organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl 2,3-O-iso­propyl­­idene-1-thio-α-D-rhamno­pyran­oside

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 19 November 2007; accepted 20 November 2007; online 6 December 2007)

In the title compound, C15H20O4S, a dioxolane ring is fused to the pyran ring of the sugar which carries a thio­phenyl substituent on the anomeric C atom. The dioxolane ring adopts an envelope conformation and the pyran ring system a distorted 4C1 chair. The structure is stabilized by O—H⋯O hydrogen bonds, forming centrosymmetric dimers that generate an R22(10) ring motif. Additional C—H⋯O inter­actions form an extended network. Two C atoms of the phenyl ring are disordered over two positions; the site occupancy factors are ca. 0.7 and 0.3.

Related literature

For the background to angucyline anti­biotics, see: Carreno & Urbano (2005[Carreno, M. C. & Urbano, A. (2005). Synlett, pp. 1-25.]); Toshima (2003[Toshima, K. (2003). Rec. Dev. Carbohydrate Res. 1, 27-47.]); Krohn & Rohr (1997[Krohn, K. & Rohr, J. (1997). Top. Curr. Chem. Bioorg. Chem. 188 127-195.]); Rohr & Thiericke (1992[Rohr, J. & Thiericke, R. (1992). Nat. Prod. Rep. 9, 103-37.]). For previous reports of the title compound, see: Kerekgyarto et al., (1993[Kerekgyarto, J., Szurmai, Z. & Liptak, A. (1993). Carbohydr. Res. 245, 65-80.]); Yu & Wang, (2002[Yu, B. & Wang, P. (2002). Org. Lett. 4, 1919-1922.]). For related structures, see, for example: Yang et al. (2003[Yang, Z., Cao, H., Hu, J., Shan, R. & Yu, B. (2003). Tetrahedron, 59, 249-254.]); Wehlan et al. (2004[Wehlan, H., Dauber, M., Feranud, M. T. M., Schuppan, J., Mahrwald, R., Ziemer, B., Garcia, M. E. J. & Koert, U. (2004). Angew. Chem. Int. Ed. 43, 4597-4601.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20O4S

  • Mr = 296.37

  • Monoclinic, C 2

  • a = 24.3029 (12) Å

  • b = 5.3048 (3) Å

  • c = 12.0795 (7) Å

  • β = 97.014 (3)°

  • V = 1545.66 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 (2) K

  • 0.37 × 0.30 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.017), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.723, Tmax = 0.983

  • 17181 measured reflections

  • 3318 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.144

  • S = 1.03

  • 3318 reflections

  • 204 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1392 Friedel pairs

  • Flack parameter: 0.03 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.82 2.05 2.861 (2) 169
C8—H8A⋯O3ii 0.96 2.61 3.224 (3) 122
C14—H14⋯O2iii 0.93 2.62 3.524 (4) 164
Symmetry codes: (i) -x, y, -z+1; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.017), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.017), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

In a sequence aimed at synthesizing 2,6-dideoxy-D-arabinopyranosides for use as glycosyl donors for the preparation of C-glycosides related to the angucycline antibiotics (Carreno & Urbano, 2005; Toshima, 2003; Krohn & Rohr, 1997; Rohr & Thiericke, 1992) we reduced tosylate (1) with lithium aluminium hydride to furnish the title compound (2), a known D-rhamnoside, (Kerekgyarto et al., 1993; Yu & Wang, 2002) in 63% yield (Scheme 1). An unexpected by-product (3), where reduction of the isopropylidene group had occurred, was also isolated in 14% yield.

In (2), Fig. 1, the C2, C3, O2, C7, O3 dioxolane ring is fused to the pyran C1···C5, O1 ring of the sugar which carries a thiophenyl substituent on the anomeric C1 atom. The dioxolane ring adopts an envelope conformation with C2 0.600 (3)Å from the meanplane through C3, O2, C7, O3. The pyran ring system is in a distorted 4C1 chair conformation with O1 and C3 0.609 (4) and -0.514 (4)Å from the meanplane through C1, C2, C4, C5 and θ = 17.9 (3)(Cremer & Pople, 1975).

In the crystal, adjacent molecules form inversion related dimers through O4—H4A···O3i hydrogen -bonds (i = -x, y, -z + 1, Table 1, Fig. 2) in an R22(10) ring motif (Bernstein et al., 1995). C—H···O hydrogen bonds stabilize the structure further, forming an extended network (Fig. 3).

Related literature top

For the background to angucyline antibiotics, see: Carreno & Urbano (2005); Toshima (2003); Krohn & Rohr (1997); Rohr & Thiericke (1992). For previous reports of the title compound, see: Kerekgyarto et al., (1993); Yu & Wang, (2002). For related structures, see for example: Yang et al. (2003); Wehlan et al. (2004). For ring puckering analysis, see: Cremer & Pople (1975. For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

LiAlH4 (0.590 g, 15.6 mmol) was carefully added to a solution of tosylate (1) (2.00 g, 4.30 mmol) in diethyl ether (100 ml) cooled in an ice-salt bath. The ice bath was removed and the mixture was stirred under nitrogen for 12 h. The reaction was cooled in ice and quenched by the addition of 1M sodium hydroxide (5 ml). The mixture was extracted with diethyl ether, the organic layer washed with brine (50 ml) and water (2 x 100 mL). After drying over anhydrous magnesium sulfate the solvent was removed in vacuo. Purification of the residue by silica gel column chromatography [hexane/diethyl ether 1:1 to 2:1 as eluant] afforded two fractions. The higher RF fraction gave the title compound (2) (0.800 g, 63%) as a white crystalline solid. m.p. 76° C; [α]D = +199.3 (c 0.6, CH2Cl2); νmax (KBr): 3597, 2938, 2923, 1603, 1382, 1214, 1062 cm-1; δH(300 MHz, CDCl3): 1.26 (3H, d, J = 6.0 Hz, H-6), 1.39 (3H, s, CH3), 1.56 (3H, s, CH3), 2.2 (1H, OH), 3.50 (1H, m, H-5), 4.10 (1H, d, J = 6.4 Hz, H-2), 4.17 (1H, t, J = 7.1 Hz, H-4), 4.37 (2H, d, J = 0.9 Hz, H-3), 5.76 (1H, s, H-1), 7.32–7.50 (5H, m, PhH); δC(125 MHz, CDCl3): 17.13, 26.47, 28.22, 67.02, 75.32, 76.66, 77.50, 78.41, 88.31, 109.84, 127.67, 129.11, 131.93, 133.47; Found: C, 60.57; H, 6.80, S, 10.65%. C15H20O4S requires C, 60.79; H, 6.80; S, 10.82%.

Refinement top

The C11 and C12 atoms of the thiophenyl ring were disordered over two conformations. The occupancy factor for the major component refined to 0.66 (3). H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 and 0.82 Å, Uiso = 1.5Ueq (O) for the OH group.

Structure description top

In a sequence aimed at synthesizing 2,6-dideoxy-D-arabinopyranosides for use as glycosyl donors for the preparation of C-glycosides related to the angucycline antibiotics (Carreno & Urbano, 2005; Toshima, 2003; Krohn & Rohr, 1997; Rohr & Thiericke, 1992) we reduced tosylate (1) with lithium aluminium hydride to furnish the title compound (2), a known D-rhamnoside, (Kerekgyarto et al., 1993; Yu & Wang, 2002) in 63% yield (Scheme 1). An unexpected by-product (3), where reduction of the isopropylidene group had occurred, was also isolated in 14% yield.

In (2), Fig. 1, the C2, C3, O2, C7, O3 dioxolane ring is fused to the pyran C1···C5, O1 ring of the sugar which carries a thiophenyl substituent on the anomeric C1 atom. The dioxolane ring adopts an envelope conformation with C2 0.600 (3)Å from the meanplane through C3, O2, C7, O3. The pyran ring system is in a distorted 4C1 chair conformation with O1 and C3 0.609 (4) and -0.514 (4)Å from the meanplane through C1, C2, C4, C5 and θ = 17.9 (3)(Cremer & Pople, 1975).

In the crystal, adjacent molecules form inversion related dimers through O4—H4A···O3i hydrogen -bonds (i = -x, y, -z + 1, Table 1, Fig. 2) in an R22(10) ring motif (Bernstein et al., 1995). C—H···O hydrogen bonds stabilize the structure further, forming an extended network (Fig. 3).

For the background to angucyline antibiotics, see: Carreno & Urbano (2005); Toshima (2003); Krohn & Rohr (1997); Rohr & Thiericke (1992). For previous reports of the title compound, see: Kerekgyarto et al., (1993); Yu & Wang, (2002). For related structures, see for example: Yang et al. (2003); Wehlan et al. (2004). For ring puckering analysis, see: Cremer & Pople (1975. For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 & enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The structure of (2) showing the atom numbering with thermal ellipsoids drawn at the 30% probability level. H atoms are drawn as circles with arbitrary radii. For clarity, only the major disorder component of the disordered benzene ring is shown.
[Figure 2] Fig. 2. Dimers of (2) formed by O4—H4A···O3 hydrogen-bonds, drawn as dashed lines showing only the major disorder component.
[Figure 3] Fig. 3. Part of the crystal structure of (2) with hydrogen-bonds drawn as dashed lines and showing only the major disorder component.
[Figure 4] Fig. 4. The formation of the title compound.
Phenyl 2,3-O-isopropylidene-1-thio-α-D-rhamnopyranoside top
Crystal data top
C15H20O4SF(000) = 632
Mr = 296.37Dx = 1.274 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4464 reflections
a = 24.3029 (12) Åθ = 5.1–53.9°
b = 5.3048 (3) ŵ = 0.22 mm1
c = 12.0795 (7) ÅT = 295 K
β = 97.014 (3)°Irregular fragment, colourless
V = 1545.66 (15) Å30.37 × 0.30 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3318 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ & ω scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3030
Tmin = 0.723, Tmax = 0.983k = 66
17181 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.1017P)2 + ]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3318 reflectionsΔρmax = 0.33 e Å3
204 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983) 1392 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (10)
Crystal data top
C15H20O4SV = 1545.66 (15) Å3
Mr = 296.37Z = 4
Monoclinic, C2Mo Kα radiation
a = 24.3029 (12) ŵ = 0.22 mm1
b = 5.3048 (3) ÅT = 295 K
c = 12.0795 (7) Å0.37 × 0.30 × 0.08 mm
β = 97.014 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2560 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.983Rint = 0.060
17181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.37 e Å3
3318 reflectionsAbsolute structure: Flack (1983) 1392 Friedel pairs
204 parametersAbsolute structure parameter: 0.03 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.18083 (7)0.4599 (4)0.64558 (13)0.0532 (4)
C10.17180 (10)0.3676 (5)0.75001 (19)0.0463 (6)
H10.18180.50160.80460.056*
C20.11178 (10)0.2973 (5)0.7572 (2)0.0463 (6)
H20.10930.19020.82250.056*
C30.08248 (9)0.1708 (5)0.6530 (2)0.0496 (6)
H30.08870.01160.65650.060*
C40.09941 (10)0.2762 (5)0.5457 (2)0.0533 (6)
H40.08270.44330.53210.064*
O40.08181 (8)0.1174 (5)0.45401 (18)0.0823 (8)
H4A0.04970.15120.42980.123*
C50.16240 (11)0.2999 (7)0.5535 (2)0.0642 (8)
H50.17960.13330.56440.077*
C60.18068 (16)0.4260 (13)0.4507 (3)0.1080 (17)
H6A0.16570.59350.44370.162*
H6B0.16740.33000.38550.162*
H6C0.22040.43380.45810.162*
O20.07846 (7)0.5178 (3)0.76344 (14)0.0476 (4)
O30.02550 (7)0.2257 (3)0.66139 (16)0.0527 (4)
C70.02277 (10)0.4350 (5)0.7378 (2)0.0474 (5)
C80.01126 (11)0.6449 (5)0.6803 (2)0.0570 (7)
H8A0.00870.79140.72730.085*
H8B0.04930.59270.66570.085*
H8C0.00250.68460.61110.085*
C90.00051 (14)0.3396 (9)0.8398 (3)0.0822 (10)
H9A0.02350.21160.87510.123*
H9B0.03670.26980.81850.123*
H9C0.00310.47640.89090.123*
S10.21316 (3)0.08767 (14)0.79616 (7)0.0730 (3)
C100.27881 (10)0.2165 (5)0.8419 (2)0.0494 (6)
C110.3053 (4)0.385 (3)0.7765 (10)0.077 (3)0.66 (3)
H110.28690.44290.70940.092*0.66 (3)
C120.3583 (4)0.464 (3)0.8110 (13)0.100 (5)0.66 (3)
H120.37650.56920.76590.120*0.66 (3)
C11A0.2958 (5)0.456 (3)0.8190 (18)0.058 (4)0.34 (3)
H11A0.27210.56440.77520.070*0.34 (3)
C12A0.3488 (6)0.534 (3)0.8621 (19)0.073 (4)0.34 (3)
H12A0.35870.70160.85230.088*0.34 (3)
C130.38489 (15)0.3843 (9)0.9152 (3)0.0866 (11)
H130.41780.45910.94600.104*
C140.36232 (13)0.2024 (11)0.9680 (3)0.1015 (17)
H140.38210.13111.03100.122*
C150.30916 (13)0.1145 (11)0.9312 (3)0.0966 (15)
H150.29440.01700.96910.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0429 (9)0.0662 (11)0.0483 (10)0.0123 (8)0.0041 (7)0.0024 (8)
C10.0379 (13)0.0511 (13)0.0457 (13)0.0075 (10)0.0115 (10)0.0022 (10)
C20.0382 (12)0.0517 (13)0.0467 (13)0.0039 (10)0.0041 (10)0.0062 (10)
C30.0297 (10)0.0385 (11)0.0767 (18)0.0033 (8)0.0093 (10)0.0065 (10)
C40.0415 (13)0.0636 (15)0.0507 (15)0.0054 (12)0.0106 (10)0.0165 (12)
O40.0537 (11)0.1026 (19)0.0830 (14)0.0181 (12)0.0224 (10)0.0498 (14)
C50.0432 (14)0.091 (2)0.0564 (16)0.0000 (14)0.0021 (12)0.0170 (15)
C60.077 (2)0.192 (5)0.0571 (19)0.017 (3)0.0178 (17)0.007 (3)
O20.0397 (9)0.0506 (10)0.0503 (9)0.0060 (6)0.0029 (7)0.0082 (7)
O30.0337 (8)0.0411 (9)0.0796 (12)0.0055 (6)0.0078 (8)0.0083 (8)
C70.0386 (12)0.0497 (12)0.0528 (14)0.0065 (10)0.0007 (10)0.0012 (10)
C80.0496 (15)0.0457 (14)0.0727 (18)0.0014 (10)0.0040 (12)0.0037 (11)
C90.0603 (19)0.111 (3)0.077 (2)0.0063 (18)0.0179 (16)0.020 (2)
S10.0472 (4)0.0536 (4)0.1102 (6)0.0067 (3)0.0231 (4)0.0170 (4)
C100.0322 (11)0.0581 (15)0.0554 (15)0.0026 (10)0.0045 (10)0.0056 (11)
C110.053 (4)0.113 (7)0.060 (5)0.021 (4)0.014 (3)0.036 (5)
C120.050 (4)0.151 (10)0.093 (7)0.025 (5)0.016 (4)0.063 (7)
C11A0.031 (4)0.072 (6)0.070 (9)0.014 (4)0.006 (5)0.005 (6)
C12A0.044 (6)0.076 (7)0.102 (11)0.020 (4)0.021 (7)0.025 (7)
C130.0476 (17)0.116 (3)0.090 (2)0.0140 (19)0.0161 (16)0.012 (2)
C140.0487 (17)0.180 (5)0.070 (2)0.007 (2)0.0170 (15)0.045 (3)
C150.0522 (16)0.158 (4)0.075 (2)0.017 (2)0.0119 (14)0.057 (3)
Geometric parameters (Å, º) top
O1—C11.395 (3)C8—H8A0.9600
O1—C51.427 (3)C8—H8B0.9600
C1—C21.518 (3)C8—H8C0.9600
C1—S11.841 (3)C9—H9A0.9600
C1—H10.9800C9—H9B0.9600
C2—O21.429 (3)C9—H9C0.9600
C2—C31.525 (3)S1—C101.762 (3)
C2—H20.9800C10—C151.344 (4)
C3—O31.431 (3)C10—C111.400 (8)
C3—C41.514 (4)C10—C11A1.374 (15)
C3—H30.9800C11—C121.369 (10)
C4—O41.415 (3)C11—H110.9300
C4—C51.527 (4)C12—C131.407 (9)
C4—H40.9800C12—H120.9300
O4—H4A0.8200C11A—C12A1.394 (19)
C5—C61.524 (5)C11A—H11A0.9300
C5—H50.9800C12A—C131.295 (18)
C6—H6A0.9600C12A—H12A0.9300
C6—H6B0.9600C13—C141.313 (6)
C6—H6C0.9600C13—H130.9300
O2—C71.421 (3)C14—C151.394 (5)
O3—C71.450 (3)C14—H140.9300
C7—C91.506 (4)C15—H150.9300
C7—C81.505 (3)
C1—O1—C5115.3 (2)O3—C7—C8109.76 (19)
O1—C1—C2113.34 (19)C9—C7—C8112.7 (3)
O1—C1—S1114.62 (18)C7—C8—H8A109.5
C2—C1—S1106.12 (17)C7—C8—H8B109.5
O1—C1—H1107.5H8A—C8—H8B109.5
C2—C1—H1107.5C7—C8—H8C109.5
S1—C1—H1107.5H8A—C8—H8C109.5
O2—C2—C1110.9 (2)H8B—C8—H8C109.5
O2—C2—C3101.14 (19)C7—C9—H9A109.5
C1—C2—C3114.6 (2)C7—C9—H9B109.5
O2—C2—H2110.0H9A—C9—H9B109.5
C1—C2—H2110.0C7—C9—H9C109.5
C3—C2—H2110.0H9A—C9—H9C109.5
O3—C3—C4110.6 (2)H9B—C9—H9C109.5
O3—C3—C2102.1 (2)C10—S1—C1102.83 (12)
C4—C3—C2113.3 (2)C15—C10—C11117.7 (4)
O3—C3—H3110.2C15—C10—C11A112.7 (8)
C4—C3—H3110.2C15—C10—S1118.9 (3)
C2—C3—H3110.2C11—C10—S1122.1 (3)
O4—C4—C3111.2 (2)C11A—C10—S1125.3 (6)
O4—C4—C5107.6 (2)C12—C11—C10120.2 (6)
C3—C4—C5110.6 (2)C12—C11—H11119.9
O4—C4—H4109.1C10—C11—H11119.9
C3—C4—H4109.1C11—C12—C13119.5 (6)
C5—C4—H4109.1C11—C12—H12120.2
C4—O4—H4A109.5C13—C12—H12120.2
O1—C5—C4108.3 (2)C10—C11A—C12A119.1 (11)
O1—C5—C6106.2 (3)C10—C11A—H11A120.4
C4—C5—C6112.0 (3)C12A—C11A—H11A120.4
O1—C5—H5110.1C13—C12A—C11A122.8 (12)
C4—C5—H5110.1C13—C12A—H12A118.6
C6—C5—H5110.1C11A—C12A—H12A118.6
C5—C6—H6A109.5C14—C13—C12A113.2 (8)
C5—C6—H6B109.5C14—C13—C12118.7 (5)
H6A—C6—H6B109.5C14—C13—H13120.6
C5—C6—H6C109.5C12A—C13—H13115.7
H6A—C6—H6C109.5C12—C13—H13120.6
H6B—C6—H6C109.5C13—C14—C15121.1 (3)
C7—O2—C2105.45 (18)C13—C14—H14119.4
C3—O3—C7108.72 (17)C15—C14—H14119.4
O2—C7—O3105.01 (18)C10—C15—C14121.2 (4)
O2—C7—C9111.6 (2)C10—C15—H15119.4
O3—C7—C9108.3 (3)C14—C15—H15119.4
O2—C7—C8109.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.822.052.861 (2)169
C8—H8A···O3ii0.962.613.224 (3)122
C14—H14···O2iii0.932.623.524 (4)164
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC15H20O4S
Mr296.37
Crystal system, space groupMonoclinic, C2
Temperature (K)295
a, b, c (Å)24.3029 (12), 5.3048 (3), 12.0795 (7)
β (°) 97.014 (3)
V3)1545.66 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.37 × 0.30 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.723, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
17181, 3318, 2560
Rint0.060
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.144, 1.04
No. of reflections3318
No. of parameters204
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37
Absolute structureFlack (1983) 1392 Friedel pairs
Absolute structure parameter0.03 (10)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002), SHELXL97 & enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.822.052.861 (2)168.6
C8—H8A···O3ii0.962.613.224 (3)122.3
C14—H14···O2iii0.932.623.524 (4)164.1
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+2.
 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer and the Universiti Sains Malaysia for the award of a postgraduate scholarship to HO.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 (Version 1.017), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarreno, M. C. & Urbano, A. (2005). Synlett, pp. 1–25.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKerekgyarto, J., Szurmai, Z. & Liptak, A. (1993). Carbohydr. Res. 245, 65–80.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKrohn, K. & Rohr, J. (1997). Top. Curr. Chem. Bioorg. Chem. 188 127–195.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRohr, J. & Thiericke, R. (1992). Nat. Prod. Rep. 9, 103–37.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationToshima, K. (2003). Rec. Dev. Carbohydrate Res. 1, 27–47.  CAS Google Scholar
First citationWehlan, H., Dauber, M., Feranud, M. T. M., Schuppan, J., Mahrwald, R., Ziemer, B., Garcia, M. E. J. & Koert, U. (2004). Angew. Chem. Int. Ed. 43, 4597–4601.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z., Cao, H., Hu, J., Shan, R. & Yu, B. (2003). Tetrahedron, 59, 249–254.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, B. & Wang, P. (2002). Org. Lett. 4, 1919–1922.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds