C6—N158.18 (12)C3—C2—N1—C657.25 (11)
C5—C4—C7—C8174.20 (9)P1—C1—N1—C265.29 (10)
C3—C4—C7—C864.45 (12)P1—C1—N1—C6171.70 (7)
C4—C7—C8—C998.50 (12)C5—C6—N1—C257.69 (11)
C4—C7—C8—C1381.09 (13)C5—C6—N1—C1178.02 (9)
C13—C8—C9—C100.20 (16)N1—C1—P1—O343.51 (9)
C7—C8—C9—C10179.40 (10)N1—C1—P1—O2170.22 (7)
C8—C9—C10—C110.60 (18)N1—C1—P1—O172.31 (8)
C9—C10—C11—C120.98 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.961 (16)1.707 (16)2.651 (1)166 (2)
O1—H1D···O30.877 (19)1.682 (19)2.549 (1)169 (2)

Experimental details

Crystal data
Chemical formulaC13H20NO3P
Mr269.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)9.2791 (6), 11.4916 (9), 24.915 (2)
V3)2656.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.50 × 0.50 × 0.30
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.900, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
9369, 3536, 3336
Rint0.029
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.10
No. of reflections3536
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—P11.8391 (11)O2—P11.5010 (8)
O1—P11.5758 (8)O3—P11.4967 (8)
O3—P1—O2118.29 (4)O3—P1—C1107.78 (5)
O3—P1—O1108.33 (5)O2—P1—C1104.59 (5)
O2—P1—O1111.09 (4)O1—P1—C1106.00 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.961 (16)1.707 (16)2.651 (1)166 (2)
O1—H1D···O30.877 (19)1.682 (19)2.549 (1)169 (2)
 

Acknowledgements

SD acknowledges the Alzahra University Research Council for partial support of this work.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKotek, J., Vojtisek, P., Cisarova, I., Hermann, P., Jurecka, P., Rohovec, J. & Lukes, I. (2000). Collect. Czech. Chem. Commun. 65, 1289–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationMao, J. G., Wang, Z. & Clearfield, A. (2002). J. Chem. Soc. Dalton Trans. pp. 4541–4546.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2005). X-RED (Version 1.28b) and X-AREA (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationVivani, R., Costantino, R., Nocchetti, M. & Gatta, G. D. (2004). J. Solid State Chem. 177, 4013–4022.  Web of Science CSD CrossRef CAS Google Scholar
First citationYing, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153–o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds