metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(1-hydr­­oxy-2-naphthoato-κO)zinc(II)

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 21 November 2007; accepted 21 November 2007; online 6 December 2007)

In the title mononuclear complex, [Zn(C11H7O3)2(H2O)4], the ZnII atom is located on a centre of inversion and is coordinated by two O atoms from two 1-hydr­oxy-2-naphthoate ligands and four water mol­ecules in an octa­hedral geometry. The structure is consolidated by inter­molecular O—H⋯O hydrogen bonding, as well as by a ππ stacking inter­action [centroid–centroid distance 3.762 (2)Å] between adjacent naphthyl ring systems.

Related literature

For metal derivatives of 2-hydroxy­naphthoic acid, see: Ohki et al. (1986[Ohki, Y., Suzuki, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 60, 1015-1019.], 1987[Ohki, Y., Suzuki, Y., Shimoi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 551-556.]); Schmidt et al. (2005[Schmidt, M. U., Alig, E., Fink, L., Bolte, M., Panisch, R., Pashchenko, V., Wolf, B. & Lang, M. (2005). Acta Cryst. C61, m361-m364.]); Xue et al. (2005[Xue, Y. W., Xu, Q. F., Zhang, Y. & Lu, J. M. (2005). Chin. J. Inorg. Chem. 21, 1735-1739.])).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H7O3)2(H2O)4]

  • Mr = 511.77

  • Monoclinic, P 21 /n

  • a = 6.7499 (2) Å

  • b = 5.2239 (1) Å

  • c = 29.9876 (8) Å

  • β = 94.733 (2)°

  • V = 1053.78 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 296 (2) K

  • 0.26 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.736, Tmax = 0.756

  • 7878 measured reflections

  • 1903 independent reflections

  • 1583 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 1.07

  • 1903 reflections

  • 164 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 1.75 2.482 (2) 147
O1W—H1W⋯O2i 0.814 (10) 1.912 (10) 2.714 (2) 168 (3)
O1W—H2W⋯O3ii 0.810 (9) 2.091 (15) 2.814 (2) 149 (3)
O2W—H3W⋯O1Wiii 0.808 (10) 2.104 (11) 2.889 (3) 164 (3)
O2W—H4W⋯O2iv 0.809 (10) 1.994 (15) 2.712 (3) 148 (3)
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z; (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2004[Bruker (2004). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 1-hydroxy-2-naphthoate complexes, it has been found that the 1-hydroxy-2-naphthoate functions as a multidentate ligand (Ohki et al. 1986, 1987; Schmidt et al. (2005); Xue et al. (2005)), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Zn complex obtained by the reaction of 1-naphthol-2-carboxylic acid with zinc chloride in alkaline aqueous solution.

As illustrated in Figure 1, the ZnII atom, lies on a centre of inversion, has a disordered octahedral geometry, which is defined by two O atoms from two 1-hydroxy-2-naphthoate ligands and four water molecules (Fig. 1). The structural components are governed by intermolecular O—H···O hydrogen bond (Table 1) involving the coordinated water molecules, the hydroxy and carboxyl O atoms of 1-hydroxy-2-naphthoate ligands, and via π-π stacking interaciton. The centroid to centroid distance between parallel naphthoate rings of neighboring complexes (at X, 1+Y, Z) is 3.762 (2)A%, thus indicating a weak π-π stacking interaction.

Related literature top

For metal derivatives of 2-hydroxynaphthoic acid, see: Ohki et al. (1986, 1987); Schmidt et al. (2005); Xue et al. (2005)).

Experimental top

A mixture of zinc chloride(1 mmol), 1-hydroxy-2-naphthoate (1 mmol) NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

Carbon-bound and hydroxyl H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(C, O). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O).

Structure description top

In the structural investigation of 1-hydroxy-2-naphthoate complexes, it has been found that the 1-hydroxy-2-naphthoate functions as a multidentate ligand (Ohki et al. 1986, 1987; Schmidt et al. (2005); Xue et al. (2005)), with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Zn complex obtained by the reaction of 1-naphthol-2-carboxylic acid with zinc chloride in alkaline aqueous solution.

As illustrated in Figure 1, the ZnII atom, lies on a centre of inversion, has a disordered octahedral geometry, which is defined by two O atoms from two 1-hydroxy-2-naphthoate ligands and four water molecules (Fig. 1). The structural components are governed by intermolecular O—H···O hydrogen bond (Table 1) involving the coordinated water molecules, the hydroxy and carboxyl O atoms of 1-hydroxy-2-naphthoate ligands, and via π-π stacking interaciton. The centroid to centroid distance between parallel naphthoate rings of neighboring complexes (at X, 1+Y, Z) is 3.762 (2)A%, thus indicating a weak π-π stacking interaction.

For metal derivatives of 2-hydroxynaphthoic acid, see: Ohki et al. (1986, 1987); Schmidt et al. (2005); Xue et al. (2005)).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-XP (Bruker, 2004); software used to prepare material for publication: SHELXTL-XP (Bruker, 2004).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. Unlabeled atoms are related to the labelled atoms by the symmetry operator (1 - x, 1 - y, -z).
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecluar hydrogen bonds are shown with dashed lines.
Tetraaquabis(1-hydroxy-2-naphthoato-κO)zinc(II) top
Crystal data top
[Zn(C11H7O3)2(H2O)4]F(000) = 528
Mr = 511.77Dx = 1.613 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3500 reflections
a = 6.7499 (2) Åθ = 1.3–26°
b = 5.2239 (1) ŵ = 1.22 mm1
c = 29.9876 (8) ÅT = 296 K
β = 94.733 (2)°Block, colorless
V = 1053.78 (5) Å30.26 × 0.25 × 0.23 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
1903 independent reflections
Radiation source: fine-focus sealed tube1583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scanθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.736, Tmax = 0.756k = 65
7878 measured reflectionsl = 3628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.6372P]
where P = (Fo2 + 2Fc2)/3
1903 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.25 e Å3
6 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C11H7O3)2(H2O)4]V = 1053.78 (5) Å3
Mr = 511.77Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.7499 (2) ŵ = 1.22 mm1
b = 5.2239 (1) ÅT = 296 K
c = 29.9876 (8) Å0.26 × 0.25 × 0.23 mm
β = 94.733 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1583 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.756Rint = 0.025
7878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0336 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1903 reflectionsΔρmin = 0.28 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8379 (3)0.3495 (5)0.06924 (7)0.0306 (6)
C20.8996 (3)0.1561 (5)0.10400 (7)0.0291 (5)
C30.7639 (3)0.0133 (5)0.11983 (8)0.0316 (5)
C40.8218 (4)0.1956 (5)0.15378 (8)0.0347 (6)
C51.0231 (4)0.1986 (5)0.17178 (8)0.0406 (6)
C61.1595 (4)0.0253 (6)0.15493 (9)0.0457 (7)
H61.29180.02790.16640.055*
C71.1001 (3)0.1446 (5)0.12234 (8)0.0379 (6)
H71.19290.25610.11180.045*
C80.6851 (4)0.3712 (5)0.16959 (9)0.0432 (7)
H80.55350.37020.15760.052*
C90.7452 (5)0.5427 (6)0.20239 (9)0.0546 (8)
H90.65470.65870.21260.066*
C100.9424 (5)0.5439 (6)0.22056 (10)0.0602 (9)
H100.98160.65960.24320.072*
C111.0768 (5)0.3799 (6)0.20586 (9)0.0543 (8)
H111.20760.38580.21830.065*
O10.6516 (2)0.3475 (3)0.05507 (5)0.0383 (4)
O20.9567 (2)0.5030 (3)0.05494 (6)0.0429 (5)
O30.5689 (2)0.0105 (3)0.10473 (6)0.0406 (4)
H30.54930.10320.08600.061*
O1W0.3164 (2)0.7122 (4)0.04289 (6)0.0374 (4)
H1W0.217 (3)0.637 (5)0.0494 (8)0.056*
H2W0.379 (3)0.743 (6)0.0665 (5)0.056*
O2W0.2956 (2)0.2023 (4)0.00189 (7)0.0448 (5)
H3W0.280 (4)0.060 (3)0.0077 (10)0.067*
H4W0.194 (3)0.239 (5)0.0166 (9)0.067*
Zn10.50000.50000.00000.03273 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (12)0.0319 (16)0.0306 (13)0.0008 (11)0.0051 (10)0.0011 (11)
C20.0314 (12)0.0263 (15)0.0297 (12)0.0026 (11)0.0038 (9)0.0018 (11)
C30.0343 (12)0.0306 (15)0.0303 (12)0.0014 (12)0.0051 (9)0.0035 (12)
C40.0474 (14)0.0279 (15)0.0299 (13)0.0058 (12)0.0100 (11)0.0012 (11)
C50.0496 (15)0.0394 (17)0.0331 (14)0.0130 (13)0.0053 (11)0.0005 (12)
C60.0352 (13)0.054 (2)0.0467 (16)0.0106 (14)0.0027 (11)0.0050 (15)
C70.0305 (12)0.0418 (17)0.0416 (15)0.0003 (12)0.0043 (11)0.0037 (13)
C80.0561 (17)0.0342 (17)0.0410 (15)0.0035 (14)0.0138 (13)0.0014 (14)
C90.086 (2)0.0347 (19)0.0465 (17)0.0019 (16)0.0252 (16)0.0072 (14)
C100.090 (3)0.050 (2)0.0425 (17)0.0199 (18)0.0126 (17)0.0145 (15)
C110.0639 (19)0.055 (2)0.0432 (17)0.0194 (17)0.0004 (14)0.0084 (16)
O10.0283 (8)0.0410 (12)0.0443 (10)0.0048 (8)0.0038 (7)0.0136 (9)
O20.0299 (9)0.0482 (12)0.0508 (11)0.0076 (9)0.0038 (8)0.0166 (10)
O30.0329 (9)0.0413 (12)0.0470 (11)0.0077 (8)0.0000 (7)0.0131 (9)
O1W0.0295 (9)0.0389 (11)0.0440 (10)0.0070 (8)0.0053 (7)0.0008 (9)
O2W0.0343 (9)0.0292 (11)0.0694 (14)0.0077 (8)0.0054 (9)0.0116 (10)
Zn10.0286 (2)0.0282 (3)0.0411 (3)0.00204 (18)0.00111 (16)0.0060 (2)
Geometric parameters (Å, º) top
C1—O21.236 (3)C9—C101.396 (5)
C1—O11.294 (3)C9—H90.9300
C1—C21.486 (3)C10—C111.348 (4)
C2—C31.385 (3)C10—H100.9300
C2—C71.420 (3)C11—H110.9300
C3—O31.356 (3)O1—Zn12.0323 (16)
C3—C41.425 (3)O3—H30.8200
C4—C81.411 (4)O1W—Zn12.1635 (17)
C4—C51.420 (3)O1W—H1W0.814 (10)
C5—C61.414 (4)O1W—H2W0.810 (9)
C5—C111.418 (4)O2W—Zn12.0767 (16)
C6—C71.356 (4)O2W—H3W0.808 (10)
C6—H60.9300O2W—H4W0.809 (10)
C7—H70.9300Zn1—O1i2.0323 (16)
C8—C91.367 (4)Zn1—O2Wi2.0767 (16)
C8—H80.9300Zn1—O1Wi2.1635 (17)
O2—C1—O1122.2 (2)C11—C10—H10119.5
O2—C1—C2122.2 (2)C9—C10—H10119.5
O1—C1—C2115.6 (2)C10—C11—C5121.4 (3)
C3—C2—C7118.5 (2)C10—C11—H11119.3
C3—C2—C1121.3 (2)C5—C11—H11119.3
C7—C2—C1120.2 (2)C1—O1—Zn1132.37 (15)
O3—C3—C2122.0 (2)C3—O3—H3109.5
O3—C3—C4116.6 (2)Zn1—O1W—H1W115 (2)
C2—C3—C4121.4 (2)Zn1—O1W—H2W110 (2)
C8—C4—C5119.8 (2)H1W—O1W—H2W105.2 (15)
C8—C4—C3121.7 (2)Zn1—O2W—H3W142 (2)
C5—C4—C3118.5 (2)Zn1—O2W—H4W111.7 (19)
C6—C5—C11123.4 (3)H3W—O2W—H4W106.4 (16)
C6—C5—C4119.2 (2)O1i—Zn1—O1180.00 (13)
C11—C5—C4117.5 (3)O1i—Zn1—O2Wi90.99 (7)
C7—C6—C5121.0 (2)O1—Zn1—O2Wi89.01 (7)
C7—C6—H6119.5O1i—Zn1—O2W89.01 (7)
C5—C6—H6119.5O1—Zn1—O2W90.99 (7)
C6—C7—C2121.5 (2)O2Wi—Zn1—O2W180.0
C6—C7—H7119.3O1i—Zn1—O1Wi89.56 (7)
C2—C7—H7119.3O1—Zn1—O1Wi90.44 (7)
C9—C8—C4120.3 (3)O2Wi—Zn1—O1Wi89.33 (7)
C9—C8—H8119.8O2W—Zn1—O1Wi90.67 (7)
C4—C8—H8119.8O1i—Zn1—O1W90.44 (7)
C8—C9—C10120.0 (3)O1—Zn1—O1W89.56 (7)
C8—C9—H9120.0O2Wi—Zn1—O1W90.67 (7)
C10—C9—H9120.0O2W—Zn1—O1W89.33 (7)
C11—C10—C9121.0 (3)O1Wi—Zn1—O1W180.00 (11)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.752.482 (2)147
O1W—H1W···O2ii0.81 (1)1.91 (1)2.714 (2)168 (3)
O1W—H2W···O3iii0.81 (1)2.09 (2)2.814 (2)149 (3)
O2W—H3W···O1Wiv0.81 (1)2.10 (1)2.889 (3)164 (3)
O2W—H4W···O2i0.81 (1)1.99 (2)2.712 (3)148 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C11H7O3)2(H2O)4]
Mr511.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.7499 (2), 5.2239 (1), 29.9876 (8)
β (°) 94.733 (2)
V3)1053.78 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.26 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.736, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
7878, 1903, 1583
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.07
No. of reflections1903
No. of parameters164
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-XP (Bruker, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.821.752.482 (2)147.3
O1W—H1W···O2i0.814 (10)1.912 (10)2.714 (2)168 (3)
O1W—H2W···O3ii0.810 (9)2.091 (15)2.814 (2)149 (3)
O2W—H3W···O1Wiii0.808 (10)2.104 (11)2.889 (3)164 (3)
O2W—H4W···O2iv0.809 (10)1.994 (15)2.712 (3)148 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2004). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOhki, Y., Suzuki, Y., Shimoi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 551–556.  CrossRef CAS Web of Science Google Scholar
First citationOhki, Y., Suzuki, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1986). Bull. Chem. Soc. Jpn, 60, 1015–1019.  CrossRef Web of Science Google Scholar
First citationSchmidt, M. U., Alig, E., Fink, L., Bolte, M., Panisch, R., Pashchenko, V., Wolf, B. & Lang, M. (2005). Acta Cryst. C61, m361–m364.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationXue, Y. W., Xu, Q. F., Zhang, Y. & Lu, J. M. (2005). Chin. J. Inorg. Chem. 21, 1735–1739.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds